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Abstract: One of the challenges which the electrical power industry has been facing nowadays is
the adaptation of the power system to the energy transition which has been taking place before our
very eyes. With the increasing share of Renewable Energy Sources (RES) in energy production, the
development of electromobility and the increasing environmental awareness of the society, the power
system must constantly evolve to meet its expectations regarding a reliable electricity supply. This
paper presents the issue of deploying energy storage facilities in the meshed power distribution
network in order to reduce transmission losses. The presented multi-objective approach provides an
opportunity to solve this issue using multi-objective optimisation methods such as Non-dominated
Sorting Genetic Algorithm II (NSGA-II), Multiobjective Particle Swarm Optimization (MPSO) and
Biased Random Keys Genetic Algorithm (BRKGA). In order to increase the efficiency optimisation
process, the Pareto Adaptive ε-dominance (paε-dominance) was used. It was demonstrated that the
use of energy storages that cooperate with RES can significantly reduce transmission losses.

Keywords: power losses; BESS; peak sheaving

1. Introduction

The role of the power system is the continuous generation and supply of electricity
to recipients, ensuring the appropriate quality parameters. In order to be able to achieve
this, proper investment planning, as well as management of transmission and distribution
networks and generation units, are both essential. Owing to such activities, electricity
may be supplied to recipients in a manner that is optimal from the technical and economic
points of view. One of the tasks that needs to be carried out in these aforementioned areas
is the reduction of transmission losses, which lower the efficiency of use of the energy
currently produced and may lead to short- or long-term overloads of power lines. Line
overloads increase the probability of the failure of network components, and thus the
occurrence of interruptions in the supply of electricity.

Among the ways of reducing power losses in distribution networks, it is possible
to distinguish organisational and technical methods [1]. From the point of view of the
topic of this paper, the technical solutions are the most important. These consist of the
modification of the current technical condition of the networks through the addition of new
devices which reduce power loss, or through upgrading the existing network components.
These include, among others: reactive power compensation using capacitor banks [2–4],
the use of higher harmonic filters, replacement of power transformers, and increasing the
cross-sections of power lines used [2,5].

One of the ways to limit transmission losses is the use of a Static Var Compensator
(SVC), which can reduce the reactive power drawn in the system node. The problem
of optimal SVC allocation in the system was presented in [6].The GAMS software using
the CONOPT solver was used for optimisation. The application of Distribution Static
Compensator (DSTATCOM) which allows both for reactive and active power reduction
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is similar. The bat algorithm method was used in [7] to optimise the size and location of
DSTATCOMs in order to sustain the nodal voltage and limit transmission losses.

The organisational methods consist of such control of power flow in the system so
as to limit transmission losses at the lowest possible costs of electricity generation and
system operation. Organisational methods may include the location of partitions in MV/lv
distribution networks [8], control of power switches [9–11], management of available
generation sources, use of electricity demand management techniques and reducing the
phase load imbalance. One example of the use of the Selective Particle Swarm Optimisation
(SPSO) and binary particle swarm optimisation methods to find the configuration of
switches in a distribution network so as to minimise electricity losses is presented in [9].

In papers [12–14], the problem of the optimisation of the power flow in the system
has been presented as the so-called Economic Dispatch (ED) of power among the available
generation units. The objective function for this task may consist of many objectives (such
as cost of electricity production, power losses, and greenhouse gas emissions) and a set of
constraints (nodal voltages, line currents, permitted generation level for each generation
unit). In [12], the segmental linearisation of the loss model in power lines was used for
optimisation. Meanwhile, in [13], the ED problem was divided into two stages. In the first
one, the ED takes place without considering power losses. The solutions obtained in this
stage are the basis for the optimisation that minimises system losses. In [14], the Vortex
Search Algorithm (VSA) was used to find the optimal solution.

As a result of the energy transition taking place since the 1990s, an increasing share of
RES has been observed in electricity production. Wind and solar power account for a large
part of the renewable energy market. The year-round energy gain from wind and solar
systems can be achieved through the appropriate processing of archived meteorological
data. In the case of wind energy, the Weibull distribution is applicable. A comparison of
different optimisation methods used to determine the Weibull distribution parameters (inter
alia Genetic Algorithm (GA) and Maximum Likehood Estimation (MLE)) was presented
in [15]. RES generation offers the possibility to locate an electricity source close to its
recipients, and to form the so-called Distributed Energy Resource (DER), which may lead
to relieving the transmission system and reducing voltage drops, when RES are used
appropriately.

In a paper by [16], the artificial bee colony method was applied to determine the
value of DER, their location and power factor, with an assumption of the minimisation of
real power loss. In a paper by [17], the proposal was made to reduce transmission losses
through the optimal location of various types of DER in the network (including RES). In
order to find the optimal solution, the GA was used. In a paper by [18], the Particle Swarm
Optimization (PSO) method was used to find the solution for a similar problem.

In a paper by [19], a method of determination of the reliability of a distribution system
with an integrated wind-solar system was presented. The optimisation of the location and
size of the respective generating units was performed in such a way as to limit transmission
losses and increase system reliability.

Despite their advantages, the stochastic changes in weather conditions mean that
solar and wind energy sources are characterised by unpredictability and uncontrollability.
A consequence of this is the negative impact of photovoltaics (PV) and wind systems on
power quality and system reliability. Furthermore, the possibilities of optimal planning of
power flow in the distribution system are limited as a result of the occurrence of energy
production uncertainty, in addition to energy demand uncertainty [20].

