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Abstract: 4H-SiC Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) with embedded
Schottky barrier diodes are widely known to improve switching energy loss by reducing reverse
recovery characteristics. However, it weakens the static characteristics such as specific on-resistance
and breakdown voltage. To solve this problem, in this paper, an Asymmetric 4H-SiC Split Gate
MOSFET with embedded Schottky barrier diode (ASG-MOSFET) is proposed and analyzed by
conducting a numerical TCAD simulation. Due to the asymmetric structure of ASG-MOSFET, it
has a relatively narrow junction field-effect transistor width. Therefore, despite using the split gate
structure, it effectively protects the gate oxide by dispersing the high drain voltage. The Schottky
barrier diode (SBD) is also embedded next to the gate and above the Junction Field Effect transistor
(JFET) region. Accordingly, since the SBD and the MOSFET share a current path, the embedded SBD
does not increase in RON,SP of MOSFET. Therefore, ASG-MOSFET improves both static and switching
characteristics at the same time. As a result, compared to the conventional 4H-SiC MOSFET with
embedded SBD, Baliga′s Figure of Merit is improved by 17%, and the total energy loss is reduced by
30.5%, respectively.

Keywords: 4H-SiC; asymmetric; split gate; body diode; switching loss

1. Introduction

4H-SiC is a wide bandgap material and has material properties such as high critical
electric field and thermal conductivity [1]. With these characteristics, the use of 4H-SiC
enables the implementation of MOSFETs, which significantly improves the switching
characteristics compared to the conventional Si IGBT [2,3]. Therefore, 4H-SiC Metal-
Oxide-Semiconductor Field Effect Transistors (MOSFETs) are considered to be promising
candidates for high-voltage and high-frequency applications. In particular, high-voltage
and high-frequency power devices are expected to be applied in applications requiring
high-power density, such as high-power converters and traction drives [4,5]. However,
most commercially available SiC power MOSFETs are for 1200 V and 1700 V applica-
tions. In response to these industry demands, SiC MOSFETs for 3300 V are being actively
researched [6,7]. Recently, various studies into trench MOSFETs have been conducted
due to the high channel mobility and the small cell pitch of trench MOSFETs. However,
trench MOSFETs suffer from electric field concentrations at the trench gate oxide corners
exceeding 3 MV/cm, the gate oxide reliability limit of SiC MOSFETs [8]. Therefore, for
high voltage applications, research mainly focuses on planar MOSFETs.

To achieve fast switching speeds and low switching energy losses for high frequency,
the gate—drain capacitance (CGD) must be minimized [9]. A well-known method to reduce
CGD of the planar MOSFET is a split gate MOSFET, which reduces the overlapped region
between gate and drain through the split active gate [10]. However, in this structure, the
electric field is concentrated at the corner of the split gate oxide, so there is a problem in that
the reliability of the gate oxide cannot be guaranteed. In particular, this problem becomes
more serious as the high-voltage device increases. Therefore, the split gate structure is
difficult to apply to high voltage applications (>3.3 kV).
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Another way to improve the switching characteristic is to improve the reverse recovery
characteristics. Because the body diode of SiC MOSFETs has a high reverse recovery
charge, a high reverse recovery current is generated during the turn on transient in the
switching operation [11]. The reverse recovery current increases the peak drain current,
resulting in high switching energy loss. To handle the reverse recovery current, an external
Schottky barrier diode (SBD) is widely used as a freewheeling diode to suppress the action
of the body diode [12]. However, an external SBD increases the active chip area and
package cost. In high voltage applications, the active chip area of external SBD increases
as the size of the external SBD increases to withstand the high voltage in the off state [13].
Recently, to improve the reverse recovery characteristics of SiC MOSFETs without using an
external SBD, research into embedding SBD in SiC MOSFET has been actively conducted.
A conventional 4H-SiC MOSFET with embedded SBD (C-MOSFET) greatly improves
reverse recovery characteristics without external SBD [14]. However, embedded SBD
increases the cell pitch, decreasing the channel density and thus increases the specific on-
resistance (RON,SP). Moreover, in the off state, due to the increased mesa region, the voltage
concentrated on the p+ base is also increased, reducing the Breakdown Voltage (BV). That
is, the SBD embedded in the mesa region improves the reverse recovery characteristic but
is accompanied by a deterioration of the static characteristics.

