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Abstract: In recent years, as photovoltaic (PV) power generation has rapidly increased on a global
scale, there is a growing need for a highly accurate power generation forecasting model that is easy
to implement for a wide range of electric utilities. Against this background, this study proposes
a PV power forecasting model based on the generalized additive model (GAM) and compares its
forecasting accuracy with four popular machine learning methods: k-nearest neighbor, artificial
neural networks, support vector regression, and random forest. The empirical analysis provides
an intuitive interpretation of the multidimensional smooth trends estimated by the GAM as tensor
product splines and confirms the validity of the proposed modeling structure. The effectiveness
of GAM is particularly evident in trend completion for missing data, where it is able to flexibly
express the tangled trend structure inherent in time series data, and thus has an advantage not only
in interpretability but also in improving forecast accuracy.

Keywords: forecasting method; machine learning; non-parametric regression; photovoltaic power
generation; smooth trend; tensor product splines

1. Introduction

PV power generation forecasting is indispensable for electric utilities. Based on the
forecast of demand and renewable energy generation, power producers and retailers
submit their generation and procurement plans for the next day or hour to the system
operator. Forecast errors in PV generation can lead to losses in the form of imbalance
charges (penalties imposed for supply–demand mismatch). Therefore, accurate forecasting
of PV power generation has become an essential issue for the economical business operation
of electric utilities. In particular, in recent years, many countries around the world have
adopted PV power generation as a clean energy source to address global warming, and
the need for PV power generation forecasting has been increasing each year. For example,
in Japan, the feed-in tariff (FIT) system has provided incentives for the introduction of PV
power generation, and many small-scale businesses have recently entered the PV power
generation business [1]. This trend of increasing (or diversifying) the number of players
is similar in other countries, although there are minor differences in the systems. Against
this background, there is a need for a forecasting method that is not only highly accurate
but also easy to implement and interpret by a wide range of practitioners, including
small businesses.

For PV power forecasting, many previous studies have proposed various forecasting
methods, which are very diverse in terms of the forecasting variables used, time granularity
and forecast horizon, and algorithms. There are also various survey studies [2–8]. This
study focuses on publicly available weather forecast information and its application to
PV forecasting methods for more general electric utilities, but even if we focus on such a
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target, many machine learning (ML)-based models have been proposed, such as artificial
neural networks (ANN) [9] and support vector regression (SVR) [10], and ML has become
a mainstream approach.

Recent ML-based forecasting methods that focus on using publicly available weather
data include Maitanova et al. [11], which applies a special architecture of an artificial
recurrent neural network (RNN) called long short-term memory (LSTM). In the context
of comparing forecast accuracy in ML methods, there have been many empirical studies,
especially in the last few years. For example, Mohammed and Aung [12] compared seven
ML methods, such as k-nearest neighbor (kNN) [13], decision tree, gradient boosting, and
random forests (RF) [14]. Additionally, Das et al. [15] proposed a PV power prediction
using SVR and compared it with ANN. Rosato et al. [16] proposed three techniques based
on neural and fuzzy neural networks. Khandakar et al. [17] proposed an ANN-based
prediction model to explore effective feature selection techniques. Nespoli et al. [18] also
dealt with ANN-based forecasting methods, where a comparison was made between the
historical dataset alone and a hybrid approach combining weather forecast. Abdel-Nasser
and Mahmoud [19] proposed a model using LSTM and compared it with multiple linear
regression and NN, among others. These previous studies have empirically shown that ML
methods are superior in terms of forecast error reduction, but most forecasting methods
using ML have challenges, such as high computational load and difficulty in interpretation,
which is a well-known drawback in general.

In electric utility practice, the ease of interpretation is often the most important factor
in building consensus and ensuring the reliability of the model [20]. Ease of implemen-
tation and computational tractability are also important factors, as well as accuracy. It is
emphasized that these points have often been overlooked in recent research. Motivated
by these practical needs, this study proposes a forecasting model based on the general-
ized additive model (GAM) [21], a statistical approach, rather than ML. In particular, we
demonstrate that GAM-based PV forecasting models are easy to handle for a wide range of
electric utilities, including new entrants, and compare our methodology with ML-based
PV forecasting models.

The GAM-based PV forecasting models in this study generalize our previous stud-
ies [1,22] for the case of multidimensional tensor product spline functions. Note that these
previous studies effectively modeled the smooth trend inherent in the seasonal (and in
seasonal and hourly) [22] direction of PV power generation using a univariate or a bivariate
tensor product spline function. In addition, note that another study using GAM for PV
forecasting [23] aimed to improve the algorithm for capturing nonlinear dependencies in
ensemble learning, one of the ML methods, but is slightly different from our interest. We
would like to pursue ease of implementation and interpretation for practitioners; that is,
our focus is more on application methods rather than on algorithm development.

Another issue of interest in this study is a “comprehensive and comparative analysis.”
Although previous studies [1,22] have shown the effectiveness of GAM-based forecasting
models in the context of interpretability and robustness, it has not been sufficiently verified,
in the context of comparison between multiple models, how much better the forecasting
accuracy of the GAM-based model is. In this study, we demonstrate the accuracy and
practicability of GAM-based PV forecasting models in comparison with other regression
models and several ML models. In addition, this study deals with data for both types of PV
generation; that is, area-wide PV power generation in the grid area and an individual PV
panel. In particular, for the latter dataset, we extend the models of previous studies [1,22]
by utilizing a three-dimensional (3D) tensor product spline function. To the best of our
knowledge, this is the first attempt to apply 3D tensor product spline functions not only
for PV forecasting, but also for energy time series forecasting.