In order to increase the flexibility of a power system, it is possible to use Energy
Storage Systems (ESS) which allow for better integration of RES, maintenance of electricity
quality at a high level and improvements in reliability. This has been demonstrated, among
others in a paper by [21]. They may also support the economic and technical regulation
of power distribution. They are also effective tools to deal with the surge of charging
demands brought by electric vehicles (EV) [22]. The most popular are Battery Energy
Storage Systems (BESS) [23–26].
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A paper by [27] presented an assessment of the costs and benefits resulting from the
use of BESS in the planning of transmission network extensions in different periods of time.

The process of integration of BESS into an existing power system is an optimisation
problem of dual nature. In order for the energy storages to operate efficiently and economi-
cally, it is necessary to determine, at the BESS design stage, the proper location for the new
energy storages, their capacity and the appropriate control algorithm. A lot of scientific
publications in world literature touch upon this issue [28–31].

In [28], the method of energy storage allocation was proposed as an ED problem that
takes into account power losses. In order to search for an appropriate solution, analysis
using the modified particle swarm method MPSO was adopted. This way, minimisation of
fuel purchase costs and transmission losses was achieved.

The paper by [29], presented the use of energy storages operating in the peak shav-
ing strategy to reduce power losses. The low voltage radial distribution network was
analysed in the presented studies. The number of energy storages was presented in an
arbitrary manner.

The paper by [30] presents a multi-objective technical-economic optimisation of the
location of energy storages, in which the reduction of energy losses is one of the aspects of
optimisation. In order to reduce the searched solution space, the set of buses is limited on
the basis of analysis of their voltage sensitivity.

In [31], the distributed consensus algorithm was used to cover the dynamic power
losses in the respective system buses. An assumption was made in this paper that there
was a storage unit in each bus, whereby the manner of its operation was optimised taking
into account the storage and network constraints.

In the papers described above, the allocation of storages in the power system is
treated as a multi-objective problem, in which one of the optimisation objectives is the
minimisation of energy losses. All the objectives are converted into a single objective
function using the relevant economic factors. The solution obtained depends on the current
economic situation of the respective installations. As a consequence of this, for a long-term
investment process, which may last several years, the situation of respective factors may be
subject to significant changes, e.g., a significant decrease in prices of storages or an increase
in the costs resulting from the use of conventional energy may take place.

In order to avoid this variability, the authors of this paper propose the use of multi-
objective optimisation with disjoint objectives. The first of the adopted objectives is the
minimisation of transmission losses in system lines. The second is the minimisation of the
total capacity of a storage. It was assumed that all storages operate in the Peak Shaving
control strategy. This way, instead of receiving a single solution that is correct for the
current cost factors, we obtain a set of solutions that are characterised by the highest
efficiency of power loss reduction relative to the capacity of the storage, this is the so-called
Pareto front. Its implementation requires the use of multi-objective optimisation methods.
The authors have used the NSGA-II and BRKGA metaheuristic methods.

The further part of this paper is organised in the following way. Section 2 (in the
following sub-chapters) describes the used models of individual power system components,
i.e.: power distribution as well as adopted load and generation profiles and also the energy
storage model, respectively; the optimisation problem has also been defined. Section 3
characterises the used methods of multi-objective optimisation and the used definitions
of solution dominance. Section 4 presents and discusses the obtained results. Section 5
provides the summary and final conclusions.

2. Power System Components and Problem Formulation
2.1. Power Flow

The issue of power flow may be defined as a numerical method for determining the
flow of electric power between the buses of a power system in the steady state. From
the point of view of this analysis, the power system comprises a set B = {1, 2, ..., N} of
power buses which can be connected to receivers with a known load power PD + jQD and
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generation sources with a power PG + jQG. One bus fulfils the role of the slack bus Bsl ; its
power is equal to the power required to balance the whole system. The buses to which the
generation sources are connected, belong to set BPV and the other ones to BPQ.

The system buses are connected to each other with power lines, modelled in the form
of a quadripole with concentrated parameters: resistance, reactance, susceptance (from MV)
and conductance (only HV and LV). Power flow analysis is based on the search for such a
vector of complex voltages V = {V1, V2, ..., Vi, ..., VN}, which for each i ∈ B satisfies the
following equations [32]:

PGi = PDi +
N

∑
j=1

ViVj(Gij cos(θij) + Bij sin(θij)) (1)

and:

QGi = QDi +
N

∑
j=1

ViVj(Gij sin(θij)− Bij cos(θij)) (2)

where: PGi, QGi—active and reactive power generated in the i-th bus, PDi, QDi—active and
reactive load power in the i-th buses, Vi, Vj—voltage module in the i-th and j-th buses,
θij—voltage phase shift between the i-th and j-th buses, Gij, Bij—conductance and mutual
susceptance of the i-th and j-th buses. In order to determine vector V, the Newton–Raphson
method was used [33]. It is characterised by high convergence and universality even for
systems that consist of thousands of buses [34]. When the power flow is known, it is
possible to determine the total active power loss in power lines Ploss (transmission loss) in
accordance with the following relationship [29]:

Ploss =
L

∑
l=1

I2
l · Rl (3)

where: L—number of lines in the power system, l—line number, Rl—line resistance,
Il—root mean square of the current flowing in the l-th branch, described by the follow-
ing relationship:

Il =

∣∣∣V f −Vt

∣∣∣
|Rl + jXl |

(4)

where: f , t—indices of system buses to which the beginning and end of a line were
connected, respectively, Xl—line reactance.