In this paper, we propose an asymmetric split gate 4H-SiC MOSFET with embedded
SBD (ASG-MOSFET) to simultaneously improve both the switching and static characteris-
tics. In ASG-MOSFET, the SBD is embedded next to the active gate and above the junction
field effect transistor (JFET) region. Accordingly, the embedded SBD does not degrade
the RON,SP of MOSFET because the MOSFET and SBD share the current path in the on
state. In addition, since the ASG-MOSFET is an asymmetric structure, it has a narrow
JFET width (WJFET). Therefore, it has a high channel density through a small cell pitch,
thus reducing the RON,SP despite the narrow WJFET. This narrow WJFET also forms a large
depletion region, creating a small depletion capacitance (CDEP). Moreover, the split gate
structure of ASG-MOSFET reduces the overlapping area between gate and drain, thereby
reducing gate oxide capacitance (COX). Therefore, ASG-MOSFET significantly reduces CGD
through the reduced COX and CDEP.

This study was conducted by a Sentaurus TCAD simulation tool. In this simulation,
the used models include the Fermi–Dirac statistics, band narrowing, anisotropic material
properties, Shockley-Read-Hall, Auger recombination. A Hatakeyama model is used to
consider the impact of ionization behavior. Mobility models, such as doping dependent,
high field saturation, surface roughness, and acoustic phonon scattering at the SiC/SiO2
interface are involved [15]. The incomplete ionization model is also considered and the
nonlocal tunneling model and Schottky barrier lowering model are used for the tunneling
current at the Schottky contact [16]. The fixed charge concentration at the SiC/SiO2 interface
is considered as 3 × 1012 cm−2.

2. Device Structure and Optimization
2.1. Proposed Device Structure

Figure 1 is a cross-sectional view of the C-MOSFET and the proposed ASG-MOSFET.
In Figure 1, the cells used for the simulation are marked with a red dotted line. In Figure 1,
the C-MOSFET and the ASG-MOSFET have the SBD embedded over the mesa region and
the JFET region, respectively.
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Figure 1. Schematic cross-sectional views (a) conventional MOSFET with embedded SBD (C-
MOSFET) and (b) asymmetric split gate MOSFET with embedded SBD (ASG-MOSFET).

For the two device structures, the channel length and gate oxide thicknesses are
0.5 µm and 50 nm, respectively, and the doping concentration in the channel region is
2 × 1017 cm−3. Considering the simultaneous formation of ohmic and Schottky contacts
using Ni as a source metal, the work function of the Schottky metal was set to 5.05 eV [17].
The electron mobility is set at about 20–50 cm2V−1S−1 in the 15 nm range below the
SiC/SiO2 interface. A P+ base region doping concentration of 2 × 1018 cm−3, an N-drift
layer of 30 µm, an N-drift doping concentration of 3 × 1015 cm−3, and a Channel Spread
Layer (CSL) doping concentration of 2 × 1016 cm−3 were used. A heavily doped 1 × 1020

cm−3 N-type Poly Si was adopted as the active gate. The WJFET of C-MOSFET was set to
2.0 µm in consideration of static characteristics such as RON,SP, and BV. The gate oxide
thickness of the two structures was considered to be 50 nm.

