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Abstract: The main goal of this paper is to review and evaluate how we can take advantage of
state-of-the-art machine learning techniques and apply them in wind energy operation conditions
monitoring and fault diagnosis, boosting wind turbines’ availability. To accomplish this, we focus our
work on analysing the current techniques in predictive maintenance, which are aimed at acting before
a major failure occurs using condition monitoring. In particular, we start framing the predictive
maintenance problem as an ML problem to detect patterns that indicate a fault on turbine generators.
Then, we extend the problem to detect future faults. Therefore, this review will consist of analysing
techniques to tackle the challenges of each machine learning stage, such as data pre-processing,
feature engineering, and the selection of the best-suited model. By using specific evaluation metrics,
the expected final result of using these techniques will be an improvement in the early prediction of a
future fault. This improvement will have an increase in the availability of the turbine, and therefore
in energy production.

Keywords: condition monitoring; fault detection; machine learning; wind farm

1. Introduction

As a consequence of increasing climate change awareness, research on topics such as
renewable energy are of extreme importance. An event that played a significant role in
rapidly finding practical solutions to stop those changes was the Paris Agreement. The long
term goal of that agreement was to limit temperature rises; therefore, countries needed to
adapt their current practices to reduce carbon emissions (https://unfccc.int/process-and-
meetings/the-paris-agreement/the-paris-agreement (accessed on 17 October 2021)).

Since the power sector is one of the main contributors to global greenhouse gas emis-
sions (https://www.c2es.org/content/international-emissions (accessed on 17 October
2021)), new technologies for cleaner energy production have been developed to replace con-
ventional production (e.g., production based on fossil fuels) [1]. To create incentives for de-
velopers to invest in cleaner energy technologies, countries (e.g., China, Russia, India, Japan,
Brazil, and European countries) have proposed national action plans. By analysing those
national plans, we can observe that some of them highlighted that wind energy can have a
major contribution as a zero-emission energy source. Consequently, the “European Green
Deal” (https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en
(accessed on 17 October 2021)) emerged as an extension at the continent level. The main
objective of the EU Green Deal is for the EU to become the first climate-neutral continent
by 2050 [2]. Regarding the energy sector, these are some of the main goals: build intercon-
nected energy systems and better integrated grids to support renewable energy sources,
decarbonize the gas sector, promote smart integration across sectors, and develop the full
potential of Europe’s off-shore wind energy [3].

As a consequence of the previous initiative, the future of energy will profoundly
depend on renewable energies, such as wind and photovoltaic energy. Therefore, this
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review will focus on wind technology due to its increasing importance in the last few years.
The cumulative installed capacity of both off- and on-shore wind energy has been growing,
with global yearly new installations rounding 50 GW. In 2020, it even surpassed 90 GW,
a 53% growth compared to 2019, bringing the total installed capacity to 743 GW. (https://
gwec.net/wp-content/uploads/2021/03/GWEC-Global-Wind-Report-2021.pdf (accessed
on 17 October 2021)) According to [4], the global installed capacity of on-shore wind
power would increase (taking 2018 as reference) three-fold by 2030 (to 1787 GW) and ten-
fold by 2050 (to 5044 GW). Concerning off-shore installations, the predictions are similar,
with the global off-shore wind capacity rising 228 GW in 2030 and nearly 1000 GW in 2050,
compared with the 23 GW installed in 2018 [4].

Wind farms are usually connected in remote areas far from the big cities and large
consumption centers. A key reason for energy producers to select remote locations, such as
off-shore, is the better wind conditions. Near big cities, wind suffers a lot of interference,
which is not ideal for wind generators. Adding to that, we avoid visual impact and
land use issues. However, some disadvantages arise from this location decision, such as
connecting the wind farm to the transmission networks, transportation and installation
of giant turbines, and operation and maintenance (OM) costs. Nevertheless, knowing
that previously mentioned benefits might reveal that it is worth investing in transmission
infrastructure to access them [5]. To reinforce the need for OM, wind farms in general and
wind turbines in particular are exposed to unpredictable and harsh weather conditions,
which result in highly variable and volatile operational conditions, leading to intense
mechanical stress (the description of more specific problems of wind turbine generators is
covered in Section 2.1).

Since it is complicated to reduce the initial costs of transportation and installation,
most of the research has focused on maintenance, more specifically in the use of condi-
tion monitoring (CM). CM consists of monitoring the components of a wind turbine to
identify changes in operation that can be indicative of a developing fault and preventing
it through maintenance. CM increases the availability of the wind farm and, as a result,
the production of electricity, decreasing the global cost of the project. There are different
types of maintenance, as we will see in Section 2.1. However, the one that uses CM is called
predictive maintenance. This type of maintenance has two main advantages: (i) increasing
the availability of wind generators and (ii) reducing the costs of wind farms maintenance
by reducing or delaying corrective maintenance actions. The first advantage plays quite an
important role. For example, a wind turbine (WT) of 2.0 MW can generate 48 MWh during
a day (in maximum) and generate a revenue of 3600€ when considering an average FiT
(feed-in tariff) (Policy mechanism designed to accelerate investment in renewable energy
technologies by offering long-term contracts to renewable energy producers) of 75 €/MWh.

Until recently, monitoring has only relied on manual and straightforward analyses of
specific measurements and aspects of operation [6]. However, this type of analysis is ineffi-
cient when detecting electrical (including power electronics), mechanical, and hydraulic
problems. To date, developments in sensors and signal processing systems have improved
the quality and quantity of data obtained [7]. These data, when combined with machine
learning (ML) and big data analysis and management, have opened up a new world of
possibilities for reliable, cost-effective, and more accurate decision-making in CM.

The key goal of this review is to take advantage of these previously mentioned
advances, applying them in wind turbines generator condition monitoring. In particular,
we can frame the predictive maintenance problem as an ML problem, finding the best
tools and methods for each one of the sub-tasks in Figure 1. Using real data obtained
from SCADA (Supervisory Control And Data Acquisition) systems, the first task, Data
acquisition and pre-processing, will deal with the variety and quantity of data obtained.
In other words, this task does the necessary pre-processing of the data to remove outliers
and treat missing values. The second task, feature selection, selects the features that better
represent the patterns in the data, removing unnecessary noise. According to the obtained
data, the third stage aims to select the best ML model to detect and predict faults. Finally,
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in the validation stage, we assess the accuracy of the ML model on classifying new data as
representative of a failure in the turbine or not.

Figure 1. Machine Learning Phases.

The main difference between this review and the existing ones [8–13] is that it tries to
gather the strengths of each article from a ML point of view. It will not be a general review
on wind turbine CM, but a tailored version comprising only ML approaches. Moreover,
it will be organized as an ML problem, focusing on each of the stages mentioned in
Figure 1. In addition, we will trim the review to turbine generator problems. We will start
by giving a broader view on fault detection through models that can predict production
related problems, models that focus on multi-target prediction, others that use transfer
learning and ending with federated deep learning. Subsequently, by focusing on generator
faults, we review the prediction of more specific problems, giving additional information
regarding that fault that can help to prevent it. In conclusion, the present review discusses
the most important ML techniques used in condition monitoring, considering a structured
methodology used in data analytics. Therefore, this review will help to structure the
implementation of each of the ML phases on turbine generators CM.

The remainder of this paper is organized as follows. Section 2 presents a brief background
on CM of wind turbines and a state-of-the-art review on machine learning. Section 3 provides
the relevant related work on each of the machine learning phases. Finally, in Section 4, we
present a discussion of measures to validate the quality of the proposed models, and Section 5
summarizes the findings with conclusions, and discusses future work.

2. Background

To better understand the following sections, in Section 2.1, we present an introduction
regarding condition monitoring of wind turbines. Secondly, in Section 2.2, we review state-
of-the-art machine learning to help substantiate the critical analysis. Additional information
on how a wind turbine works or on its key components can be found in several references
in the literature, such as in Pao et al. [14].