2.2. Load Profiles

The determination of the power flow requires knowledge of the loads in the buses
of the analysed system. The time-varying load, determined on the basis of load profiles
provided by one of the distribution network operators operating in Poland was taken into
account in the analysis. These profiles are provided for the whole year in hourly intervals.
Based on the load profile factors, it is possible to determine the average load PD for a
selected hour as:

PD(h) = EDa ·
wy,h

∑8760
i=1 wy,i

= P̄D · 8760 ·
wy,h

∑8760
i=1 wy,i

(5)

where: wy,h—load profile factor for the h-th hour in a given year, EDa—annual electricity
consumption, P̄D—average annual active power.

As the subject of analysis in this paper is the daily operating cycle of energy storages,
the set of profile factors from the entire year is grouped into 365 daily profiles wd,h for
h ∈ {1, 2, ..., 24} and d ∈ {1, 2, ..., 365}. In order to take into consideration the seasonal
changes in the daily load profile, the 365 daily profiles are grouped into 4 seasons according
to the season of the year: Spring (S1), Summer (S2), Autumn (S3) and Winter (S4). Then,
a reference daily profile was determined for each season of the year as the median of
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values of individual profile factors with the same hour. For example, for the h-th hour of
the reference daily profile in the Spring season w(S1)

h , the value of the profile factor was
determined on the basis of the following relationship:

w(S1)
h = median

({
wd,h : d ∈ S1

})
(6)

Figure 1 presents the daily load profile for all four seasons.
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Figure 1. Daily load profile for Spring (S1), Summer (S2), Autumn (S3) and Winter (S4).

2.3. Generation Profiles

In the power system, in addition to the fully controllable energy sources, there are
also RES, for which the electricity production profile depends on the weather conditions.
In this paper, generation from PV sources is analysed. A simplified model based on a
variable angle of azimuth for a selected geographical location during the first days of
Spring, Summer, Autumn and Winter has been adopted as the daily electricity generation
profile. An assumption is made that the highest power is generated in Summer when the
sun is at its zenith (105% of installed peak power). At other times and on other days, the
generated power varies proportionately to the change in the angle of azimuth. Figure 2
presents the generation profile obtained on the basis of the location of the city of Poznan,
in Poland.
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Figure 2. PV generation profile for the first day of Spring, Summer, Autumn and Winter.

2.4. Energy Storage Model

Assuming that the charging or discharging process takes place with a constant power
for the time ∆t, the stored energy at the moment t + ∆t will be equal to [35,36]:

EBES(t + ∆t) = EBES(t) + PBES · ∆t (7)
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whereby:
EBES ∈ 〈0, Emax〉 (8)

PBES =

{
PE · ηin when 0 ≤ PE ≤ Pmax

PE / ηout when − Pmax ≤ PE < 0
(9)

|PBES(t + ∆t)− PBES(t)| ≤ ∆Pmax (10)

where: EBES—energy stored in an energy storage, PBES—storage charging (>0) or dis-
charging (<0) power, PE—electric power supplied or drawn from the power system to
BESS, ηin,ηout—efficiency of the charging and discharging process, respectively, ∆Pmax—
maximum power variation PBES resulting from technological limitations, at ∆t.

In accordance with relationship (7), in order to determine the currently stored energy,
it is necessary to know its value before starting the charging process. The measure of filling
the energy storage with energy is the State of Charge (SOC) described by the following
relationship [35]:

SOC =
EBES
Emax

∧ SOC ∈ 〈0, 1〉 (11)

During the charging process, BESS draws electricity from the power system and
returns it during the discharging process. Therefore, Equation 1 can be written in a
modified form for the charging process:

PGi = PDi +
N

∑
j=1

ViVj(Gij cos(θij) + Bij sin(θij)) +
PBES
ηin

(12)

and discharging process:

PGi = PDi +
N

∑
j=1

ViVj(Gij cos(θij) + Bij sin(θij)) + PBES · ηout (13)

An assumption has been made in our study that a lithium-ion energy storage is used.
It may be discharged until SOC = 0.2 , and this is the state of charge of the energy storage
at the beginning of the day. It has been assumed that the shortest discharge time of the
energy storage from SOC = 1 to SOC = 0.2 is 1 h. Hence, the highest power Pmax which
discharges the BESS may be determined on the basis of its capacity as:

Pmax = 0.8 · Emax / 1 h (14)

In the case under analysis, the energy storages are supposed to perform the task of
reducing transmission losses. The highest daily losses occur during peak hours when the
network load is the highest. In order to reduce them, an assumption has been made that
storages operate using the Peak Shaving strategy. One of the assumptions for the control
algorithm is that the energy returned to and drawn from the energy storage is the same
after the full daily cycle. This way, the continued availability of the BESS is ensured.

Figure 3 presents the principle of operation of the peak shaving strategy. The partition
levels at which the BESS charging and discharging processes take place are selected in such
a way as to make full use of the capacity of the energy storage. Here, this is done using
the known daily power waveform. In practice, predictive and optimisation methods [37,38],
which are not covered by the scope of this paper, are used to determine the appropriate levels.
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Figure 3. Example of application of the peak shaving strategy for BESS. The energy returned during
the day by BESS (orange field) is equal to the drawn energy (blue field) and corresponds to the useful
capacity of the energy storage.