In the empirical analysis, we verify the reliability of the models from the structural
aspect by visualizing the smooth trends estimated using tensor product spline functions for
the proposed GAM-based PV forecasting models and provide reasonable interpretations of
the estimated trends. Then, we conduct a comprehensive and comparative analysis with



Energies 2021, 14, 7146 3 of 22

ML methods, such as kNN, ANN, SVR, and RF, to verify the accuracy of the forecasts.
Overall, we conclude that the GAM-based model with multidimensional tensor product
spline functions is superior in terms of interpretability, robustness, low computational load,
and prediction accuracy. However, depending on the sample period (“in-sample period”
for model estimation or “out-of-sample period” for accuracy validation.) and prediction
error indices (MAE or RMSE), ML methods outperform in some cases, and additional
empirical analysis leads to interesting insights into the conditions under which GAM-based
models have advantages.

This paper is organized as follows: Section 2 introduces the GAM method and builds
a forecasting model using tensor product spline functions. Section 3 provides an overview
of the ML methods that this study compares. Section 4 presents an empirical analysis
using actual data, provides an interpretation of the estimated multidimensional smooth
trends, and analyzes the forecast errors from various aspects. Finally, Section 5 concludes
the paper.

2. PV Power Forecasting Models based on GAM

In the following sections, we first construct an area-wide PV power generation forecast
model, and then construct a forecasting model for individual PV panels.

2.1. Area-Wide PV Power Generation Forecasting Model

To forecast area-wide power generation, it is necessary to consider its yearly increasing
trend; that is, the installed capacity of PV power generation is increasing year by year.
To this end, our forecasting model is constructed by first adjusting the yearly trend of
increasing capacity to derive a unit power generation. The total procedure is described as
follows (note that the main variables used in these models can be found in the nomenclature
at the end of this paper and the intuitive relationship between data preparation and the
flow of model estimation is shown in Figure 1):

Figure 1. Estimation procedures and data periods in the area-wide PV power generation forecasting model. Note: In our
empirical analysis, we use the in-sample period from 1 April 2016, to 31 December 2017, and the out-of-sample period from
1 January to 31 December 2018 (as described in Section 4.1). When using the ML methods introduced in Section 3, the only
difference is that each ML model is adopted instead of GAM (1) in steps (iii) and (iv), and the other steps are the same.

(i) Using the actual areawide PV power generation capacity Wt (observed no more
frequently than monthly), the daily increasing trend is estimated using a linear model.
As a result, the daily forecast value of PV power generation capacity is obtained as
Ŵt (see Appendix A).

(ii) The unit power generation Ut, h is obtained by dividing the measured hourly area-
wide PV power generation Vt,h by Ŵt (i.e., Ut, h := Vt,h/Ŵt).

(iii) For Ut, h a GAM is built with calendar information, general weather conditions
forecast, and maximum/minimum temperature forecast as explanatory variables.
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(iv) The out-of-sample forecast unit power generation Ût, h is obtained by substituting
the explanatory variables observed in the estimated GAM forecast formula (predictor
part of the GAM).

(v) The out-of-sample forecast power generation V̂t, h is obtained as the product of the
forecast PV power capacity Ŵt and the forecast unit power generation Ût, h.

In the following, we apply GAM for unit power generation Ut, h by using temperature
and general (descriptive) weather forecasts. (Note that another possible method is to use
solar radiation forecasting, but this method is not used in our area-wide PV forecast model
because the solar radiation data are not available in many countries [24], and it is difficult
to handle local fluctuations that depend on the observation points).

Ut, h = usunny(t, h)Isunny,t,h + ucloudy(t, h)Icloudy,t,h + urainy(t, h)Irainy,t,h
+ usnowy(t, h)Isnowy,t,h + utmax(t, h)εtmax,t + utmin(t, h)εtmin,t
+ ηt, h

(1)

where u.(t, h) is the tensor product spline function to be estimated by applying GAM,
which is the 2D time trend that smoothly connects in the direction of both the date t and
hour h (see Appendix B for an overview of the tensor product spline function and the
smoothing mechanism). Note that the “snowy” term is only included in the model for
snowy areas, which in this study are referred to Hokkaido, Tohoku, and Hokuriku, out of
the nine target areas. The tensor product spline function provides smoothing conditions in
two orthogonal directions (see [25] and Appendix B). This ensures robustness and makes it
possible to incorporate multiple explanatory variables even with small sample sizes.

Note that εtmax, t and εtmin, t denote the maximum and minimum “temperature fore-
cast deviations”, respectively, and they are obtained by applying GAM as follows:

Tmaxt = ftmax(t) + εtmax, t, Tmint = ftmin(t) + εtmin, t (2)

We estimate the yearly cyclical trends as the spline functions f.(Seasonalt) in (2) and
u.(Seasonalt, h) in (1), using yearly cyclical dummy variables Seasonalt (= 1, . . . , 365 (or 366)).
In this study, the starting point of the cyclical dummy variables is January 1, days are al-
located in order from 1 to 365 (366 for leap years). To make the notation more concise,
we denote f.(Seasonalt) and u.(Seasonalt, h) as f.(t) and u.(t, h).

Note that we select the cyclic cubic spline function [25] in the direction of Seasonalt for
f.(Seasonalt) and u.(Seasonalt, h). In this way, each spline function is given as a function
that is smoothly continuous (the value and the first and second derivative values are all
connected) not only throughout the domain of definition, but also at the beginning and
end of the domain of definition. (See [26] for a detailed description and formulas of “basis
functions” to apply to similar models with annual periodicity.)

2.2. Individual PV Power Generation Forecasting Model

In this section, we develop a model for forecasting the power generation of individual
PV panels. In this study, we assume that solar radiation forecasts are available in the
same region where the individual PV panels are located, and use this information in the
model (note that in Japan, 5 km mesh solar radiation forecasts by the Japan Meteorological
Agency (JMA) are widely distributed through the Japan Meteorological Business Support
Center [27]). First, we propose the following forecast model “M3” for PV power generation
Vt, h at date t time h.

M3 : Vt, h = v(t, h, Rt, h) + ηt, h (3)

where Rt, h is the forecast solar radiation, ηt, h is the residual term, v(·) is the 3D tensor
product spline function estimated by GAM (3), and Seasonalt is denoted by t.
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Next, we construct three alternative models, M0–M2, for comparison to make sure
that the nonlinear conditions in 3D directions in M3 contribute to the improvement of
explanatory power and robustness.