2.1. Condition Monitoring of Wind Turbines

This section shows how to apply CM on wind turbines and presents the differ-
ent approaches.

The maintenance cost of components of a wind turbine strongly depends on how we
address the problem. Reactive maintenance consists of only replacing the component when
it fails and does not use CM, which is the most expensive approach. Small wind farms
typically rely on this approach because they do not have a permanent maintenance team.
On the other hand, predictive maintenance, through CM, enables an operator to know
when to replace a component before a fault occurs. This approach prevents major failures,
decreasing the costs and saving up to 20–25% of maintenance costs of wind turbines [15].
Consequently leading us to another aspect: how do we choose the turbine’s element(s) to
be monitored? A good strategy would be to prioritize components that are more likely to
fail or lead to long down periods. Components such as the rotor and transmission system
tend to have a higher rate of failure [16]. Generators tend to have a higher rate of failure in
off-shore wind turbines than in on-shore ones [8].

There are also various methods of performing CM, ones more intrusive (wear out the
component) than others, including acoustic emission measurement, power quality (har-
monics measurements) and temperature monitoring, oil debris monitoring, and vibration
analysis [17].



Energies 2021, 14, 7129 4 of 22

Finally, we can use CM for diagnosis, i.e., fault detection in real-time, or we can use
it for prognosis, i.e., fault prediction. For instance, for generator faults, we have some
common problems as wearing, electrical problems, rotor asymmetries, overheating and
overspeed. Some of the respective current CM techniques are temperature, vibration, torque,
current, voltage and power signal analysis, performance monitoring and thermography [9].

Tchakoua et al. [9] discussed some of the limitations and possible improvements on
current CM techniques:

• Select a cost-effective monitoring method;
• Automate the diagnosis made by experts;
• Focus on developing precise prognostic techniques;
• Optimize the use of SCADA data for automatic monitoring;
• Improve sensors making them wireless, being easy to place in locations hard to reach;
• Use signal processing techniques for feature extraction useful for predicting WT’s

components health.

Although these future research areas may appear challenging to address, they also
represent great opportunities for CM to boost the wind industry’s success by reducing the
cost of energy (COE) and increasing its competitiveness.

2.2. State-of-the-Art Machine Learning

To better understand how machine learning can be helpful, we present a brief intro-
duction to the subject and the state-of-the-art regarding condition monitoring to address
fault detection and diagnosis issues.

Recently, the field of condition monitoring has moved from the use of conventional
techniques to artificial intelligence (AI) techniques [18]. The conventional methods con-
sisted of sensing technologies or analysing physical quantities, as seen in the previous
section, having the major problem of needing an expert to do the diagnosis. AI tries to
automate this diagnosis, removing human error while handling more data in real-time. AI
through machine learning techniques has been widely used to improve the accuracy and
efficiency of fault detection and diagnosis, as we will see in Section 3.

ML models can follow two different approaches: supervised learning that predicts an
output variable using labelled input data, or unsupervised learning that can learn from
unlabelled data. In addition, for supervised learning, we have two different models; one
predicts a numeric variable (regression) and the other a categorical variable (classifiers) [19].

The ML model selection phase is the most important as it is the main tool that learns
from past data and generalizes into the future. For example, neural networks (NNs) and
support vector machines (SVMs) are two popular models that have been used in ML for
diagnostics and prognostics [8].

A NN is the adaptation of the learning ability of neurons in the brain to a compu-
tational architecture. We arrange NN in layers, and each layer is composed of a set of
artificial neurons. Each neuron receives an input signal, manipulates it, and then the output
is forwarded to the next layer of neurons [20]. NNs have been evolving rapidly over
time. In the beginning, these models could only solve linear classification problems, which
in the majority of the cases, we cannot apply in fault detection. Then, NNs evolved to
multi-layered architecture that could solve non-linear problems, such as the feed-forward
multi-layered method [21,22], in which no feedback from the previous signal is provided to
the next. Another example is recurrent neural networks (RNNs) [23], which have feedback
connections, and past signals are used to identify new features. Long short-term memory
networks (LSTM) [24,25] are a type of RNNs, but instead of taking as input a single data
point, they can process entire sequences of data.

In this review, self-organizing maps (SOMs), another type of NN, are also consid-
ered [21]. SOMs are trained using unsupervised learning. They produce a low-dimensional
(usually two-dimensional) and discretized representation of the input training space.
For this reason, we call it a map, and we typically use this method for dimensional-
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ity reduction. SOMs differ from other NNs, as they apply competitive learning as opposed
to error-correction learning.

We also present two more types of NNs used for fault detection: generalized map-
ping regressor (GMR) and general regression neural network (GRNN) [22]. GMR is a
self-supervised incremental neural network. This method can approximate every mul-
tidimensional function or relation that presents any discontinuity. The goal of GMR is
to turn the function approximation problem into an unsupervised problem capable of
pattern recognition. Therefore, it uses a coarse-to-fine strategy mapping. GRNN is an
incremental self-organizing competitive neural network. GRNNs belong to the family
of kernel neural networks. The typical GRNN training procedure minimizes the mean
square error (MSE) and uses a cross-validation (leave-one-out) approach. Finally, adaptive
neuro-fuzzy inference system (ANFIS) is also an important type of NN in the field of
condition monitoring [23,26]. ANFIS integrates both neural networks and fuzzy logic
principles. Therefore, it captures the strengths of both in a single framework. Its inference
system is based on a set of fuzzy IF-THEN rules, with the learning ability to approximate
non-linear functions.

The availability of larger datasets, variety of activation functions, and stronger com-
putational power made it possible to add hidden layers (layers that allow a NN to fil-
ter/transform the data). This approach is called deep learning, and has started to be
used in the wind energy field. NNs can be used for a variety of tasks, such as control
(e.g., wind turbine power control) and fault diagnosis and forecasting (e.g., wind speed
forecasting) [27,28], as we will describe in Section 3.

As for SVMs, they are often used in fault detection [23,29–31]. SVMs work by find-
ing decision boundary hyperplanes that best separate classes samples; more specifically,
the ones that leave the widest possible margin to the samples closest to the hyperplanes.
They evolved from performing only linear classification or regression to non-linear prob-
lems by adding polynomial features created from existing ones. This method makes the
problem linearly separable in a higher-dimensional space. They have recently gained sig-
nificant importance because of their superior ability to accurately represent the relationship
between the input and the output from a small amount of training information.

3. Machine Learning Techniques Applied to Condition Monitoring

In the previous section, we ended by summarizing the evolution of the use of ML in
CM. In this section, we will cover the recent research on the subject of this review, including
possible limitations and suggested improvements.

Before using ML methods, we typically use pre-processing techniques on the data,
such as feature selection. Hence, it might be helpful to first look into work related to those
initial tasks. After that, we will cover models for specific tasks. In Section 3.3, we start with
models for more general issues, such as “Turbine performance assessment” and “Power
curve monitoring”, that are not specific to a turbine component. Moving to “Multi-target
normal behaviour models”, where we cover models that can be used for establishing
the normal behaviour of multiple turbine components. In “Transfer Learning models”,
we introduce models that can be adapted to other datasets. This ends with “Federated
Deep Learning”, where we cover collaborative learning between multiple wind farm local
data centers. Then, in Section 3.4, we focus only on the generator; i.e., “Fault detection,
diagnosis, and prediction of generator faults”. Finally, in the same section, we present
specific generator faults: “Generator bearing failure prediction”, “Generator temperature
monitoring”, “Generator Brush Failure prediction”, and “Generator speed anomaly”.