2.5. Multiobjective Problem Formulation

The optimisation problem presented in this article is the location of energy storages
and the determination of their capacity in the branched distribution system with the
connected conventional and PV sources. The storages which operate following the peak
shaving strategy are supposed to reduce power losses in the analysed distribution net-
work. Mathematically, the optimisation problem may be presented as a search for vector
Emax = {Emax,i} of the BESS capacity, which ensures the minimisation of losses in system
lines (objective 1), determined by the following relationship:

f1(Emax) = Y · 365
4

24

∑
h=1

(
P(S1)

loss,h + P(S2)
loss,h + P(S3)

loss,h + P(S4)
loss,h

)
(15)

and the total capacity of the storage (objective 2):

f2(Emax) = ∑
i

Emax,i (16)

whereby:

0 ≤ Emax,i ≤ Emaxcap, i ∈ BBESS (17)

where: Y—period of analysis, h—time of day, P(S1−4)
loss,h — power losses described by relation-

ship (3) determined for the reference day of the respective season: S1,S2,S3,S4,Emax,i—BESS
capacity in the i-th system bus, BBESS—set of bus numbers where the possibility of the
BESS installation is assumed.

3. Multiobjective Optimization Methods
3.1. Pareto and Box Domination

In the task of optimisation of a multi-objective problem, which comprises two or more
objectives that contradict each other, as opposed to the single-objective case, there is no
possibility of determining the absolute best solution. The improvement of results obtained
for one assessment objective causes the values of others to deteriorate. Therefore, in a
multi-objective optimisation problem with K objectives, so-called non-dominated solutions
are sought. Solution x1 dominates over x2 (we mark it as x1 � x2)) if [39]:

x1 � x2 ⇔ ((∀k ∈ K ⇒ fk(x1) D fk(x2)) ∧ (∃k ∈ K ⇒ fk(x1) B fk(x2))) (18)

where: fk(x1) D fk(x2)—means that solution x1 is no worse than solution x2 for the k-th
objective, and fk(x1) B fk(x2)—means that solution x1 is better than solution x2 for the k-th
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objective (lower for minimisation and higher for maximisation). The set of non-dominated
solutions in the K dimensional objective space creates the so called Pareto front.

The authors used the evolutionary methods of multi-objective optimisation in the
paper to search for the Pareto front. These methods simultaneously process a set of multiple
solutions (so-called populations). Each solution is represented as the so-called individual,
which has its own chromosome built of genes (encoded values of decision variables).
Individuals in a population are subject to processes modelled on the theory of evolution:
crossover, mutation and selection. The role of crossover is to mix the respective solutions
(so-called parents) with each other and the result of this is the creation of completely new
solutions (so-called offspring). Mutation is the process of random change in the value of
selected genes of an individual. On the other hand, selection allows for the selection of the
best individuals from the entire population based on their adaptation [40].

During its operation, the evolutionary method should be characterised by high con-
vergence to the actual Pareto front (this is an important condition especially when the
calculation of the value of criteria is time-consuming) and ensure the appropriate spread
of points on the front (diversity of solutions). In many cases, the excessive number of
non-dominated points means that the uniform distribution of points on the currently found
front becomes the main goal of the optimisation algorithm. In such a situation, a local and
not global front is found.

One of the methods which allow for an increase in the distribution of solutions
for simultaneous maintenance of convergence to the global solution is the use of the ε-
dominance described in [40]. It consists of the division of the objectives pace into smaller
K-dimensional areas (in the case of the two-objective optimisation, these will be rectangles)
to which the discovered x solutions are assigned. Each area has its own index I ∈ RK,
whose coordinates increase in accordance with the values of objectives that correspond to
them. If the x1 and x2 solutions lie in different areas, that is [40]:

∃k ∈ K ⇒ I(x1) 6= Ik(x2) (19)

then the condition of dominance of x1 over x1 can be presented as [40]:

x1 � x2 ⇔ ((∀k ∈ K ⇒ Ik(x1) D Ik(x2)) ∧ (∃k ∈ K ⇒ Ik(x1) B Ik(x2))) (20)

When both solutions lie in the same area (condition (19) is not fulfilled), the dominance
is determined on the basis of the distance of both solutions from corner d which determines
the best solution to be obtained in the given area. Hence [40]:

x1 � x2 ⇔ ‖x1 − d‖ < ‖x2 − d‖ (21)

Figure 4 presents an example of analysis of dominance of a group of solutions to a
bi-objective problem in accordance with the definition of the ε-box dominance.

It was noticed in a paper by [41] that division into equal sub-spaces may entail the
loss of extreme points. Additionally, the uniformity of the solutions found depends on the
shape of the front (its convexity). Therefore, an adaptive division of the objective space
(paε-dominance) was proposed, in which the division grid is condensed at the extremities
of the currently found front and expanded in the middle range, based on an analysis of the
convexity of the front.

Figure 5 presents the comparison of the grid created in accordance with the ε-dominance
and paε-dominance. As can be seen, for the paε-dominance, the grid is condensed, there-
fore the non-dominated points are distributed more uniformly along the entire front and
there are more of them at its extremities.
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Pareto front no. 2
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Figure 4. Example of assignment of a group of solutions of the bi-objective problem to corresponding
Pareto fronts in accordance with the definition of ε-dominance. Points x5 oraz x9 lie in the same
square. Therefore, the fact that x5 � x9 is determined by their distance from point d (d1 < d2) [40].

f1

f 2

b) paε− dominance

f1

f 2

a) ε-dominance

Figure 5. Example of division of the objective space of a bi-objective problem, with the Pareto front
marked with a blue line, into: (a) uniform areas in accordance with ε−dominance; (b) areas with
variable dimensions determined according to paε-dominance. The blue line marks the ideal Pareto
front for a certain bi-objective problem. The red dots are points which belong to the front and are, at
the same time, not dominated in accordance with the selected algorithm of division into areas [41].