M0 : Vt, h = βRt, h + α + ηt, h (4)

M1 : Vt, h = ∑
M,H

(
β(M,H)Rt, h + α(M,H)

)
I(M, H)
t,h + ηt, h (5)

M2 : Vt, h = β(t, h)Rt, h + α(t, h) + ηt, h (6)

where βs and αs correspond to the regression coefficients and intercepts, respectively, when
each model is viewed as a linear regression equation for solar radiation. Note that these
values are constant for the entire period in M0, constant under a specific month and time
(M, H) in M1 (where I(M, H)

t,h is a dummy variable that is set to 1 if the target time (t, h) of the
sample corresponds to (M, H) and 0 otherwise), and variables depending on the date and
hour in M2. In fact, β(t, h) and α(t, h) are defined by 2D tensor product spline functions
(where t denotes Seasonalt) with smoothing conditions in the date/hour direction.

In other words, M1 is synonymous with constructing a linear regression model for each
hour of the month. M2 is the same type of model as the method described in Section 2.1 in
which 2D tensor product spline functions express the regression coefficient and constant
terms change smoothly in the date and hour directions. M2 is a more granular model than
M1 in that the estimated parameters vary from day to day, and M3 is a more refined model
in incorporating nonlinearity in the direction of solar radiation to M2.

3. Machine Learning Methods to Be Compared

To validate the accuracy of the GAM-based forecasting model proposed in the previous
section, we also perform forecasts using multiple ML methods. Next, we introduce four
popular ML algorithms, kNN, ANN, SVR, and RF, to perform similar forecasts to the
previous section using the “caret” package [28] (short for classification and regression
training). We also compare the forecast accuracy of our proposed methods using GAMs
with these ML techniques.

A brief explanation of these four ML methods is given below.

• k-nearest neighbor (kNN): kNN [13] is one of the simplest yet effective ML algo-
rithms [29]. kNN can be used for classification and regression problems. The main
idea is to use the proximity of features to predict the value of new data points. When
used for classification problems, the classification of an object is determined by the
votes of its neighboring groups of objects (i.e., the most common class in the k nearest
neighbor groups is assigned to the object). kNN regression, on the other hand, uses
the average of the values of the k nearest neighbors, or the inverse distance weighted
average of the k nearest neighbors as the expected result. The kNN algorithm mea-
sures the distance between the numerical target parameters and a set of parameters
in the dataset, usually the Euclidean distance (which is also used by caret’s “knn”).
Other distances, such as the Manhattan distance, can also be used. kNN methods
have the challenge of being sensitive to the local structure of the data.

• Artificial Neural Networks (ANN): ANN [9] is “a mathematical model or computa-
tional model based on biological neural networks; in other words, it is an emulation
of a biological neural system” [30]. The perceptron is the starting point for the neural-
network formation procedure. Simply put, the input is received by the perceptron,
where it is multiplied by a series of weights and then passed to the activation function
of choice (linear, logistic, hyperbolic tangent, or ReLU) to produce the output. A neu-
ral network consists of a multilayer perceptron model, which consists of a cascade
of perceptron layers: an input layer, a hidden layer, and an output layer. Data are
received in the input layer, and the final output is generated in the output layer. The
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hidden layer, as is commonly known, is located between the input and output layers,
where transient computations occur.

• Support vector machine (SVM)/support vector regression (SVR): SVM is considered
“one of the most robust and accurate methods among all well-known algorithms” [31].
When used for classification problems, SVMs learn the boundary that most boldly
separates a given training sample (maximizing the margin, which is the distance
between the boundary and the data). The unique feature of SVM is that it can be
combined with the kernel method [32], which is a method for nonlinear data analysis.
That is, by using a method that maps data to a finite (or infinite) dimensional feature
space using a kernel function and performs linear separation on that feature space,
it is possible to apply this method to nonlinear classification problems. When SVM is
used for regression, known as support vector regression (SVR), as originally proposed
in [10], some properties of the SVM classifier are inherited. That is, the problem is
solved in such a way that the error and the weights (regression coefficients) of the
mapping functions are minimized simultaneously (see [33] for the formula). This
prevents overlearning in a manner similar to ridge regression [34]. SVR has a structure
similar to that of kernel ridge regression (KRR), but it is unique in that a loss function
called “(linear) ε-insensitive loss functions” (see, e.g., “Figure 1” of [35]) is used to
evaluate the prediction error. In this respect, it differs from KRR, which has squared
error loss as its loss function [36].

• Random Forest (RF): RF [14] is an ensemble model that combines several prediction
models called “decision trees.” It is called “forest” because it consists of a large
number of decision trees, and “random” because the decision trees (classification
trees or regression trees) are constructed using k (which is given in advance) sorts of
randomly chosen explanatory variables instead of all explanatory variables. In random
forest regression, when new data are given, each generated regression tree predicts
the output of the individual prediction, and they are averaged to output the final
prediction [14]. The random forest regressor has advantages in that it can solve
complex problems on a variety of datasets using different functions and find and
unbiased estimate the generalization error; however, it can be overfitted for some
datasets and add noisy classification/regression tasks [37].

The caret package, which is used in this study, has been developed to facilitate the
use of various ML algorithms [38], which is a very useful tool because it allows the user to
manipulate the creation of forecast models, tuning of hyperparameters, and forecasting
using the created models. The parameters to be tuned for each of the four methods in the
caret package are presented in Appendix C. In caret, the default number of hyperparameters
to be tuned (how many ways to evaluate for each hyperparameter) is four, but this number
is set to 10 for more precise tuning and to avoid underestimating the prediction accuracy
of ML methods as much as possible. We also make all the explanatory variables (including
periods) used in the ML models perfectly consistent with those in the GAM.