3.1. Data Pre-Processing

We obtain data for most existing CM models through SCADA (Supervisory Con-
trol And Data Acquisition) systems. This is an advantage, because using data from
SCADA turns out to be a cheap alternative (e.g., does not require any extra hardware
investment) [32]. This type of system has been integrated into wind farms and wind tur-
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bines by using sensors, controlling electricity generation, and providing time-series signals
in regular intervals. Unfortunately, there is still a high non-conformity between sets of
SCADA signals and taxonomies [33] used by different turbine manufacturers, which makes
it challenging to compare existing research.

Another challenge to be faced is that typically a wind farm has hundreds of sensors
in each turbine, all of them producing signals at a high rate; this results in “big data”
problem [8].

Canizo et al. [34] present an efficient solution to data processing. They suggested a big
data framework to manage the data, observing an increase in speed, scalability, automation,
and reliability, but also better results in overall accuracy and sensitivity rate.

After dealing with the previously mentioned problems, we can start by looking into
the raw SCADA data collected, and perform pre-processing. Peng et al. [35] proposed
a novel approach to deal with data loss problems in remote CM. By the use of wireless
data transmission, remote CM systems solve the local limited data and computational
resources problem of onsite CM. Remote CM grants access to additional computational
resources, allowing advanced algorithms to process data from multiple wind turbines,
however, it has drawbacks regarding data loss. Therefore, the authors [35] proposed a
compressive sensing (CS)- based missing-data-tolerant fault detection method to solve this
drawback. The CS technique can reconstruct sparse signals; hence, the original signals are
converted to a sparse frequency domain. Then, the signals are sampled by a compressive-
sensing-based signal algorithm before being transmitted wirelessly. Hence, the proposed
method adds the novelty of treating the signals before transmission. CS technique relies on
a small number of sparse signals containing most of the salient information. Therefore, it
is possible to reconstruct the signals with loss transmission problems. The reconstruction
error is rounded to 0.3 for losses close to 95%, indicating a high tolerance to missing data.

Data provided by SCADA are influenced by structural problems, but also can take
into account other important factors. For example, temperature spikes can occur due to
external temperatures and not due to an internal problem in the wind turbine components.
This type of event can be removed using outlier identification and removal techniques. At
first, one could expect that a simple outlier removal technique might solve the problem,
but Marti-Puig et al. [36] showed that this was not the case. Although these methods
can decrease the training dataset’ errors, they also can increase the test dataset errors.
Meaning that most of the values considered outliers by the simpler methods are true
failures. Consequently, Marti-Puig et al. suggest the aid of an expert on the subject to
define absolute and relative ranges.

Lapira et al. [21] applied three changes to the SCADA data obtained to filter outlier samples:

• Remove the samples when the output power is negative or wind speed is below the
rated cut-in wind speed;

• Segmenting the data into week bins. In this way, the health value can be computed
every week;

• Normalizing the data.

W. Yang et al. [37] also developed a method to pre-process raw SCADA data based on
expected value calculation. The advantage of that method is that the expected value reduces
the statistical error caused by outliers. Additionally, methods based on the average value,
as previously mentioned, may fail to consider the probability distributions of outliers.

We presented the previous papers by order of complexity and efficiency. Hence, if we
want to guarantee an increase in accuracy, the last approach could surpass the unavailability
of expert knowledge.

Another approach covered in existent literature is the over or under-sampling of the
data. It is challenging for the classifier to learn abnormal behaviour when the representative
part of the data consists of non-fault samples. Therefore, an additional experience can be
removing normal samples or oversampling a certain failure. In terms of oversampling,
we have techniques such as synthetic minority over-sampling technique (SMOTE) [25,30],
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which generates synthetic samples from the minor class instead of creating copies, and ran-
dom oversampling [38].

Conversely, for undersampling, we have methods to choose samples to keep, to delete,
or a combination of both. To keep the samples from the majority class with the smallest
average distance from examples of the minority class, near miss undersampling can be
used. Another technique is condensed nearest neighbors (CNN), that seeks a subset of a
collection of samples that results in no loss in model performance, referred to as a minimal
consistent set. On the other hand, random undersampling [30], Tomek links [30,31] or the
edited nearest neighbors (ENN) rule [30] can be used to select which samples should be
deleted. Tomek links use Euclidean distance information of input data points to identify
borderline and noisy data. Therefore, these procedures only remove points along the
class boundary, yielding better performance when combined with another undersampling
method. Combinations that can be tried out are one-sided selection, which combines
Tomek links, and the CNN rule and neighborhood cleaning rule, which combines CNN
and the ENN rule.

Another two distinct methods are penalized classification and cluster centroids
(CC) [30]. Penalized classification tries to impose an additional cost on the model for
making classification mistakes on the minority class during training. These penalties can
bias the model to pay more attention to the minority class. CC is another undersampling
method that splits all the samples of the majority class into clusters using the k-means
algorithm. The centroids of these clusters are then used instead of considering all the
samples from that cluster.

Huaikuan et al. [39] proposed an improvement to SMOTE that also uses clustering.
Classical SMOTE uses linear interpolation to generate more samples from adjacent samples
of the minority class. Therefore, if the data are unevenly distributed, i.e., has sparse
regions containing few samples, the interpolation method may fail in those cases. Since the
minority class is characterized as having few samples, these situations tend to occur. Hence,
the paper [39] developed a method called minority clustering-SMOTE (MC-SMOTE), which
replaces interpolation for clustering. Samples from the minority class are divided into
several clusters. Then, new samples are created by adjacent clusters in combination with
SMOTE, reaching a uniform new minority class distribution, since clustering will produce
new samples incorporating sparse areas.

Jiang et al. [40] also proposed a method using SMOTE, however, combined with
dependent wild bootstrap (DWB), which they entitled synthetic and dependent wild
bootstrapped over-sampling technique (SDWBOTE). The SMOTE does not take into consid-
eration temporal dependence, which is important for time-series, being the case of SCADA
data. Additionally, it is not prepared to deal with missing data causing unfixed length
inputs. Therefore, they start by modifying SMOTE to allow unfix length data, aligning
and slicing samples, as described in detail in the paper. Afterwards, they add DWB to
resample the data, capturing the time dependence of the sample. These two modifications
combined can solve the mentioned SMOTE disadvantages. As will be seen in Section 3.3.4,
transfer learning can also be used to solve this problem by transferring the knowledge from
a balanced dataset to one suffering from data imbalance. Qun et al. [41] also proposed a
different approach to deal with imbalanced data. Instead of using cross-entropy as the loss
function, they used focal loss (FL). FL is an extension of cross-entropy, being dynamically
scaled, reducing the weight of samples from the majority class during training.

In addition, performance metrics that can deal with imbalanced data will be covered
in Section 4.

At last, an uncommon step of pre-processing was broached by Xu et al. [42], selecting
the data corresponding to the normal periods of operation. This pre-processing is useful for
the normal behaviour models, which normally combine the status data and historical data
to label the data. However, due to the remote location of WTs and the consequent unavail-
ability of regular maintenance, some fault information may be ignored. This means that the
data which is supposed to be normal contains faulty behaviour, which presents an issue
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to the normal behaviour models. The paper [42] proposed the use of quantile regressions
combined with NN structure to obtain a nonlinear quantile regression. The quantile regres-
sion neural network (QRNN) receives, as inputs, the variables of the normal behaviour
models and outputs the conditional quantiles. They considered the range of 0.4 to 0.6 of
quantiles levels as representative of normal behaviour, since, according to the significance
of median in statistics, a one-to-one mapping rounds 0.5. The method showed good results
on constructing intervals of normal behaviour data which are robust against outliers.

3.2. Feature Selection

There is no conventional method for feature selection when using ML on CM, because
it depends on the component being monitored. However, it can be as simple as asking an
expert if it is more useful to focus on the acoustic sensor or the generator’s vibration or
going beyond that, and using an automatic method.