3.2. NSGA-II

NSGA-II was assumed as a reference evolutionary method. It is described in detail
in [42]. The method is characterised by fast non-dominated sorting, a procedure for
estimating solution congestion and operator of its comparison [43]. In each iteration, a
temporary population Rt is formed. It comprises: the N-element, population Pt, and the
offspring population Qt of the same size, which is a result of the use of genetic operators.
In accordance with the adopted definition of dominance, each individual is assigned the
number of the front on which the individual is located. The first front is composed of non-
dominated individuals in the overall population. The second front includes individuals
dominated only by individuals from the first front and not dominated by the remaining
part of the population, etc. All the individuals are then sorted in an ascending order based
on the number of the front. A congestion distance is set for each individual. That distance
determines how close a given individual is to the neighbouring individuals from the same
front. Based on the number of the front and the congestion distance, the N individuals are
selected from Rt to form a new population Pt+1.

3.3. BRKGA

The BRKGA method presented in [44] is a modification of the RKGA method described
in [45]. It was designed to solve multi-objective combinatorial problems. One of the
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characteristics of this method is the transformation of decision variables into the form of so-
called random keys, with values from the 〈0, 1〉 range. In order to make the determination
of the phenotype possible, it is thus necessary to additionally introduce an encoder and
decoder, which allow for the transformation of values of decision variables into random
keys and vice versa.

In the first phase, N of encoded individuals of population Pt are divided into non-
dominated individuals P̄e and dominated individuals P̄e. Then, pairs of parents are drawn.
First, individual a from Pe is drawn. Then, one dominated individual b from Pe is drawn
to the pair. The pair of individuals a and b is subject to crossover according to the coin
tossing method. For each of the k genes, a random number is drawn from the 〈0, 1〉 range
(coin tossing), which determines whether a newly formed offspring will have the gene of
individual a or b. Whereby, the likelihood of adopting the trait of parent a (ρa) should be
higher than in the case of individual b (ρb = 1− ρa). In the source paper, the proposed
value ρa = 0.75 is adopted. Table 1 presents an example of a crossover of chromosomes
with 4 genes.

Table 1. Example of a crossover of two parents a and b using the coin tossing method. Individuals
have 4-gene chromosomes. After generating 4 random numbers (one per each gene), the obtained
values are compared to ρa.

Item Gene 1 Gene 2 Gene 3 Gene 4

Parent a 0.52 0.8 0.43 0.3

Parent b 0.74 0.34 0.54 0.26

Random 0.62 0.45 0.81 0.35

ρa = 0.75 < < > <

Offspring 0.52 0.8 0.54 0.3

In the selection process, an elitist strategy is used, which involves transferring a certain
number of individuals from group Pe to a new population. Then, the group is joined by the
offspring obtained as a result of crossover. Finally, the new generation is supplemented by
randomly generated individuals so that the size of the population is always constant.

3.4. MPSO

In the case of the PSO algorithm, instead of creating new offspring based on genetic
operators, individuals belonging to the given population perform a random move in the
space of the decision variables. The direction and length of movement are influenced by
three components: inertia (the value of the previous step taken by the individual), the
cognitive component (which depends on the best position the individual has been in so
far) and the social component (which depends on the globally best solution). The MPSO,
which is described in detail in the paper by [46], was used in the tests.

4. Test Case and Results
4.1. Cases Description

Tests involving the search for the locations of energy storages and their capacities was
carried out on a 16-bus medium voltage distribution system in a mixed configuration. The
vector of decision variables consist of 16 integers. Each variable corresponds to capacity of
Energy Storage (with selected resolution of 100 kWh) installed in one of 16 system buses.
The structure of the system is presented in Figure 6. The basic source of power supply is
the conventional generator G1 connected to the network feeder with a maximum power of
1000 MW. This is the case of a classic reactive distribution system.
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Figure 6. Diagram of the system used in tests. Node 1 is a slack bus.

Table 2 presents the load of system buses taken as annual average values. On their ba-
sis, reference load profiles were determined in accordance with the methodology described
in Section 2.2.

Table 2. List of load values for the respective system buses.

Bus No. P [MW] Q [MVar] Bus No. P [MW] Q [MVar]

1 0 0 9 35 26.9

2 50 30.2 10 0 0

3 35 7.7 11 35 16.4

4 40 21.8 12 30 5.4

5 45 23.6 13 25 15

6 40 5.2 14 35 7.1

7 35 3.3 15 0 0

8 50 19.9 16 35 19.6

Overall 490 202.1

The paper analyses four test cases for which energy storage locations and capacities
were sought to reduce power losses in the distribution system lines. The cases differ in
terms of the location of RES (PV) with a total power of 50 MW. Nodes 10 and 15 were
selected as connection points for PV sources. They ensure a great distance between all the
working generations. For the purposes of optimisation, an assumption was made that the
maximum capacity of an energy storage in a single bus must not be higher than 100 MWh,
and the capacity is determined with an accuracy of 100 kWh. Energy losses in system lines
were determined with an assumption that the energy storage would operate for a period of
10 years. This is the standard period of use of energy storages that use lithium-ion cells.