4. Empirical Analysis

In this section, we present an empirical analysis using observation data from Japan
and perform a comprehensive and comparative study between our proposed methods and
the ML algorithms explained in the previous section.

4.1. Area-Wide PV Power Generation Forecasting Model

First, we demonstrate the empirical accuracy of the area-wide PV power generation
forecasting models constructed in Section 2.1. We estimate each model using in-sample
period data from 1 April 2016, to 31 December 2017, and we verify the forecast errors using
out-of-sample data from 1 January 1 to 31 December 2018, in nine different power areas.
For forecasting area-wide PV power generation, the following observed data are used:

• PV power generation volume Vt,h (MW): published by nine electricity power compa-
nies (e.g., data for the Tokyo area was downloaded from [39])
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• PV power capacity Wt (MW): month-end results published by the Ministry of Economy,
Trade and Industry [40]

• Weather condition dummy I.,t,h, max (min) temperature Tmaxt (Tmint) (◦C): forecast
values (of one major city in each of the nine areas) announced by the JMA on the
previous morning [41]

4.1.1. Estimated Trend

Figure 2 shows the estimated trends (2D tensor product splines in GAM(1)) for the
Tokyo area (See Appendix D for estimated trends in all nine areas). It can be confirmed
that power generation is greater in the order of sunny, cloudy, and rainy weather. The
estimated trend of sunny weather declines in the summer, which reflects the technical fact
that PV power generation decreases in efficiency during summer due to high temperatures.
The significant decline in the rainy trend in winter is consistent with extreme darkening
because the weather tends to change into sleets or snow. While the maximum temperature
contributes to increasing power generation, the minimum temperature contributes to
decreasing power generation, and this could be interpreted as under a fixed maximum
temperature. The lower the minimum temperature (usually recorded around early dawn),
the larger the solar radiation during the day (to raise the temperature). For this reason, there
is a negative correlation between the minimum temperature and PV power generation.

Figure 2. Estimated trends for areawide PV power generation model (example of Tokyo area). Note: The unit of vertical
axis for “Sunny,” “Cloudy” and “Rainy” is (%), and that for “Temp_max” and “Temp_min” is (%/◦C). “Seasonal” denotes a
yearly cyclical dummy variable (see Section 2.1), and “Hour” denotes the time (o’clock).

4.1.2. Comparison of Forecast Accuracy

In this section, in order to compare and verify the forecasting accuracy of the four ML
methods, Table 1 shows the R-squared (RSQ), mean absolute error (MAE), and root mean
square error (RMSE) for each of the nine areas by in-sample and out-of-sample periods,
respectively (see e.g., [42] for out-of-sample R-squared statistic). The computation time
(in seconds) required for model estimation is also shown. Note that this simulation was run
on a system with an Intel Core i9 CPU running at 3.10 GHz with 32 GB RAM (Windows 10),
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and this is also the case for the computation time in the empirical result in Section 4.2.2
shown later.

Table 1. Forecasting accuracy and computation time of each method for PV power generation for nine areas.

Metrix Model
In Sample Out-of-Sample

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

RSQ

GAM 0.793 0.776 0.821 0.835 0.761 0.796 0.840 0.801 0.805 0.718 0.754 0.792 0.790 0.716 0.766 0.807 0.759 0.805
kNN 0.900 0.910 0.916 0.923 0.889 0.910 0.927 0.915 0.914 0.620 0.621 0.712 0.716 0.644 0.684 0.735 0.664 0.705
ANN 0.741 0.740 0.763 0.799 0.726 0.750 0.812 0.757 0.770 0.626 0.681 0.709 0.742 0.666 0.715 0.767 0.725 0.772
SMR 0.835 0.822 0.859 0.867 0.798 0.821 0.869 0.830 0.837 0.629 0.542 0.722 0.665 0.676 0.741 0.704 0.655 0.713
RF 0.979 0.973 0.979 0.978 0.968 0.975 0.979 0.976 0.976 0.672 0.723 0.775 0.776 0.691 0.741 0.782 0.741 0.776

MAE

GAM 0.227 0.264 0.233 0.217 0.275 0.242 0.220 0.240 0.253 0.298 0.295 0.238 0.226 0.323 0.309 0.233 0.250 0.243
kNN 0.165 0.174 0.168 0.156 0.191 0.169 0.153 0.158 0.176 0.356 0.364 0.290 0.284 0.363 0.342 0.281 0.309 0.306
ANN 0.272 0.303 0.295 0.261 0.313 0.292 0.254 0.286 0.291 0.365 0.350 0.308 0.278 0.376 0.341 0.271 0.298 0.278
SMR 0.189 0.219 0.195 0.179 0.230 0.207 0.182 0.197 0.212 0.329 0.356 0.264 0.282 0.332 0.318 0.272 0.297 0.280
RF 0.071 0.091 0.082 0.081 0.101 0.086 0.079 0.084 0.090 0.310 0.304 0.244 0.234 0.329 0.317 0.243 0.257 0.258

RMSE

GAM 0.318 0.373 0.336 0.311 0.386 0.353 0.314 0.345 0.368 0.415 0.422 0.348 0.345 0.450 0.430 0.336 0.379 0.363
kNN 0.222 0.236 0.231 0.214 0.264 0.235 0.212 0.226 0.246 0.481 0.505 0.404 0.401 0.503 0.477 0.394 0.449 0.446
ANN 0.356 0.401 0.386 0.344 0.413 0.391 0.340 0.381 0.400 0.482 0.470 0.409 0.381 0.488 0.454 0.368 0.408 0.392
SMR 0.284 0.332 0.298 0.281 0.355 0.330 0.284 0.319 0.338 0.474 0.551 0.399 0.437 0.480 0.438 0.415 0.453 0.440
RF 0.102 0.128 0.115 0.114 0.142 0.123 0.113 0.119 0.129 0.447 0.446 0.361 0.355 0.469 0.445 0.359 0.391 0.389