2.2. Key Parameter Optimization

In this section, optimization of the two structures was performed considering RON,SP
and turn on voltage of embedded SBD (VF,SBD) of C-MOSFET and ASG-MOSFET. As previ-
ously mentioned, the C-MOSFET improves the reverse recovery characteristic through the
embedded SBD, but it accompanies the degradation of the static characteristic. Therefore,
the SBD width (WSBD) of C-MOSFET was designed considering RON,SP and VF,SBD. Figure 2
shows RON,SP and VF,SBD according to WSBD change in C-MOSFET. As WSBD increases,
VF,SBD decreases while RON,SP increases. This is because the embedded SBD in the mesa
region increases the cell pitch of the C-MOSFET, reducing the channel density. Therefore,
considering both RON,SP and VF,SBD, 2.0 µm with the most appropriate performance was
determined as the WSBD.
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For a fair comparison between C-MOSFET and ASG-MOSFET, the WJFET of ASG-
MOSFET is designed such that the BV of the ASG-MOSFET has a BV similar to that of
the C-MOSFET. In the ASG-MOSFET, the WJFET consists of WSBD, the active gate length
(LAG) and the gate oxide thickness (TOX). The LAG and TOX of ASG-MOSFET is fixed to
0.2 µm and 50nm. Therefore, the WJFET of the ASG-MOSFET was optimized by adjusting
the WSBD.

Figure 3 shows the effect of WJFET on static characteristics of the ASG-MOSFET. In
Figure 3a, unlike C-MOSFET, when WSBD increases, VF,SBD and RON,SP decrease simulta-
neously. In other words, the embedded SBD of the ASG-MOSFET does not degrade the
RON,SP characteristic of the ASG-MOSFET. This is because the MOSFET channel and the
embedded SBD share a current path through the JFET region in their respective on state.
Meanwhile, from Figure 3b, in the off state, as the WJFET increases, the BV decreases due to
the reduction of the screening effect by the JFET region. As a result, 1.4 µm, the condition
with the most similar BV to that of C-MOSFET, was determined as WJFET. Therefore, WSBD,
LAG, and TOX of the optimized ASG-MOSFET were designed to be 1.4 µm, 0.2 µm, and
50 nm, respectively.
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3. Electrical Characteristics Analysis
3.1. Static Characteristics

In this section, to verify the excellent electrical properties of the proposed ASG-
MOSFET, the electrical properties of the two structures were compared and analyzed
through TCAD simulation.

Figure 4 shows output curves and BV characteristics of the C-MOSFET and ASG-
MOSFET. According to the results optimized in Section 2.2, C-MOSFET and ASG-MOSFET
have similar BV of 4094 V and 4141 V, respectively. Whereas, The RON,SP of both structures
are 10.12 mΩ·cm2 and 8.85 mΩ·cm2, respectively. ASG-MOSFET has higher JFET resistance
than C-MOSFET due to smaller WJFET, but RON,SP of ASG-MOSFET is 12.5% smaller than
C-MOSFET. This is because the ASG-MOSFET has a smaller cell pitch, which increases
the channel density. As a result, the BFOM calculated by BV2/RON,SP improved by 17 %,
respectively, compared to C-MOSFET.

The electric field distributions of C-MOSFET and ASG-MOSFET when VDS = 3000 V
are plotted in Figure 5a,b, respectively. The C-MOSFET has the highest gate oxide electric
field (EOX) in the center of the gate oxide because the WJFET is wide. On the other hand, in
ASG-MOSFET, the split gate corner is most vulnerable to electric field. However, because
the ASG-MOSFET has an asymmetric structure, the gate oxide is more effectively protected
by forming a wide depletion region in the JFET region through a narrow WJFET. As a result,
the maximum EOX of C-MOSFET and ASG-MOSFET is 2.74 MV/cm and 2.02 MV/cm,
respectively, so ASG-MOSFET has a more superior gate oxide reliability.
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Figure 6 shows the forward conduction characteristics of the body diode. The forward
conduction characteristics were extracted by sweeping VDS from 0 V to −10 V when
VGS = −5 V. In Figure 6, the VF,SBD is defined as the VDS when the drain current reaches
−80 A/cm2. Meanwhile, the knee point means the point at which the body diode is turned
on [18]. As a result, VF,SBD of C-MOSFET is 1.45 V, whereas VF,SBD of ASG-MOSFET is
1.35 V. Therefore, the ASG-MOSFET more effectively suppresses the turn on of the body
diode. The static characteristics of the two devices, including RON,SP, BV, maximum EOX,
VF,SBD and turn on voltage of body diode (VF,Body), are summarized in Table 1. In addition,
Baliga′s Figure of Merit (BFOM), which is the static characteristic indicator considering
RON,SP and BV, was calculated and listed.
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Table 1. Dynamic characteristics of two devices.