Auto-encoders, or principal component analysis (PCA), can reduce the extracted
features or combine them. An autoencoder is a type of NN used to learn efficient codings
in unsupervised data. They are useful for dimensionality reduction, since they learn
a representation (encoding) for a set of data by training the network to ignore signal
“noise” [43]. PCA is the process of computing the principal components and creating
projections of each data point onto only the first few principal components to obtain lower-
dimensional data, while trying to preserve the data’s variation [44]. Auto-encoders can
perform similarly when the activation functions are linear, and the cost function is the
mean squared error. However, when compared to techniques that use dimension reduction,
non-linear techniques rarely outperform traditional linear techniques.

Y. Wang et al. [45] proposed a feature selection algorithm based on PCA, with mul-
tiple selection criteria, selecting a set of features that better identify fault signals without
altering the variety of data in the original dataset. Moreover, it also has the advantage of
reducing the number of sensors installed by removing the variables that are not relevant.
More specifically, the selection method proposed in the paper is the T selection method,
which targets a specific fault signal [46]. This algorithm maximizes variance and maintains
the independence among the selected variables, while preserving underlying features
regarding the fault. Once a set of features is selected, three performance metrics were
used to evaluate the selection algorithm: cumulative percentage partial variance (CPPV),
the average correlation coefficient (r), and the percentage information entropy (ηe ).

W. Zhang and X. Ma [47] proposed a model that uses parallel factor analysis (PARAFAC)
for fault detection and sensor selection of wind turbines based on SCADA data. PARAFAC,
in resemblance with other decomposition methods, such as Tucker3 or unfolded PCA, is
part of the family of bi-linear or multi-linear decomposition methods of multi-way data
into a set of loading and score matrices [48]. The difference is in PARAFAC, using fewer
degrees of freedom than the other mentioned methods. This fact presents an advantage
since it leads to simpler models, while excluding noise and insignificant or redundant
information. PARAFAC has gained importance because it is a processing technique capable
of simultaneously optimizing the factors and selecting the relevant contributions to the
dataset in trilinear systems. This method has firstly been applied to the condition monitor-
ing of wind turbines by [47]. More recently, in [49], they proposed the use of PARAFAC
and sequential probability ratio test for multi-source and multi-fault condition monitoring;
nevertheless, this is not specific to the wind farms domain.

Peng et al. [50] proposed a method called Mahalanobis distance (MD) to reduce the
input variable number of the prediction model. MD tries to reduce redundancy while
keeping relevant features. MD analyses the effects of using different units to measure the
distance between a point and a distribution, thus, detecting correlations between variables.
In addition, the MD method computes the univariate distance containing the main features
of multivariate data. This advantage plays an important role in reducing the number of
input variables of the prediction model. Furthermore, most wind farms are in remote
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locations, and the data collected are usually transmitted to an analysis center by wireless or
optical fibre networks. Therefore, fewer input variables decrease the communication load.

Fernando P. G. de Sá et al. [51] proposed a framework for automatic feature selection
called non-dominated sorting genetic algorithm II (NSGAII). NSGAII is a multi-objective
genetic algorithm, gaining the name since it adopts a search method that employs concepts
from natural genetics. It uses Pareto dominance relationships to rank solutions, simulta-
neously optimizing each objective without being dominated by other solutions. NSGAII
was used to select simultaneously a subset of features and hyperparameters to increase the
performance of fault detection. Since we have a codependent relation between the optimal
subset of features and the model’s hyperparameters, this approach appears to have a great
advantage. By using this algorithm, they were able to find the optimal balance between
the number of features and the model’s ability to detect faults. Additionally, they also
determine the hyperparameters that allowed the detection of the fault before it happens.

A. Stetco et al. [52] suggested a featureless approach using convolutional neural
networks (CNN). CNNs are NNs, however, they can filter and pool the input data to create
a feature map that summarizes the important features in the input. Therefore, they do
not need feature engineering. They also used class activation maps (CAMs) to investigate
the features selected by the CNN, and to identify the discriminative patterns in signals.
By doing this, they can inform engineers which time segments are useful to determine the
normal behaviour of operation or failure pattern.

Qun et al. [41] addressed the problem of spatio-temporal correlations between features.
They used two modules in parallel, multi-scale deep echo state network (MSDeepESN) to
deal with temporal multi-scale features, and the multi-scale residual network (MSResNet)
module for the spatial multi-scale features. MSDeepESN is a type of RNN that rapidly
and efficiently captures temporal correlations. To prove its effectiveness, it was compared
with the LSTM model, presenting better results. MSResNet consisted of an optimized
(one-dimensional) CNN for spatial correlation detection. Surpassing the ordinary CNN
model. They also found that using the spatio-temporal fusion yielded better results than
using them isolated.

Kong et al. [53] also addressed the spatio-temporal issue. They combined the ability of
spatial feature extraction of one one-dimensional CNN with the temporal feature extraction
of the gated recurrent unit (GRU). Primarily, they reduced the number of features by using
Pearson prod-moment correlation to select the most important variables. Pearson weights
the degree of association between variables, excluding the ones with small correlation
with most others. Afterwards, CNN extracts the spatial features, for each point in time.
Subsequently, and not in parallel, as in the previous paper, temporal features are extracted
by the GRU. GRU is an RNN with improved state information storage capacity, being the
hidden units replaced by gating units.

The results from [41] surpassed the ones from [53], as the authors [41] stated, due to
CNN-GRU extracting single-scale features instead of multi-scale.

As previously mentioned, we do not have a conventional method for feature selection,
which can be proved by the number of different approaches in the literature. With that in
mind, a good approach would be, as a starting point, to test different algorithms, beginning
with simpler methods such as PCA. Taking into consideration the ground truths of all
wind farm data, there will be non-linear signal relations, tremendous variations in signals,
and negative values.

3.3. ML Models for Wind Turbine Condition Monitoring
3.3.1. Turbine Performance Assessment

Lapira et al. [21] used the SCADA data from a large-scale on-shore wind turbine to
assess which of the three selected models better captures the turbine’s performance and
degradation. The methods used to pre-process and filter outlier samples were already
mentioned in Section 3.1.
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The important SCADA parameters were chosen to model the wind turbine’s system
performance (wind speed and the average active power), splitting them into two steps:
multi-regime (dynamic-wind turbine operating regimes) partitioning and baseline compar-
ison. Finally, a confidence value was computed during the baseline comparison step, which
describes the health state of the wind turbine. The multi-regime models being tested were
SOM and gaussian mixture model (GMM). GMM is a probabilistic model which assumes
that all the data points are generated from a mixture of a finite number of Gaussian distribu-
tions. Finally, feed-forward NNs used an approach based on residuals greater than a given
threshold during a given time segment. A comparison between the first two, unsupervised
models and the last one, a regression model, was a major conclusion of the paper.

They found that the GMM model presents a more gradual health change, being more
suitable in performance prediction. Nevertheless, the other two methods can be used for
fault or anomaly detection. The suggested future work was to predict the progression of
the degradation using predictive techniques, computing the remaining operational time
before a future downtime.

The most interesting feature of this paper is the use of unsupervised methods, since
most datasets composed of SCADA signals are not labelled as fault or not. As the paper
states, an interesting approach is to use SOM and NNs on fault detection to label the data.
The paper’s addition to the existing literature is to produce a standard for manufacturers
to compare performance.