Time

GAM 12.1 21.4 6.1 6.0 42.5 6.6 5.9 5.8 5.7

kNN 6.0 1.4 1.1 1.7 1.7 1.1 1.8 2.1 1.2

ANN 55.0 53.8 50.2 52.3 55.4 55.0 53.9 53.8 52.3

SMR 73.1 71.3 68.4 72.7 62.1 77.3 79.0 71.9 73.1

RF 313.3 426.5 211.6 358.7 152.6 144.1 132.5 327.5 139.9

Note: Column numbers correspond to the following areas: 1. Hokkaido, 2. Tohoku, 3. Tokyo, 4. Chubu, 5. Hokuriku, 6. Kansai,
7. Chugoku, 8. Shikoku, 9. Kyushu. Among the five different models with the same area, sample, and accuracy index, a gradient is applied
so that the model with the best accuracy is in red. The best values (maximum for RSQ and minimum for MAE and RMSE) are shown in bold.

As the table shows, GAM has the best accuracy indices (RSQ, MAE, and RMSE)
among the five models in the out-of-sample period for all area cases. In terms of com-
putation time, GAM is the second shortest after kNN, which is more than an order of
magnitude shorter than that of the other three ML methods. Note that the computation
time for each ML method includes the time required for tuning the hyperparameters by
cross-validation (see Appendix C). However, GAM also performs similar calculations in
that it uses cross-validation to find the optimal smoothing parameters (see Appendix B).
In addition, it should be noted that we performed parallel computation (which is allowed
for the caret package) on 28 cores in this study; the time required for tuning the four ML
methods is approximately 1/28th of the original time for a simple calculation [43].

Next, in order to make a comparison between methods for both in-sample and out-
of-sample forecast errors easier to understand, these are shown in Figure 3 (MAE) and
Figure 4 (RMSE) as scatter plots by nine areas. The dashed lines in each graph represent
straight lines where the values of the vertical and horizontal axes are equal (i.e., a 45-degree
line). As the graphs show, GAM has the smallest out-of-sample forecast error in all cases,
and the model is relatively robust in that it does not deviate significantly from the dashed
line (i.e., it has the same level of accuracy in the out-of-sample as in-sample). The same is
true for ANN in that it does not deviate from the 45-degree line, but it is still inferior to
GAM in terms of out-of-sample prediction accuracy (in any case) because of the relatively
poor fit of the original model (large in-sample prediction error).
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Figure 3. MAE of each method on PV power generation in nine areas.

Characteristically, the in-sample forecast errors of RF are minimal in all cases but the
out-of-sample errors are larger than GAM. As explained in Section 3, this result reflects
the fact that RF regression is prone to overlearning (the fitting image of RF regression is
intuitive in the graph in “Section 2” of [44]). However, note that RF is relatively more
accurate than the other ML methods even in terms of out-of-sample prediction error; if the
sample size in the in-sample period had been sufficiently large, it is possible that the
out-of-sample forecast error would have been even smaller. Additionally, although RF
showed the longest computation time, it may be possible to reduce the computation time
significantly by using a GPU environment instead of a CPU, since parallel computation is
possible for the calculation of each decision tree, but such an investigation is left for future
work (the same consideration also applies to the empirical results in Section 4.2.2).
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Figure 4. RMSE of each method on PV power generation in nine areas.

4.2. Individual PV Power Generation Forecasting Model

In this section, we present an empirical analysis of the individual PV power generation
models constructed in Section 2.2. We estimate each model using in-sample period data
from 1 January 2013, to 31 December 2017, and we verify the forecast errors using out-
of-sample data from 1 January to 31 December 2018. Note that only when we conduct
additional empirical analysis in the second half of Section 4.2.2 will we conduct forecast
error analysis when varying the in-sample or out-of-sample period, which will be defined
again at that time (note that they are also summarized in Figure 5 in advance). For the
forecast of individual PV power generation, the following observed data are used:
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Table 2. Forecasting accuracy and computation time of each method for individual PV power generation.

Model Time
In Sample Out-of-Sample

RSQ MAE RMSE RSQ MAE RMSE

GAM-M0 0.01 0.844 0.245 0.363 0.850 0.247 0.360
GAM-M1 4.86 0.912 0.163 0.273 0.923 0.153 0.258
GAM-M2 0.41 0.910 0.167 0.275 0.924 0.153 0.256
GAM-M3 0.40 0.912 0.162 0.272 0.926 0.149 0.253

kNN 7.52 0.918 0.151 0.262 0.925 0.146 0.254
ANN 212.70 0.909 0.171 0.277 0.923 0.158 0.258
SVR 418.73 0.910 0.151 0.276 0.924 0.140 0.258
RF 328.24 0.975 0.084 0.146 0.919 0.151 0.264

Note: Among the five different models with the same area, sample, and accuracy index, a gradient is applied so that the model with the best
accuracy is in red. The best values (maximum for RSQ and minimum for MAE and RMSE) are shown in bold. This is “Default validation
case” in Figure 5.

Figure 5. The relationship between in-sample and out-of-sample periods of each validation case for the individual PV power
generation forecasting model. Note: “Default validation case” corresponds to Figures 6 and 7 and Table 1; “Additional
validation case 1” corresponds to Figures 8 and A2; “Additional validation case 2” corresponds to Figure 9.

• PV power generation volume Vt,h (MW): measured value of the household’s solar
power system (with the permission of the owner, we use the data of a private roof-
mounted power system in Hiroshima city, Japan).

• Solar radiation Rt, h (MJ/m2): Measured solar radiation in Hiroshima City as pub-
lished by the JMA [45].

For solar radiation Rt, h, this study uses actual measured values that are available
free of charge for the purpose of comparison among models, considering that there is no
essential difference in whether to use forecast values or measured values in the comparison
between models. Incidentally, weather forecasts of the JMA have been reported to be
effective in forecasting electricity time series up to about one week ahead [46], and it may
be possible to compare models under different forecast horizons, but such analysis is a
future issue.