4.1.1. System without RES—Test Case 1

In the base case, in which it was assumed that there are no directly connected renew-
able sources in the analysed system. The only generator is generator G1.

4.1.2. System with PV Generation at Bus 10—Test Case 2

For the system described in Case 2, in addition to generator G1, a 50 MW PV generation
was added in bus 10 as per Figure 7. The generation profile was created on the basis of
information included in Section 2.3.
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Figure 7. Diagram of the 16-bus system used in tests. Node 1 is a slack bus. Generator G2 represents
a PV installation.

4.1.3. System with PV Generation at Bus 15—Test Case 3

In another variant for the system from Case 1,a PV generation with a peak power of
50 MW was added in bus 15. Figure 8 presents the analysed case of the system.
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Figure 8. Diagram of the 16-bus system used in tests. Node 1 is a slack bus. Generator G3 represents
a PV installation.

4.1.4. System with Two PV Generations—Test Case 4

In the last analysed variant for the system from Case 1, two PV generators, in buses
10 and 15, were added. The peak power of both generators is 25 MW, and their total PV
generator power is equal to the one used in Case 2 and Case 3. Figure 9 presents the
analysed case of the system.

4.2. Results

Figure 10 presents the Pareto fronts determined using the NSGA-II, MPSO and
BRKGA methods. For the BRKGA method, also paε-dominance (paε−BRKGA) was used.
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Figure 9. Diagram of the 16-bus system used in tests. Node 1 is a slack bus. Generators G2 and G3
represent a PV installation.
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Figure 10. Pareto Front determined by means of the NSGA-II, MPSO, BRKGA and paε−BRKGA
methods for: (a) Test Case 1; (b) Test Case 2; (c) Test Case 3; (d) Test Case 4.

In order to determine the quality of the solutions obtained through the used opti-
misation methods, all the found non-dominated solutions were collected into single set
X : method name, f1, f2. Then, on the basis of the values of objectives f1 and f2 from X, all
solutions not dominated by the other ones were selected (in accordance with Equation 18).
For each method, the relative efficiency η by the authors was determined:
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η =
Nnond
Nall

· 100% (22)

where: Nnond—number of non-dominated solutions determined by means of the analysed
method, which were not dominated by the other solutions from set X, Nall—number of all
solutions from set X, which were found by the analysed method. This way, the quality of
solutions found with one method will be determined in relation to the others. If η = 100%,
then this means that the whole front found by the method is not worse than the solutions
found by a different method. The lower the efficiency, the lower the percentage of solutions
of a given method is in the actual Pareto front (their quality is worse).

Table 3 lists the efficiency of the NSGA-II, BRKGA and paε−BRKGA methods, ob-
tained in the respective test cases. In each test case, the efficiency of the paε−BRKGA
method is higher than the efficiency of the BRKGA and NSGA-II methods, which means
that the majority of solutions found by it is better than the solutions found by the other
methods. In the case of the system without RES, the efficiency was 100%, which means
that none of the solutions found by paε−BRKGA is dominated by the solutions of other
methods. Attention must be paid to the fact that the inclusion of the RES in a single bus
resulted in a slight deterioration in the efficiency of the methods. The lowest efficiency was
obtained for test case 4.

Table 3. Methods Efficiency for different test cases.

Case
Method Efficiency η (Founded Solutions Nall)

NSGA-II BRKGA paε-BRKGA MPSO

Test Case 1 29% (38) 62% (37) 100% (17) 12% (41)
Test Case 2 53% (38) 37% (41) 96% (24) 32% (41)
Test Case 3 27% (41) 41% (41) 94% (35) 17%(41)
Test Case 4 8% (37) 34% (41) 79% (39) 20% (41)

A detailed analysis of the found proposals for the location of energy storages was
performed for solutions provided by the paε-BRKGA method, which achieved the highest
efficiency. Three solutions were selected in each case, for which the total installed BESS
capacity is as close as possible to the following values: 100, 200 and 500 MWh. For each
case, an indicator that defines the reduction in energy loss was determined as ∆E:

∆E = fnoBESS − f1(Emax) (23)

where: fnoBESS—losses in the system without applying BESS ( fnoBESS = f1(0)), Emax—
vector of energy storage capacity for the analysed task.

In order to determine the impact of an energy storage on the reduction of power losses,
the index referred to as efficiency Ψ of the BESS installation defined as:

Ψ =
∆E
f2

(24)

The list of the locations of energy storages and their capacities in the respective system
buses, the total capacity (objective f2), loss reduction (∆E) and efficiency of the BESS
installation (Ψ) are presented in: Table 4 for Case 1, Table 5 for Case 2, Table 6 for Case 3
and Table 7 for Case 4. The green colour was used to mark energy storages with a capacity
higher than 1 MWh. An analysis that was not presented in the article demonstrated that
the omission of other energy storage increases power losses within a range between several
per mille and approx. 4%, depending on the case under consideration.
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Table 4. Three solutions founded by paε-BRKGA with ca. 100 MWh, 200 MWh and 500 MWh of
overall BESS capacity for Test Case 1.