3.3.2. Power Curve Monitoring

The predicted power usually does not meet reality due to various reasons. For instance,
the wind speed on a wind farm is not uniform and the air density is different than during
the calibration. Additionally, the wind data available are not always measured at the
height of the turbine’s hub [54]. This fact is true both for a single turbine or for a whole
wind farm, making it hard to assess a prediction of the energy output of a wind farm.
An efficient wind power forecasting model is important for energy management. Wind
power forecasting and prediction techniques allow better scheduling, and unit commitment
of thermal generators, hydro and energy storage plants. Thus, this reduces the risk of
uncertainty of wind power production for all electricity market sellers and clients. Even
though this is not why this tool is helpful for CM, it was probably a good reason for
investing in it in terms of the market.

Marvuglia, A. et al. [22] present a data-driven approach for building a steady-state
model of a wind farm’s power curve under normal operating conditions. This approach
allows the creation of quality control charts that can be used as a reference profile for
detecting anomalous functioning conditions of the wind farm and power forecasts.

The paper compares three different machine learning models to estimate the relation-
ship between the wind speed and the generated power in a wind farm: GMR, GRNN and
a feed-forward multi-layer perceptron (MLP).

This paper has the novelty of applying power curve models to an entire wind farm, and
is focused on GMR. When looking into the results, the first two non-parametric methods
provided more accurate results when compared with the classical parametric MLP.

Regarding future work, the paper states that labelled data classified as normal or
abnormal could lead to various improvements. One of those possible improvements is
the utilization of this type of algorithm to perform the prediction and diagnosis of wind
turbine faults. In this case, the ML approach should be used to build a steady-state model
of the reference power curve of the wind farm under normal operating conditions, and
through deviations from that behaviour, detect future faults.

The paper [22] also covers a problem already mentioned; the lack of labelled data,
being the learning focused on determining what are normal behaviours and abnormal
behaviours (fault detection) and not on fault prediction. Nevertheless, the approach of
considering the wind farm as a whole, instead of specific turbines or components, could be
extended to other tasks (e.g., obtaining more general statistics that could indicate a possible
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fault not detected by a single turbine). The fact that it focuses on the whole wind farm is
one of the points that was added by this paper; the other point is that it uses GMR, a novel
incremental self-organizing competitive neural network.

When modelling power curves, wind speed may not be the only dependent variable
used. For example, Schlechtingen et al. [26] compared two models: one using only wind
speed as the dependent variable, and another also using wind direction and ambient
temperature. After searching among the several existent comparative works in literature,
they selected the models that presented the best results for WT power curve monitoring
and applied them for their study cases. Those models were cluster center fuzzy logic
(CCFL), k-nearest neighbor (K-NN) and ANFIS. the K-NN model predicts the values for
new points based on feature similarity with the points in the training set.

Schlechtingen et al. [26] proved that by adding wind direction and ambient temper-
ature, the models fit the data better, reducing the variance in the prediction errors. This
finding made it possible for the earlier detection of abnormal turbine performance. Specifi-
cally, for the used dataset, the anomaly was detected with the addition of up to five days
notice from the models using only the wind speed. The ANFIS model showed the best per-
formance in terms of prediction and in terms of abnormal power output detection, whereas
the K-NN model performed worst. The paper’s explanation for the poor performance of
the K-NN model was that the number of considered neighbors decreased by increasing the
dimension of the space by adding wind direction and ambient temperature. Consequently,
this makes the predictions more sensitive to outliers.

In contrast, with the first paper [22], the previous used the presence of labelled data to
predict errors having best results using the ANFIS model, which allows the incorporation
of a priori knowledge in the form of rules. In addition to the previously mentioned model,
another novelty added to the literature was including wind direction as an input variable.
This addition would be a good approach to be followed, since it improves the detection of
abnormal turbine performance. The goal of assessing the power curve’s normal behaviour
is to detect anomalies when the power deviates from the expected. As will be seen, this
approach can be followed for other wind turbine variables.

3.3.3. Multi-Target Normal Behaviour Models

A common approach to CM is to define models for the normal behaviour of a specific
component. Then, from that model, detect deviations from the normal operation that
can indicate a failure. A disadvantage of this approach is that each of the models needs
to be updated and maintained. A. Meyer [24] suggested multi-target regression models
in order to deal with this problem. A multi-target regression model receives, as input,
a set of features, and outputs multiple target values simultaneously. This means that,
for example, instead of having two separate models for predicting the power and the
generator temperature, we could have only one model. This technique decreases the time
and work of having to do the pre-processing tasks, train and select the thresholds for
multiple models. They developed six multi-target regression models, some using deep
neural networks, and others classical ML algorithms. Secondly, they compared the model’s
prediction error with the single target models. They also investigate if using models that
take into consideration past observations, such as CNN and LSTM, leaves us with better
results than the ones considering only present observations (K-NN and MLP). The results
showed that the multi-target models achieved similar, and in some cases, even smaller,
predictive errors, than single-target models. Another interesting conclusion was that taking
into consideration past observations as input did not improve the performance of the model
when the target variables were strongly correlated. Even though it is a novel approach, it
is a promising one, since we can reach the same performance as when multiple models
are used.
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3.3.4. Transfer Learning Models

The goal of transfer learning is to ensure that knowledge from one domain can
generalize in a different domain, being used in cases where there is a lack of labelled training
data or small training sets. Therefore, transfer learning can bring multiple advantages for
WT CM. In that case, we can use it to transfer knowledge to small data sets, or to deal with
imbalanced data.

W. Chen et al. [55] suggested using transfer learning for fault diagnosis between two
wind turbines. The covered transfer learning algorithms were Inception V3 and TrAdaBoost.
Inception V3 is based on a deep NN and is formed by units called inceptions. Each inception
unit includes nonlinear convolution modules, being the last layer, a Softmax classifier.
TrAdaBoost uses a small amount of data to build a classifier, part of the abundant data from
the original dataset, and the remaining data from the target dataset, both probably having
different distributions and feature spaces. TrAdaBoost iteratively updates its weights based
on each sample from both datasets. These two transfer learning models are then compared
with two conventional ML algorithms, K-NN and random forest. Random forest is an
ensemble of unpruned classification or regression trees, trained from bootstrap samples
of the training data. Additionally, they created a new metric to compare the performance
between these algorithms, called comprehensive index (CI). CI takes into account two
metrics, Sensitivity and Specificity, both with equal weight. Sensitivity and Specificity
represent the percentage of correctly classified normal and faulty data, respectively. The
use of this new metric tries to dim the effect of imbalanced data and emphasise the role
of correctly classified data. TrAdaBoost showed the best results, dealing with imbalanced
data and different distributions.

J. Chatterjee et al. [25] also proved the appeal of using transfer learning. They combined
the classification accuracy of an RNN with the transparency of the XGBoost decision tree
classifier. RNNs can predict a failure, however, they are not able to provide a detailed
diagnosis on which components were affected and what caused it. This type of detail could
help the process of OM of the affected component. They use LSTM, an already mentioned
type of RNN, and they combined it with XGBoost. XGBoost is a supervised learning method
that produces optimal results from the combination of multiple decision tree classifiers.
The model computes the importance of the features in a transparent way, giving us insight
into which ones play an important role in the deep learning model. Additionally, they
use SMOTE to oversample the minority samples. Finally, and as the major conclusion of
this paper, they use transfer learning to use the knowledge from the model trained on an
offshore WT to an onshore WT. The original model had an accuracy of 97%, as the target
model had 65%, and was able to detect 85% of the anomalies. Taking into consideration that
it was an unseen dataset, the results were encouraging.