4.2.1. Estimated Trend

Figure 6 shows the trend estimated for M3’s 3D tensor product spline function
v(Seasonalt, h, Rt, h) in GAM (3) by hour h. The surface on the 2D coordinates of the
date Seasonalt and solar radiation Rt, h at each hour changes gradually with the hour.
It should be noted that the slope of the PV generation with respect to the solar radiation
tends to decrease (and even diminish with solar radiation) from spring to early summer,
when the solar radiation is large at each time. This reflects the technical characteristics
of PV panels, where the power generation efficiency decreases as the temperature (solar
radiation) increases.
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Figure 6. Trend estimation results for the M3 model (estimated from 5 years of in-sample data). Note: The units of vertical
axis and “Radiation” axis are (MW) and (MJ/m2), respectively. “Seasonal” denotes a yearly cyclical dummy variable
(see Section 2.1).

4.2.2. Comparison of Forecast Accuracy

Table 2 shows the results of the comparison of the forecast error and computation time
for each model. The results are discussed from two perspectives: the comparison between
statistical models (M0-M3) and the comparison between GAM (M3) and ML methods,
which are shown in the following two subsections.

Comparison of Forecast Accuracy among Statistical Models

In this section, we analyze the results in terms of comparison between the statistical
models (M0 to M3). Since this study is the first attempt to apply 3D tensor product spline
functions to energy time series data forecasting, it would be interesting to examine the
effect of adding smoothing (nonlinear) conditions in multiple directions on the accuracy.

First, as seen in Table 2, the overall forecast accuracy is generally the highest for M3 for
both in-sample and out-of-sample, while M0, which assumes a constant linear regression
equation for the whole year, is significantly less accurate than the other models. The MAE
and RMSE of M1 are better than M2 (comparable to M3) in the in-sample, but worse than
M2 in the out-of-sample. This can be interpreted as M1 building a different linear model
for each month and time, which makes it less robust than M2 and M3, where smoothing
conditions are imposed in the date direction.
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Figure 7. Monthly relative forecast error (MAE and RMSE) of M1 and M2 with respect to M3. Note: The dashed line is the
relative increment of the forecast error to M3 over the period (the out-of-sample MAEs overlap the two because they are
equal). This is “Default validation case” in Figure 5.

Figure 8. MAE and RMSE of each method on individual PV power generation (change in forecast error by method when
the in-sample period is shortened). Note: White dots represent the 5-year in-sample period (corresponding to values in
Table 2), and color-filled dots represent the 9-month in-sample period. Out-samples were both 2018 (i.e., this is “Additional
validation case 1” in Figure 5).
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Figure 9. Comparison of forecast errors for the next three months when the model is estimated
from nine months of data. Note: The in-sample period is 9 months, from 1 April to 31 December
2017; the out-of-sample period is 3 months, from 1 January to 31 March 2018 (i.e., this is “Additional
validation case 2” in Figure 5). The reason for the absence of GAM-M1 is that model estimation is not
possible because of the lack of in-sample data for the same month.

Next, to obtain a more detailed understanding of the effect of incorporating the
nonlinearity between PV generation and solar radiation in the M3 model, we compare
the prediction errors between models on a monthly basis. Figure 7 plots the relative error
increments for the MAE (or RMSE) of both M1 and M2 relative to the MAE (or RMSE)
of M3 by month (e.g., MAE, MAEM1 or M2/MAEM3 − 1). It can be seen that the relative
errors (MAE and RMSE) of M1 and M2, both of which are linear models with respect to
solar radiation, are particularly large during the spring and early summer months in the
out-of-sample period. This is consistent with the fact that the slope of M3 diminished in
relation to the solar radiation during the same period when the solar radiation increased,
as is confirmed in Figure 6. This means that the nonlinearity that exists between PV
generation and solar radiation during the same period was modeled relatively robustly in
M3. In addition, although the forecast errors of M1 did not differ significantly from M3
during the in-sample period, the error increased for the out-of-sample period. This result
also suggests that M1, which does not have a smoothing condition, had an undesirable
(excessive) model fitting by month.

Comparison of Forecasting Accuracy between GAM and ML Methods

Next, in this section, we compare the prediction accuracies of GAM and ML. As seen
in the previous section, M3 was the model with the highest forecast accuracy among the
GAMs (including linear models), so we omitted the M0–M2 models and dealt only with
the M3 model (in this section, the term “GAM” refers solely to M3).

As can be seen in Table 2, in the comparison between GAM and the four ML methods,
RF has the best fit in the in-sample, which is the same result as that of the area-wide PV
generation model in Section 4.1.2. On the other hand, in terms of out-of-sample forecast
errors, SVR is the best for MAE, and GAM is the best for RSQ and RMSE; the reason why
SVR is the best for MAE is presumably because the objective function of SVR is close to
MAE minimization. As mentioned in Section 3, SVR uses linear ε-insensitive loss functions
(as shown in “Figure 1” of [35]), but because ε is relatively small, SVR can be said to
approximately minimize the MAE.
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In any case, it is true that GAM is a highly superior model overall in terms of compu-
tation time and ease of interpretation with intuitive visualization. However, it should be
noted that when compared with the forecast accuracy results of the area-wide PV power
generation model examined in Section 4.1.2, the results in this section seem to indicate that
the superiority of GAM may not be so clear (at least, it is inferior to SVR and kNN in MAE).

One of the reasons for this may be the following: the area-wide PV generation model
had a large number of incorporated explanatory variables, even though the period of the
data used was relatively short (about a year and a half). That is, in the GAM, the “model
structure”—which is based on rational human reasoning—was able to be taught in advance
such that the sensitivities of the various explanatory variables (weather conditions and
temperatures) each have a daily smooth yearly cyclical trend, along with a smooth trend in
the orthogonal time direction. On the other hand, the individual PV model is a relatively
simple model that only estimates a smooth trend in the three directions, which means
that the ML methods (without prior knowledge of the existence of the multi-dimensional
smooth trends) were able to estimate it reasonably effectively. In other words, when the
modeling practitioner recognizes or detects the existence of a global model structure that is
difficult to learn from the data alone, a statistical model, such as GAM, has an advantage in
that it is relatively easy to describe it in the formulation to facilitate accurate forecasts.