Bus No. ca. 100 MWh
[MWh]

ca. 200 MWh
[MWh]

ca. 500 MWh
[MWh]

1 0.0 0.0 0.0
2 0.2 0.2 42.4
3 0.2 0.2 36.6
4 0.2 0.2 74.4
5 0.3 85.1 85.1
6 0.0 0.0 80.2
7 1.5 1.5 0.0
8 0.0 0.0 0.0
9 0.0 0.0 0.0
10 0.0 0.0 0.0
11 0.0 0.0 40.3
12 38.9 38.9 38.9
13 49.1 49.1 49.1
14 0.2 45.3 70.8
15 0.0 0.2 0.0
16 0.9 0.9 0.9

f1 [MWh] 91.5 221.6 518.7
∆E [MWh] 5855.2 11,856.7 19,405.6

Ψ [MWh/MWh] 64.0 53.5 37.4

Table 5. Three solutions founded by paε-BRKGA with ca. 100 MWh, 200 MWh and 500 MWh of
overall BESS capacity for Test Case 2.

Bus No. ca. 100 MWh
[MWh]

ca. 200 MWh
[MWh]

ca. 500 MWh
[MWh]

1 0.0 0.0 0.0
2 0.0 0.0 0.0
3 0.0 0.0 0.0
4 0.1 0.1 80.5
5 0.2 48.9 88.1
6 10.5 15.7 94.6
7 0.0 0.1 0.1
8 0.1 0.0 0.1
9 0.0 0.0 0.0
10 0.3 0.3 0.3
11 0.1 39.0 39.0
12 31.4 31.4 29.1
13 58.2 58.2 58.2
14 0.1 0.1 84.2
15 0.0 0.0 0.0
16 0.2 0.2 0.2

f1 [MWh] 101.2 194.0 474.4
∆E [MWh] 6993.3 12,292.5 20,697.8

Ψ [MWh/MWh] 69.1 63.4 43.6

In test case 1, when the predicted total capacity of the energy storage is approximately
10 MWh, the largest energy storages are located in buses 12 and 13. These are the buses
that are most distant from the network feeder. For 200 MWh installations, large energy
storages were additionally complemented by buses 5 (85 MWh) and 14 (45 MWh). These
are the buses that are located in the direct vicinity of buses 12 and 13. Attention must be
paid to the fact that the energy storage at bus 5 has double the capacity as the other large
storages. This is a central bus common for all 3 meshes in the analysed grid. In the case
of the third system (ca. 500 MWh), the capacity was increased at bus 14, and new energy
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storages were located at buses neighbouring with those previously mentioned (5, 12, 13
and 14).

Table 6. Three solutions founded by paε-BRKGA with ca. 100 MWh, 200 MWh and 500 MWh of
overall BESS capacity for Test Case 3.

Bus No. ca. 100 MWh
[MWh]

ca. 200 MWh
[MWh]

ca. 500 MWh
[MWh]

1 0.1 0.1 0.1
2 0.0 0.1 0.3
3 0.0 0.0 0.0
4 0.0 0.0 65.5
5 59.0 59.0 78.4
6 0.2 0.0 94.5
7 0.1 9.8 0.1
8 0.2 0.2 0.2
9 0.0 0.2 0.2

10 0.0 0.0 0.0
11 0.2 34.1 49.7
12 40.3 40.3 40.3
13 0.2 58.8 58.8
14 0.3 0.1 86.7
15 0.0 0.2 0.0
16 0.0 0.2 0.2

f1 [MWh] 100.6 203.1 475.0
∆E [MWh] 6614.9 11,601.8 19,910.1

Ψ [MWh/MWh] 65.8 57.1 41.9

Table 7. Three solutions founded by paε-BRKGA with ca. 100 MWh, 200 MWh and 500 MWh of
overall BESS capacity for Test Case 4.

Bus No. ca. 100 MWh
[MWh]

ca. 200 MWh
[MWh]

ca. 500 MWh
[MWh]

1 0.0 0.0 0.0
2 0.1 0.1 0.1
3 0.0 0.0 36.7
4 0.1 0.2 72.0
5 0.0 87.3 87.3
6 0.1 0.1 66.0
7 0.1 0.1 22.0
8 0.1 0.1 40.9
9 0.0 0.1 0.0

10 0.1 0.1 0.0
11 33.0 42.9 42.9
12 0.1 0.1 45.6
13 45.9 45.9 45.9
14 15.3 15.3 15.3
15 0.0 0.1 0.0
16 0.1 0.2 0.0

f1 [MWh] 95.0 192.6 474.7
∆E [MWh] 6800.1 11,772.0 20,497.6

Ψ [MWh/MWh] 71.6 61.1 43.2

In test cases 2 and 3, where uncontrollable RES were additionally included in the
system, just as in test case 1, the solutions for 100 MWh and 200 MWh installations are
located between buses 5, 12 and 13. For the installation with a total capacity of approx.
500 MWh, they are distributed on branches that are common for the two meshes of the
circuit. In the case of RES connected to bus 10, capacities larger than for Test Case 3 are
installed at buses 4 and 14 (they are further away from generator G2). Similarly, for Test
Case 3, larger capacities are installed at buses 7 and 11.
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In Test Case 4 with two RES included in the system, as a priority larger energy
storages are installed at buses 11, 13 and 14. For installations of approximately 200 MWh,
an additional BESS is installed at central bus 5, and for 500 MWh installations, the storages
are located in the central part of the circuit.

For Test Case 1, on a scale of 10 years of BESS operation, energy losses can be reduced
(∆E) by: approximately 6 GWh for 100 MWh BESS, approximately 12 GWh for 200 MWh
BESS and approximately 20 GW for 500 MWh BESS.