Ren et al. [56] covered the use of transfer learning for fault diagnosis under variable
working conditions. The same fault may present different working conditions with dissim-
ilar distributions, decreasing the fault detection accuracy. They added the lack of labelled
samples to the aforementioned problem, proposing a method to solve the two issues. The
paper [56] proposed a novel method based on composite variational mode entropy (CVME)
and weighted distribution adaptation (WDA). Primarily, the original signals presenting
various working conditions are used to obtain intrinsic mode function (IMF) components
by performing variational mode decomposition (VMD). A low correlation between source
and target domain affects the ability of transfer learning. Therefore, multi-scale analysis of
the IMF components is carried out to filter noise, selecting the components with a larger
correlation with the original vibration signal for feature extraction, with the feature set with
the highest correlation with the target feature set being selected. This correlation under
different working conditions is used as transferability evaluation for effective transfer
to the target domain. Feature extraction results in CVME feature vectors with different
frequency bands, which are input into WDA. The WDA decreases the data distribution
discrepancy between the labelled source and unlabelled target domain by constructing
a transformation matrix to adapt the marginal distribution and conditional distribution,
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and reduces the class imbalance between domains. At last, the trained classifier is applied
to the target samples to identify the fault types. The CVME-WDA method is compared
with traditional machine learning methods, yielding better accuracy in fault diagnosis
under variable working conditions.

3.3.5. Federated Deep Learning

The state-of-the-art for CM has relied on deep learning models, which typically require
a great amount of data. Federated deep learning allows collaborative learning between
spatially distributed data, sharing only the prediction model parameters among partici-
pants, and not the training data. This characteristic solves the problems of security and
privacy related to data sharing, allowing the collection of a greater amount of data to
train the deep learning model. Collecting data from multiple WTs will also add fault
diversity that is not usually present on only local data, boosting fault diagnosis. This
approach has been applied in energy systems for energy demand forecast, preserving
consumers’ privacy [57,58]. In terms of maintenance, it is starting to be applied in industry,
collecting labelled data from multiple devices or machines to help detect and diagnose
an anomaly [59,60]. Wang et al. [61] have proposed a novel collaborative deep learning
framework for fault diagnosis of renewable energy systems, using three of the four case
studies related to wind farm datasets. For all the cases, they considered a distributed
network of five local data centers, which they called agents. First, each agent initializes
their model’s parameters and uses the model to obtain a prediction error, more specifically,
the chosen model was LSTM. Next, comes the key of collaborative learning; each agent
needs to exchange parameters information to minimize the model’s loss. Therefore, a com-
munication layer was used for synchronization, collecting and averaging all the agents’
parameters. The first two case studies used different wind farm datasets to prove that the
framework can generalize for different datasets. Both showing better results when using
the distributed scheme in comparison with using a local strategy. The third case study
represented some agents having the imbalanced data issue, also achieving better results for
the distributed scheme. Due to agents suffering from the imbalance problem being able
to learn information from the other agents, the fourth case study was not specific of WTs,
however, it showed the scheme’s ability to deal with data with different distributions.

3.4. ML Models for Wind Turbine Generator Condition Monitoring
3.4.1. Fault Detection, Diagnosis, and Prediction of Generator Faults

Looking into literature that covers conditions monitoring and fault prediction, the pre-
diction of more than a half-hour notice is currently very weak for minor faults. Even though
they are minor, they occur quite often, contributing to power system-related failures. A
study carried out by the EU FP7 ReliaWind project (https://cordis.europa.eu/project/id/
212966/reporting (accessed on 17 October 2021)), states that under 40% of overall turbine
downtime can be attributed to power system failures [62].

Leahy et al. [30] focused on fault detection, fault diagnosis, and fault prediction of
generator minor faults. The first classification level, fault detection, is distinguishing
between two classes: “fault” and “no-fault”. Fault diagnosis is a more advanced level of
classification than fault detection. Fault diagnosis aims to detect specific faults from the
rest of the data. Faults were labelled in five classes, including generator heating, power
feeder cable, generator excitation, air cooling malfunction faults, and others. The last level
was fault prediction/prognosis, which has the objective of predicting the fault before it
occurs. The predictions focused only on generator heating and excitation faults, as these
showed the most promising results for early detection. The data used came from a SCADA
system, and 29 features were selected to be used in classification, using SVM as the ML
classification model. Several scoring metrics were used to evaluate final performance.
The precision score is one of them, as many false positives can lead to unnecessary checks
or rectifications carried out on the turbine. Conversely, many false negatives can lead to
failure of the component with no detection taking place, and the recall score captures this.

https://cordis.europa.eu/project/id/212966/reporting
https://cordis.europa.eu/project/id/212966/reporting
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For fault detection, the recall was high (78% to 95%), but precision was low (2–4%),
indicating a high number of false positives. For the diagnostic and prognostic, high recall
and low precision were also found. For fault diagnosis, generator heating faults showed
few false positives and correctly predicted 89% of faults. In fault prediction, the best
performance was achieved with SVM trained with the addition of class weight, using a
linear kernel. In general, for fault detection and diagnosis, the recall scores were above 80%,
and prediction up to 24 h notice of specific faults, representing a significant improvement
over previous techniques.

Possible improvements, excluding adding more data, are using feature selection
methods to find only the relevant features, speeding up training time. In addition, a possible
avenue for future research is determining whether trained models would still be accurate
after a significant change in the turbine, e.g., after replacing a major component.

The most interesting feature in this article was how they use operational and status
data to label the data. For example, they considered an operational data point as faulty
if it occurred in a time frame of 10 min, before or after a fault present in the status data.
Conversely, as the authors stated, a technique that could be improved is the feature selection,
as it was based on a personal judgment that is always prone to error. In general, the paper
presents simple yet efficient solutions for the three different levels of fault monitoring.

3.4.2. Generator Bearing Failure Prediction

Schlechtingen et al. [63] compared the performance of two artificial intelligence ap-
proaches (autoregressive NNs and full signal reconstruction (FSRC) NNs (non-linear NNs))
to a regression-based approach, when learning to approximate the normal bearing tem-
perature. In order to learn regression models, the work used SCADA input signals, such
as power output, nacelle temperature, generator speed, and generator stator temperature.
This task also used data smoothing techniques in combination with the learning techniques.
By using a smoothing filter, the variations of high order can be filtered and the model’s
prediction error can be reduced.

Although NNs can deal with fuzzy or incomplete data, they perform poorly with
invalid data. Therefore, one must typically use a pre-processing technique, which is par-
ticularly important when training a network. The network might not give an optimal
generalization otherwise. The principal pre-processes applied were: Validity check—ranges
and consistency are checked by filtering outliers and data with irregular high gradients;
data scaling; missing data processing; and lag removal—WT signals usually do not respond
immediately to changes of operational conditions. Many wind turbine signals can be cor-
related to other measured signals, and only some are related to the output signal (bearing
temperature). We can use cross-correlation to find these related signals and their lag to the
desired signal.

In [63], the authors found that the non-linear NN approaches outperform the re-
gression models. However, they are more challenging to interpret. In comparison to
the regression model, NN had an averaged error with reduced amplitude and was more
accurate, leading to reduced alarm limits. An alarm is triggered 30 days before the bearing
breaks. The autoregressive model has a very high accuracy, due to the large heat capacity.
Thus, this model can detect minor changes in the autoregression of the temperature signal
(50 days in advance).

Kusiak and Verma [64] estimated an expected behaviour model of a generator bearing
by training an MLP to predict generator bearing temperature. The model is trained on high-
frequency (10 s) SCADA data from 24 wind turbines of the same type and location. Two
turbines that showed high-temperature faults were used for testing and model validation.
Some of the input variables were selected by domain knowledge (selecting 50 out of 100),
and subsequently by applying three different data-mining algorithms: wrapper with genetic
search (WGS), wrapper with best-first search (WBFS), and boosting tree algorithm (BTA).
The residuals were smoothed with a moving average filter (window size of 1 h). If these



Energies 2021, 14, 7129 15 of 22

residuals exceeded two standard deviations, an alarm was triggered. The authors find that
their method can predict a high-temperature fault with an average of 1.5 h notice.