To make this consideration more credible, in the following, we will assume a case where
the in-sample period is short (a missing period is intentionally created), and an experiment
to see how the accuracy of each forecasting method changes in that case. Below, we sep-
arately calculate the case where the in-sample period is from 1 April to 31 December 2017
(9 months), and plot in Figure 8 how the forecast error for out-of-sample (2018) changes
from the original case where the in-sample period is 1 January 2013 to 31 December 2017
(5 years); the latter is already calculated in Table 2. In other words, the newly estimated
model here contains missing data from January to March.

As can be seen from the graphs, when the in-sample period is shortened, the in-
sample forecast error (MAE or RMSE) becomes smaller, but the out-of-sample forecast error
becomes larger, which is common to all forecasting methods. This result is consistent with
the intuition that the shorter the period, the better the fit of each model, but the less robust
it will tend to be. More interestingly, while kNN, SVR, and RF significantly deteriorated
the out-of-sample accuracy (when missing periods were included), GAM and ANN did
not, and were relatively robust in trend completion for missing values. As a result, GAM
had the smallest MAE and RMSE for the 9-month case. The reason for the robustness of the
ANN suggests that some trend completion may have occurred in the hidden layer. On the
other hand, kNN, SVR, and RF are unsuitable for trend estimation (especially extrapolation)
that complements missing periods.

In the following, in order to make the performance comparison of trend completion
clearer, using the estimated model based on nine months of in-sample data from 1 April
to 31 December 2017, we compare the forecast errors measured from the following three
months of out-of-sample data (1 January to 31 March 2018) in Figure 9. Note that in
practice, insufficient historical data is common, especially for new entrants. This result
clearly shows that the prediction errors of kNN, SVR, and RF by extrapolation are relatively
large. In particular, the extremely poor prediction error of SVR may be due to the radial
basis function (RBF) kernel used, which is also called a local kernel and is suitable for
interpolation but not for extrapolation (see “Figure 8” in [47]). It has also been proposed
that SVR methods can be improved by combining them with polynomial kernels (global
kernels) [47], but the improvement of ML algorithms is beyond the scope of this study.

For reference, Figure A2 in Appendix E shows the trend of the 3D tensor product
spline function estimated from nine months of in-sample data from 1 April to 31 December
2017. It can be seen that even though there is no data for January–March, the shape is
almost the same as in Figure 6, which uses data for five full years, and smooth trend
estimation in the solar radiation and hour directions is achieved. This result also confirms
the robustness of our GAM-based model.
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5. Conclusions

This study proposed and validated a GAM-based model with multidimensional tensor
product splines to support the forecasting of PV power generation in practice. In summary,
our contribution lies in the following points:

• We constructed different GAM-based forecasting models for area-wide PV power gen-
eration and individual PV power generation, and demonstrated the effectiveness of the
models by visualizing the estimated trends and providing reasonable interpretations.

• For the individual PV power generation model, we constructed a new forecasting
model using 3D tensor product splines and demonstrated its effectiveness. We quan-
titatively demonstrated that the robustness and forecasting accuracy of the model
increased when smoothing (nonlinear) conditions were incorporated in three direc-
tions by comparing it with linear models.

• By comparing the proposed GAM-based models with other popular ML methods,
such as kNN, ANN, SVR, and RF for each PV power model, it was shown that the
GAM-based models have advantages in terms of computational speed and forecast
error minimization. Specifically, we have shown that the GAM-based model is highly
effective for global nonlinear trend completion.

In general, ML has been reported to be superior to statistical models in terms of
predictability. However, this study showed that our forecasting approach using GAM may
have several advantages over ML methods, such as interpretability, robustness, computa-
tional load, and forecasting accuracy. Moreover, when the existence of a smooth (periodic)
trend is inferred in advance, the GAM may capture the structure and provide better fore-
casting accuracy. For example, in this study, the 2D tensor product spline model was
formulated in advance that the coefficients of each variable of weather and temperature
should have smoothly connected trends in the seasonal and time directions, respectively.
The 3D model was described as having a smooth trend in the directions of seasonal, time,
and solar radiation. In addition, the cyclic cubic spline function was used to incorporate
the condition that the seasonal trends are connected at the start and end points of the
yearly cycle.

A statistical model, such as GAM, has various advantages in practical use, such as ease
of reflecting the model designer’s prior knowledge, understanding the results intuitively,
and explaining them to others. In particular, it has the advantage that the recognized global
model structure can be formulated (taught) in advance, which makes it easier to build a
reasonable and robust model compared to ML methods that recognize patterns from data
only. Therefore, the descriptiveness of the model (with high interpretability) is an important
factor that potentially contributes to an improvement in accuracy. In conclusion, it may
be fair to say that our GAM-based models with multi-dimensional tensor product splines
provide a promising forecast approach for practitioners that require model tractability,
reliability, and forecasting accuracy in the PV business.
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Nomenclature

Vt,h measured PV power generation volume at date t, hour h
Wt installed PV power capacity at date t, hour h
Ut, h unit power generation at date t, hour h
I.,t,h dummy variables, which are 1 if the forecast general weather condition at date t

hour h is the same as the suffix’s weather condition, or 0 otherwise
Seasonalt yearly cyclical dummy variables (= 1, . . . , 365 (or 366))
Tmaxt, Tmint previous day’s maximum or minimum temperature forecast at date t
εtmax,t, εtmin,t maximum or minimum temperature forecast deviation at date t (observed

temperature forecast minus its trend)
u.(t, h) 2D tensor product spline functions estimated by the GAM of the area-wide PV

power forecast model (t denote Seasonalt)
f.(t) univariate spline functions estimated by the GAM of the temperature trend model