C-MOSFET ASG-MOSFET

RON,SP (mΩ·cm2) 10.12 8.85
BV (V) 4098 4141

BFOM (MW/cm2) 1659.5 1937.6
Maximum EOX (MV/cm) 2.74 2.02

VF,SBD (V) 1.45 1.35
VF,Body (V) 6.12 9.0

3.2. Dynamic Characteristics

The capacitance simulation results of two devices are depicted in Figure 7. In the
capacitance simulation, the capacitance was extracted by sweeping the drain voltage from
0 V to 1500 V when VGS = 0 V, and the AC small signal was set to 1 MHz. In addition, the
active area of two devices of two devices is set to 1 cm2.
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From Figure 7a, it can be seen that the input capacitance (CISS) and the output ca-
pacitance (COSS) of two structures are very similar. In the Figure 7b, the ASG-MOSFET
has a significant improvement in CGD over C-MSOFET. The CGD of ASG-MOSFET is
6.04 pF/cm2, which is improved by 60.4% compared to 15.24 pF/cm2 of C-MOSFET. This
is because the ASG-MOSFET greatly reduces the COX and CDEP constituting CGD. The CGD
is a series connection of COX and CDEP [9]. The split-gate structure of ASG-MOSFET effec-
tively reduces the overlapping area between gate and drain, reducing the COX. In addition,
narrow WJFET of ASG-MOSFET forms a wide depletion region between gate and drain,
which also reduces CDEP. Therefore, the ASG-MOSFET has significantly reduced CGD.
Based on the RON,SP and CGD results, High-Frequency Figure of Merit (HFFOM), which is
commonly used as the high frequency performance indicators is calculated [2]. As a result,
owing to the reduced RON,SP and CGD, the HFFOM of the ASG-MOSFET is 53.45 mΩ·pF,
which is a 65% improvement compared to the 154.23 mΩ·pF of the C-MOSFET.

Figure 8 shows the switching waveforms of both devices when used as a device under
test (DUT) in a half-bridge circuit. Figure 8a shows this during the turn on transient and
turn off transient, respectively, and Figure 8b appears to show the half bridge circuits used
for the double pulse test simulation. In Figure 8b, the gate resistance is set to 10 Ω and the
gate voltage switched from −5 V to 20 V. In order to proceed with the double pulse test of
the 3.3 kV device, VDD was set to 1700 V. Furthermore, to set the load current to 100 A/cm2

in the test circuit, the time period of the first pulse and load inductance are set to 10 µs and
170 µH, respectively, considering the VDD and the rate of di/dt, and a parasitic inductance
is assumed to 10 nH. In addition, the same MOSFET as the lower arm MOSFET was used
for the upper arm MOSFET to handle the freewheeling current in the half-bridge circuit,
and VGS of the upper arm MOSFET was applied to −5V to maintain the off state of the
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upper arm MOSFET. The SBD connected in parallel to the MOSFET in a half-bridge circuit
appears in the SBD, which is embedded into the MOSFET.
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turn on transient and (b) half-bridge circuit used for double pulse test simulation.

In Figure 8a, the ASG-MOSFET has a shorter Miller plateau and a faster switching
speed than C-MOSFET during the switching transients, which is consistent with the CGD
results. Meanwhile, although SBD of ASG-MOSFET has lower VF,SBD than C-MOSFET, the
peak current during switching transient is larger. This is because the fast-switching time of
the ASG-MOSFET results in a higher overshoot current [19].