Both papers [63,64] used NNs to detect faults on the generator bearing. However,
the first paper [63] used more complex approaches, resulting in an earlier prediction of
the fault when compared with the second paper. Nevertheless, the authors [64] presented
interesting ways of pre-processing the data and three different feature selection algorithms.
Before training either of the different approaches of NNs, a combination of the previously
mentioned strengths of both articles could be interesting.

Lastly, D. Yang et al. [65] used a vibration CM system to detect generator bearing faults.
Wind turbine vibration signals are subjected to high noise disturbance; therefore, they use a
noise suppression method for feature frequency extraction. This method was supplemented
by a multi-point data fusion. The method for denoising and feature extraction consists of
using empirical mode decomposition (EMD)—correlation. EMD decomposes signals into
the sum of IMFs of different frequencies. Afterwards, the IMFs containing the relevant fault
feature frequencies are selected and used to reconstruct a new signal. Then, autocorrelation
is applied to remove noise, and wavelet package transform (WPT) is used to extract
features. Secondly, this method is supplemented with multi-point data fusion using
adaptive resonance theory-2 (ART-2). The ART-2 is an unsupervized neural network that
recognizes the patterns of feature frequency, indicating a possible fault. The results showed
that the proposed method reduces the noise and extracts clearer fault features. This is due
to the ART-2 ability to strengthen the recurrent patterns in a sequence and remove low
amplitude noise by using normalization and non-linear functions. The developed method
was implemented in an actual WT to prove that the CM system was able to identify the
fault for the generator bearing and that the analysis of the vibration signals successfully
diagnosed the fault.

Chen et al. [66] addressed the problem of defining a threshold for unsupervised nor-
mal behaviour models that need to establish boundaries representative of that behaviour.
The authors proposed a self-setting threshold method using a deep convolutional genera-
tive adversarial network (DCGAN) applied to monitor generator bearings. DCGAN are
the integration of CNN into the vanilla generative adversarial network (VGAN). VGAN
consists of two competing networks—a generator (G) and a discriminator (D). G and D will
be replaced by deep CNNs in DCGAN. Each of the networks optimizes their loss function
until reaching the Nash equilibrium, where regardless of G/D behaviour, the other is not
affected. At this point, the threshold is self-defined based on the discriminator output
of the DCGAN. A fault sample will move that output away from the Nash equilibrium;
therefore, the DCGAN model is capable of self-defining anomalous samples, not requiring
the human intervention or manual setting of a threshold. Thus, a monitoring indicator
function (MIF) is computed based on the sample discrepancy analysis of DCGAN output
to quantify the health condition of the generator bearing. Finally, the method is compared
with other techniques used by regression models such as autoencoders, yielding a more
stable and reliable choice of threshold.

3.4.3. Generator Temperature Monitoring

Most of the generator high-temperature failures occur in spring and autumn, especially
in spring. This fact is due to the increase in the ambient temperature in springtime and
high wind speeds. If this causes a fault on the generator that leads to a shut down in
the wind turbine, significant energy generation will be lost, due to the time required to
change/repair the generator.

P. Guo et al. [67] proposed a new condition monitoring method, consisting of a tem-
perature trend analysis method based on the non-linear state estimation technique (NSET).
NSET is used to model the normal operating behaviour for each wind turbine generator
temperature, and then, is used to predict it. In addition, a new and improved memory ma-
trix construction method is used to better cover the generator’s normal operational space.
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The time series of residuals between the real measured temperature and the predicted
is smoothed using a moving average window. This reduces the method’s sensitivity to
isolated model errors, improving its robustness. The average and standard deviations
computed by that moving window are used to detect potential faults early, when significant
changes occur, exceeding predefined thresholds, a future failure is pointed out.

The model uses SCADA data from a wind farm that records all wind turbine param-
eters every 10 s; in total, 47 parameters are recorded for each turbine. At the same time,
the SCADA system keeps logs of wind turbine operation and fault information. Neverthe-
less, only five variables were considered relevant (stored in an observation vector): power,
ambient temperature, nacelle temperature, and the generator cooling air temperature.

The results showed that the new approach to the memory matrix increased the model’s
accuracy. The model can identify dangerous generator high temperature before damage
has occurred, which would result in a shutdown of the turbine. In order to compare with
the NSET method, a NN was developed and then used to model the normal behaviour of
the same wind turbine. Results showed that NSET achieves considerably higher accuracy
in modelling the normal behaviour of the wind turbine generator temperature. Moreover,
NSET has another benefit compared with the neural network; it can more easily adapt to a
new normal working condition.

The level of specificity in terms of fault detection will depend on the information
available in the dataset, therefore, determining if it is possible to focus on generator
temperature monitoring or not. If that is the case, the approach followed in the paper,
NSET, can be used. Regardless, using the sliding window to detect failures is an interesting
approach that can be added to any coarse detection fault.

Tautz-Weinert et al. [23] compare different approaches to normal behaviour modelling
of bearing and generator temperature, based on 6 months of 10-min SCADA data from 100
turbines. The different approaches were: linear regression, SVMs, an MLP with one hidden
layer of six neurons, and an RNN with two recurrence steps, ANFIS and Gaussian process
regression (GPR). GPR is a non-parametric Bayesian approach to regression. The input
variables are found by analysing cross-correlations between SCADA variables and the
target variables.

The authors used only two input variables in their baseline configuration, and added
further ones for a sensitivity analysis. They concluded that the performance of RNN was
close to the MLP, with both NN types usually outperforming other approaches. GPR and
SVM, however, were not as accurate as the other models. SVM and ANFIS tend to have
larger errors with more inputs. GPR worked well for the generator temperature prediction,
but not that well for the bearing temperature prediction. The authors stated that adding
interactions to linear models was advantageous—conversely, the use of recurrence in the
NN model was only helpful for some turbines.

An important resemblance can be found in both papers, the small number of variables
taken into account when modelling the normal behaviour of generator temperature. This
fact reinforces the need for a good technique for feature selection. However, the approach
followed by the first paper, inference based on knowledge, cannot always be followed due
to the lack of expert insight. Conversely, as in the second paper, doing cross-correlation is a
simple technique that can, and should, always be tried out.

3.4.4. Generator Brush Failure prediction

Carbon brushes are one of the critical components of the WT generator. Malfunctions
on these components can lead to reduced performance and unnecessary shut-downs,
because WTs are taken out of service, so that brushes can be replaced or cleaned.

Verma et al. [31]developed generator brush failure classification models based on
SCADA data sampled every ten minutes. Both status and operational parameters are
used in this paper. Snapshot files, operational data files that are automatically generated
whenever some critical fault occurs in the turbine, were analyzed.
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In order to improve prediction and avoid the curse of dimensionality, irrelevant
features were removed. Using domain knowledge provided by experts, the initial 100-
dimensional data were reduced to 50 dimensions. Three known parameter selections were
used to determine the best subset of parameters for the prediction, namely: chi-square,
a statistical test of independence to determine the dependency of two variables, in order
to select parameters (filter technique); boosting tree (embedded method), which uses a
gradient boosting machine approach to rank the parameters and a wrapper algorithm
with genetic search used as a black box to rank/score subsets of features according to
their importance. The feature selection approach has reduced 50 features to 14 (nacelle
revolution, drive train acceleration, etc.).

Considering the quantity of data, for a typical fault, the ratio between normal and fault
samples can be as large as 1000:1. Verma et al. [31] used a combination of Tomek links and
a random forest algorithm as the data sampling approach. Four data-mining algorithms
were studied to evaluate the quality of the models for predicting generator brush faults:
MLP, boosting tree, K-NN (K = 10), and SVM. The boosting tree algorithm is an ensemble
learning algorithm that combines many weak classifiers to produce a powerful one.