(t denote Seasonalt)
ηt, h residual terms with the average of 0
Rt, h forecast solar radiation at date t, hour h
β, α coefficients and constant terms for the individual PV power generation models when

each model is viewed as a linear regression equation for solar radiation (constant
for M0 and M1, or variables defined by 2D tensor product spline function for M2)

v
(
t, h, Rt, h

)
3D tensor product spline functions estimated by the GAM of the individual PV
power forecast model (t denote Seasonalt)

Appendix A. Installed Capacity Trend Estimation for Area PV Generation Forecasting

The area-wide PV power capacity Wt is modeled by the following ordinary least
squares regression (OLS):

Wt = w1Periodt + w2 + ηt. (A1)

where w1 and w2 are the coefficient and intercept, respectively, estimated by the OLS (A1),
Periodt is the (annualized) daily dummy variable representing the number of years that
have passed, and ηt is the residual term. Using this equation, the forecast capacity Ŵt can
be obtained as follows.

Ŵt = w1Periodt + w2. (A2)

Note that the original observed capacity Wt is monthly data with some missing values,
but the forecast value Ŵt can be obtained as daily granularity data because we use the
daily dummy Periodt.

Appendix B. Smoothing Spline Functions

The univariate smoothing spline function is estimated as the function h that minimizes
the penalized residual sum of squares (PRSS), given by

PRSS =
N

∑
n=1
{yn − h(xn)}2 + J(h), where J(h) = λ

∫
{h′′ (x)}2dx. (A3)

In (A3), the first term measures the approximation of the data, and the second term
(penalty term) J(h) adds penalties according to the magnitude of the curvature of the
function. In this study, we construct the GAM using the R package “mgcv” [48] to obtain a
series of smoothing spline functions, where the smoothing parameter λ is calculated using
a general cross-validation criterion.

When estimating the 2D (3D) tensor product spline function h(x, z) (h(x, z, v)), the fol-
lowing penalty term J2(h) (J3(h)) is included in the PRSS that should be minimized [25]:

J2(h) =
∫

x,z

[
λx

(
∂2h
∂x2

)2

+ λz

(
∂2h
∂z2

)2]
dxdz. (A4)
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J3(h) =
∫

x,z,v

[
λx

(
∂2h
∂x2

)2

+ λz

(
∂2h
∂z2

)2

+ λv

(
∂2h
∂v2

)2]
dxdzdv. (A5)

Thus, the tensor product spline function can incorporate independent smoothing
conditions for each variable (direction). Previous studies that applied 2D tensor product
splines to different energy time series data include [49,50], where the tensor product
spline functions are used for pricing weather derivatives for risk hedging rather than for
forecasting models.

Appendix C. Hyperparameters to be Tuned for the Caret Package

The four ML methods in this study are automatically tuned by the caret package, and
the hyperparameters to be tuned for each method are listed in Table A1 [51]. For details
of the parameters, please refer to the references of each package. (Note that in the caret
package, epsilon in the “ε-insensitive loss functions” of SVM (SVR) is not tuned, and the
default value of 0.1 is used.)

Table A1. Hyperparameters to be tuned in the four ML methods used in this study.

Model Method Value Package Tuning Parameters

kNN knn caret [28] k Number of neighbors considered

ANN nnet nnet [52]
decay The parameter for weight decay

size Number of units in the hidden layer

SVM
(SVR) svmRadial kernlab [53]

sigma The inverse kernel width used by the
Gaussian kernel

C The cost regularization parameter,
which controls the smoothness

RF rf randomForest [54] mtry Number of variables randomly
sampled as candidates at each split

In the caret package, the parameter “tuneLength” (set to 4 by default) allows the user
to select the number of tunings (how many different scenarios of each hyperparameter
are compared and verified) for the target hyperparameters. In this study, by setting this
parameter to 10, we tuned 10 scenarios for “knn” and “rf,” and 100 scenarios for “nnet”
and “svmRadial”. For the evaluation method of the tuning, we adopted caret’s default
method of 10-fold cross-validation (i.e., cross-validation was performed by dividing the
training data into 10 equal parts).

Appendix D. Estimated Trends for Areawide PV Power Generation Model

As shown in Figure A1, the estimated trends of the 2D tensor product spline functions
for each of the nine areas are generally similar in shape, although there are some differences
among the areas (the interpretation of the trend shapes described in Section 4.1.1 is common
to all areas). If we look at the details, we can see that in Hokkaido, an area of high latitude,
power generation is relatively level throughout the seasons (e.g., the decline of the rainy
trend in winters is relatively small), and the seasonal trend of snow is extracted relatively
clearly. The reason why Tohoku and Hokuriku, which are other snowfall areas, do not
have such seasonal snowy trends, is perhaps because the sample sizes of snowy weather of
these areas were not large enough.
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Figure A1. Estimated trends for areawide PV power generation model (all nine areas). Note: The unit of vertical axis for
“Sunny,” “Cloudy,” “Rainy” and “Snowy” is (%), and that for “Temp_max” and “Temp_min” is (%/◦C). “Seasonal” denotes
a yearly cyclical dummy variable (see Section 2.1), and “Hour” denotes the time (o’clock).
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Appendix E. Trend Estimation Results for the M3 Model (Estimated from 9 Months of
In-Sample Data)

The estimation results of the 3D tensor product spline function of the individual PV
power generation model for the in-sample period from 1 April to 31 December 2017 are
shown in Figure A2. All graphs have almost the same shape as the estimation results when
the in-sample period is five years from 2013 to 2017 (Figure 6), indicating that the 3D tensor
product spline function is highly robust.

Figure A2. Trend estimation results for the M3 model (estimated from 9 months of in-sample data). Note: The units of
vertical axis and “Radiation” axis are (MW) and (MJ/m2), respectively. “Seasonal” denotes a yearly cyclical dummy variable
(see Section 2.1).
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