In other analysed cases, attention must be paid to the fact that just the presence of RES
in the system causes a reduction in energy losses. Owing to this, the energy loss reduction
at such a level as in case 1 is possible at a lower total capacity of the energy storage. Hence,
for cases 2 and 3, with a single RES supply point, the efficiency Ψ is higher than in case 1.
For case 4, where there are three supply points, distributed generation from the two RES
means that the BESS located in the system can be recharged from a source that is closer,
so losses during the off-peak BESS recharging process are reduced. Owing to this, the
achieved values of Ψ were, relatively, the highest in case 4.

5. Conclusions

The paper has demonstrated that evolutionary multi-objective optimisation methods
are an effective tool in determining the location of BESS in the power system to minimise
transmission losses. This has been demonstrated by way of solving a multi-objective and
integer problem of BESS location in four variants of a mixed medium voltage distribution
system - with classic and renewable PV generations.

As part of the study, three optimisation methods were compared - NSGA-II, BRKGA,
MPSO. The procedure for determination of the relative efficiency of the η method proposed
by the authors allowed for the comparison of results obtained with their application. It has
been proven that using the BRKGA method, designed to solve combinatorial problems,
gives better results than the widely used and universal NSGA-II and MPSO methods.
Additionally, it has been shown that the use of the modified definition of dominance in
the Pareto sense, in the form of the so-called paε-dominance, increases the efficiency of the
BRKGA method.

In order to compare the solutions obtained in Pareto fronts, the index Ψ called the
efficiency of the BESS installation was introduced. It is defined as the ratio of energy saved,
owing to ∆E included in the BESS installation, to the total capacity of the storage. An
increase in the capacity of BESS in the system leads to a decrease in efficiency defined in
this way, which means that the larger the capacity of the storages included in the system,
the less effect they have on reducing the energy losses. Therefore, optimal selection of the
total capacity of energy storages and their location is necessary, depending on the structure
of the system, including the presence of BESS in the system. By taking advantage of the
optimisation results, it was determined that in each of the test cases solved, a set of buses
with the softest potential for power loss reduction was identified. The omission (capacity
zeroing) of energy storages in the remaining buses does not lead to a significant increase
in transmission losses. Additionally, because of the smaller number of locations of the
storages, the costs of BESS operation are limited.

In accordance with the current knowledge, the integration of RES in the form of
PV sources into the system under investigation results in a reduction in total power
losses when compared to an identical system with conventional generation only. The
complementation of the system with energy storages identified by way of optimisation,
installed at a certain distance from RES, leads to a further reduction in power transmission
losses while maintaining a significantly higher efficiency Ψ than in the case of the reactive
distribution system. This means that the more distributed the generation is, the more
effective and economically justifiable the use of BESS is.

The multi-objective optimisation method for the determination of the location of
energy storages, which has been presented in the paper, is designed for mixed distribution
systems. It is possible to use it in radial systems, however, significantly greater calculation
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resources will be used to determine a solution than in the case of methods dedicated to
this type of system (described, e.g., in paper [29]). This state of affairs follows from the
fact that the proposed method is based on the multiple determination of power flow. The
time in which the result is obtained is greatly affected by the size of the system—in the case
of systems containing hundreds or thousands of nodes, it is necessary to apply parallel
computing. Analysis of the obtained results indicates that it is possible to determine the
relevant nodes for BESS installations (with a high efficiency Ψ) and delineate the sequence
of their installation. This method, however, does not take into account a full analysis based
on the calculations of costs and benefits resulting from the use of the BESS installation.

Despite the significant costs of integrating energy storages into the power system,
their installations should not only be viewed through the perspective of reductions in
transmission losses. The integration of the energy storages allows for the postponement
of or resignation from the upgrading/expansion of the system, a reduction in operating
costs, and also often leads to improvements in the quality of the electricity in systems
containing intermittent energy sources such as PV. Additionally, in periods of lower energy
demand, the installed energy storages may be used for other system purposes such as
power reserves or exchange controls on the Energy Market.

As part of further research, the authors of the article plan to include elements of
economic analysis in the optimisation process, taking into account the predicted costs of
network expansion, the extrapolation of energy prices and the unit costs of BESS throughout
the period of operation of the installation. Additionally, the impact of other strategies
for BESS control will be investigated, i.e., Voltage Support and the efficiency Ψ of the
installation. The authors are also planning to take into consideration an analysis of the
impact of BESS on the reliability of the power network. The analysis presented in the paper
can also be conducted on other energy storage technologies (e.g., Power 2 Gas).
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6. Ćalasan, M.; Konjić, T.; Kecojević, K.; Nikitović, L. Optimal Allocation of Static Var Compensators in Electric Power Systems.

Energies 2020, 13, 3219. [CrossRef]
7. Yuvaraj, T.; Ravi, K.; Devabalaji, K.R. DSTATCOM Allocation in Distribution Networks Considering Load Variations Using Bat

Algorithm. Ain Shams Eng. J. 2017, 8, 391–403. [CrossRef]

https://www.operator.enea.pl/
https://www.operator.enea.pl/
https://www.sunearthtools.com/dp/tools/pos_sun.php
http://doi.org/10.1051/matecconf/201714101050
http://dx.doi.org/10.1109/TPWRS.2013.2251012
http://dx.doi.org/10.1109/61.852995
http://dx.doi.org/10.1016/S0142-0615(99)00003-4
http://dx.doi.org/10.3390/en13123219
http://dx.doi.org/10.1016/j.asej.2015.08.006


Energies 2021, 14, 7304 19 of 20
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