Results of three cases, (1) the original dataset; (2) the sampled dataset based on Tomek
links only; and (3) the sampled dataset using Tomek links and random forest algorithm,
were obtained. The prediction accuracy using Tomek links and random forest algorithm
was in the range of 82.1–97.1% for all timestamps. The significant improvement in accuracy
indicates the effectiveness of data sampling methods. In case (2), the initial imbalance
in the output class was reduced to 80%:20%. By also applying random forest-based data
sampling, it reduced the class imbalance ratio to 65%:35%.

The data-mining model that presented better prediction results was the boosting tree.
The results presented in this paper [31] offer an early prediction of future faults. This allows
engineers to schedule maintenance and minimize OM costs.

As described, Verma et al. [31] suggest many algorithms for data pre-processing, some
for feature selection, but also for data sampling, that as the authors stated, improved the
performance of the model. A similar approach should be followed when working with
an imbalanced dataset, since it is hard to detect patterns in the data if they are almost not
represented among the normal status data.

3.4.5. Generator Speed Anomaly

Jiang et al. [68] used a new fault detection technique based on a recently developed
unsupervized learning method, denoising autoencoder (DAE), using SCADA data. This
study selected two different fault scenarios that occurred in different turbines, generator
speed sensor fault, and gearbox filter blocking fault.

To include the relation between time series of the SCADA data, they use a sliding-
window approach which inputs sequences of values into the DAE training model. Thus,
a sliding window denoising autoencoder (SW-DAE) for WT fault detection is proposed [68].
The main advantage of the proposed technique is the capability to capture non-linear
correlations among sensor signals. Additionally, it also captures the temporal dependency
of each sensor variable, consequently improving fault detection performance.

DAE is able to build a multivariate reconstruction model from multiple sensors. After-
wards, the DAE’s reconstruction error trained with normal data is used for fault detection.
The main characteristic of DAE is its ability to, from a corrupted signal, reconstruct the
original one. Therefore, DAE can learn from corrupted data, improving its generalization
capability and achieving state-of-the-art performance on feature learning chores [69].

Another particularity of the approach proposed in [68], is that they use the Maha-
lanobis distance instead of the usual squared error to compute the reconstruction error of
the autoencoder. For evaluating the performance of the different fault detection methods,
they used the receiver operating characteristics (ROC) curve and the resulting quantifica-
tion metric area under the ROC curve (AUC). Compared with the static approaches (DAE,
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AE, and PCA), the proposed method achieved better fault detection performance in terms
of AUC metric.

Normally, in WT, the control actions can be affected by sensor faults. So, as future
work, they suggested the introduction of fault tolerance control (FTC). The FTC allows
reconfiguration of the control action based on real-time information about the state of
the WT. This information includes the fault detection and diagnosis scheme for sensors,
actuators, or the system itself.

The main contribution [68] was that by using an SW-DAE, they were able to capture
non-linear correlations among variables combined with the time dependency, being the
last part something that may lack on some approaches. We also believe that adding
time dependency will increase the prediction of the model. Therefore, a sliding window
technique should also be used. The evaluation metrics used in the paper can be used, even
for an imbalanced dataset.

4. Validation

In this section, we present metrics that can be used to validate if the objectives of the
previously mentioned models were accomplished. The integration of these metrics takes
place in the validation stage, where we test if the model is capable to be generalized to new
data. We can also use this stage to prevent overfitting, adjusting the hyperparameters of
the model to new data, avoiding only making good predictions to known data. We can
choose a random part of the dataset as a validation set, or we can do cross-validation, doing
multiple runs and alternating the fraction of the dataset; more details can be found in [70].

Metrics similar to the ones that Verma et al. [31] used, accuracy and f1 measure with
the addition of recall and precision are commonly used for classification problems. As for
regression problems, we can use metrics such as the ones that Marvuglia, A. et al. [22]
mentioned. For instance, mean absolute error (MAE), mean square error (MSE), or root
mean square error (RMSE).

Nevertheless, when dealing with an imbalanced dataset [71], if over or undersampling
the data only improves the balance to a certain extent, some of these metrics may not be
suited. For instance, the accuracy can have a high value because the classifier is able to
detect normal samples, and those are the representative part of the training and test sets.
For those cases, accuracy is only reflecting the underlying class distribution. Even though
recall, precision, and F1 give more insight into the accuracy of the model than traditional
classification accuracy, some other metrics will help to better represent the performance of
the model:

• Kappa (or Cohen’s kappa): Accuracy normalized by the imbalance of the classes in
the dataset;

• Receiver operating characteristic (ROC) curves: Accuracy is divided into sensitivity
and specificity, so that the models can be chosen based on the balance thresholds of
these values.

5. Conclusions

In this paper, we entailed the state-of-the-art regarding the review topic, i.e., the use of
machine learning to improve turbine generators operation conditions monitoring. With this
insight, some of the strengths present in the existing literature were pointed out. More
specifically, techniques regarding the pre-processing of the data (dealing with missing
data, outliers, and data labelling), feature engineering, and finally, knowledge about the
models that proved to be more accurate in predicting failures, helping the increase in the
availability of the turbine generators. In each of the subsections of Section 3, we gather
possible methods to deal with each stage of an ML problem. Data pre-processing presented
solutions of increased complexity to give the readers the choice of selecting the one that best
suits their problem. In Feature Selection, we concluded that we do not have a conventional
method that leads to the best results; it will depend on the specific model and dataset. As for
the models, we gave some general insights on how to achieve fault detection in Section 3.3.
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For instance, monitoring the turbine production, to capture the turbine’s degradation or
building a model for the steady-state of a wind farm’s power curve. Any deviation of the
normal behaviour of production can be indicative of a fault. On the other hand, we also
covered a novel approach that uses multi-target normal behaviour models, using only one
model for fault diagnosis, being able to monitor multiple variables simultaneously. If we
are dealing with a small or unlabelled dataset, it is suggested that we could also use transfer
learning to transfer the knowledge from a model used in a different dataset. Federated
deep learning opened the doors for combining information from multiple wind farms,
surpassing the problem of data privacy, sharing only the model’s parameters. Subsequently,
we focus only on generator problems, gathering models used for specific problems. Since
the majority opted for regression models of the normal behaviour of that specific generator
component, we believe that the future of this type of fault detection could be using a
multi-target normal behaviour model for the generator. Finally, we introduce metrics on
how to validate the previously discussed techniques and models.

In Table 1, we present a summary of all the methods covered for each of the ML
stages. In the present analysis, we screened around one hundred papers, and we selected
23 papers. These papers were selected mainly based on the description and importance of
ML techniques applied to condition monitoring in wind turbines. This detailed analysis
allows a deeper understanding of the used ML techniques when applied to CM problems.
In our analysis, we started reading the references mentioned in previous reviews [8–13],
and we did an update, with some references published after the last reviews.

Table 1. Summary of methods.

ML Stage Task/Method Paper

Big Data framework [34]
Data acquisition Data Loss [35]

and Outlier Removal [21,36,37]
pre-processing Data Sampling [25,30,31,38–41]

Normal Behaviour Data Selection [42]

Autoencoder [43]
T-Selection [45]
PARAFAC [47]

Feature Mahalanobis Distance [50]
Selection Wrapper Techniques and Boosting Tree [31,64]

Chi-square [31]
NSGAII [51]

Featureless Approach [52]
Spatio-Temporal Features [41,53]

SOM [21]
GMM [21]
NN [21–25,31,61,63,64]

CCFL [26]
Model K-NN [26,31,55]

Selection ANFIS [23,26]
SVM [23,30,31]
NSET [67]
GPR [23]

Boosting Tree [31]
Denoising Auto-Encoder [68]

Decision Tree [24,25]
Random Forest [24,55]

ART-2 [65]
Inception V3 and TrAdaBoost [55]

CVME-WDA [56]
DCGAN [66]

Validation Accuracy, F1, Recall, Precision [31]
ROC [68]
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