Figure 9 shows the current waveform of upper arm MOSFET during the turn on
transient of lower arm MOSFET when the C-MOSFET and ASG-MOSFET are used as
DUT in half-bridge circuit. From Figure 9, the ASG-MOSFET has a slightly larger reverse
recovery charge (QRR) compared to the C-MOSFET. This is because the reduced CGD of the
ASG-MOSFET causes a larger overshoot current, resulting in a higher peak current.
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The ASG-MOSFET has a slightly larger QRR, but more superior the switching charac-
teristics than the C-MOSFET. Figure 10 shows the total switching energy loss (ETotal) of two
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devices during the switching transient. The ETotal of the ASG-MOSFET is still lower than
that of the C-MOSFET shown in Figure 10 due to its fast-switching speed. Based on the
double pulse test simulation results, the turn off loss (EOFF) and the turn on loss (EON) of
ASG-MOSFET are 0.84 mJ/cm2 and 3.19 mJ/cm2, respectively, whereas the C-MOSFET
has an EOFF of 1.79 mJ/cm2 and an EON of 4.01 mJ/cm2, the ETotal of ASG-MOSFET is
4.03 mJ, which is 30.5% lower than that of C-MOSFET with ETotal of 5.80 mJ. As a result,
the switching characteristics, including the parasitic capacitance and reverse recovery
characteristics of the two devices, are summarized in Table 2.
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Figure 10. Switching energy loss during turn off and turn on transients.

Table 2. Dynamic characteristics of two devices.

C-MOSFET ASG-MOSFET

CISS (nF/cm2) 16.79 17.34
COSS (pF/cm2) 369.79 369.71
CGD (pF/cm2) 15.24 6.04
QRR (nC/cm2) 1.18 1.26
EOFF (mJ/cm2) 1.79 0.84
EON (mJ /cm2) 4.01 3.19
ETotal (mJ/cm2) 5.80 4.03

4. Proposed Fabrication Process

Considering the feasibility of the proposed MOSFE, the fabrication process of ASG-
MOSFET is proposed as shown in Figure 11. The N- drift and Channel Spread Layer are
grown on an n+ substrate by epitaxial process, and the CSL layer is etched to remove the
CSL layer, except for the Schottky contact region. N+ source, P+ base and P channel region
are formed by the implantation process. The chemical vapor deposition is performed
at 800 ◦C to form an oxide with a uniform thickness of 50 nm [20]. Poly Si is deposited
by the low-pressure chemical vapor deposition (LPCVD) and is etched by reactive ion
etching to form a split gate structure [21]. Interlayer dielectric oxide is deposited through
LPCVD and is etched to open the Ohmic and Schottky contact region [22]. After Ni is
deposited, rapid thermal annealing (RTA) is performed at 900 ◦C [23]. RTA at 900 ◦C after
Ni deposition allows Ni to serve as a multifunctional metal that simultaneously forms
Ohmic and Schottky contacts. Finally, an Ni layer is patterned, and a thick Al layer is
deposited to form a metal pad.
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Figure 11. Proposed process flow of ASG-MOSFET. (a) Epitaxial N-drift layer and CSL on N+ substrate and Form the P+
base, P channel and N+ source by implantation (b) gate oxide deposition (c) Poly Si deposition and patterning (d) ILD
deposition (e) ILD patterning (f) Ni metal deposition to form the ohmic and Schottky contact.

5. Conclusions

In this paper, based on the TCAD simulation results, we propose and analyze an asym-
metric 4H-SiC split-gate MOSFET with embedded SBD (ASG-MOSFET). ASG-MOSFET
has narrower WJFET than C-MOSFET due to its asymmetric structure. The narrower WJFET
forms a wide depletion region, causing a better shielding effect of the JFET region. There-
fore, the split gate structure of ASG-MOSFET is effectively protected without degradation
of BV and gate oxide reliability. ASG-MOSFET also has lower RON,SP than C-MOSFET.
Unlike C-MOSFET, in ASG-MOSFET, the SBD is embedded above the JFET region so that
the embedded SBD does not degrade the RON,SP and the ASG-MOSFET has a smaller cell
pitch, increasing channel density. In addition, since narrow WJFET due to asymmetric struc-
ture effectively reduces CDEP, ASG-MOSFET effectively improves switching characteristics
through split gate, narrow WJFET due to its asymmetric structure, and embedded SBD. As
a result, ASG-MOSFET improved BFOM and switching energy loss by 17% and 30.5%,
respectively, compared to C-MOSFET. Therefore, ASG-MOSFET is more suitable for high
voltage and high frequency applications.
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