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Abstract

:

This article presents an assessment of the most suitable compressed air energy storage (CAES) reservoirs and facilities to better integrate renewable energy into the electricity grid. The novelty of this study resides in selecting the best CAES reservoir sites through the application of a multi-criteria decision aid (MCDA) tool, specifically the simple additive weighting (SAW) method. Besides using geographic information systems (GIS) spatial representation of potential reservoir areas, for the MCDA method, several spatial criteria, environmental and social constraints, and positive incentives (e.g., the proximity to existing power generation facilities of renewable energy sources) were contemplated. As a result, sixty-two alternatives or potential reservoir sites were identified, and thirteen criteria (seven constraints and six incentives) were considered. The final stage of this study consisted of conducting a sensitivity analysis to determine the robustness of the solutions obtained and giving insights regarding each criterion’s influence on the reservoir sites selected. The three best suitable reservoir sites obtained were the Monte Real salt dome, Sines Massif, and the Campina de Cima—Loulé salt mine. The results show that this GIS-MCDA methodological framework, integrating spatial and non-spatial information, proved to provide a multidimensional view of the potential reservoir CAES systems incorporating both constraints and incentives.
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1. Introduction


Portugal has one of the highest shares of renewable energy production within the European Union (EU), with more than half of the electricity consumed in 2019 coming from renewable energy sources (RES). RES was responsible for the production of 27.3 TWh, contributing to 56.10% of the electricity mix [1]. With the increasing use of intermittent RES and their integration into the national electricity system, challenges are being constantly brought into the grid, and solutions must mitigate intermittency and load variation. Energy storage (ES) is one of the most interesting options since it increases the flexibility of generating, delivering, and consuming electricity. In addition, ES provides the ability to balance power supply and demand, making power networks more resilient, efficient, and cleaner than before [2]. Portugal has pumped hydro energy storage (PHES) systems, but a large-scale ES system not dependent on weather conditions could add flexibility to the grid in dry years. Compressed air energy storage (CAES) is an alternative not dependent on weather or topography, having a relatively lower environmental impact than PHES [3]. CAES is a bulk storage technology with the ability to store tens to hundreds of MW of power capacity for long-term and utility-scale applications in underground caverns in the form of pressurized air. Apart from PHES, CAES is also one of the lowest-cost utility-scale storage technologies currently available [3,4].



This study was based on the potential geological sites for large-scale CAES in mainland Portugal obtained from the Energy Storage Mapping and Planning (ESTMAP) studies—an EU Horizon 2020 project—described in [5]. While this latter project focuses on the several possible underground ES technologies available for Europe, the present study explicitly addressed CAES in Portugal, including potential reservoirs not previously considered [5]. Moreover, the novelties of this study are threefold: it suggests the use of a multi-criteria decision aid (MCDA) method to select the best specific CAES sites available in Portugal; it establishes suitable case studies; and it carries out sensitivity analyses (SA) to evaluate the robustness of solutions selected as the best reservoir sites, also giving insights regarding the impacts of each criterion on the final decision reached.



According to Belton & Stewart [6], MCDA can be viewed as “formal approaches which seek to take explicit account of multiple criteria in helping individuals and groups explore decisions that matter.” MCDA methods have been applied across a broad spectrum of disciplines [7] and are often used to deal with the difficulties that decision-makers (DMs) face when they have to handle large amounts of complex information [6,8]. These methods have been used to tackle geographic problems involving many alternatives and often conflicting evaluation criteria [9,10]. Combining a GIS and MCDA method produces excellent analysis tools, creating extensive spatial and non-spatial databases, which can simplify and solve problems while promoting the use of multiple criteria [11]. GIS and MCDA methods have been widely employed in the selection of the most suitable locations for RES facilities [8,10] [12,13,14,15,16,17]. Several studies [18,19,20] used SAW in a web-based GIS environment to identify preferable locations for wind farms and solar power plants. Silva et al. [21] coupled GIS and MCDA methods to select biomass plants in a Portuguese region. In a similar vein, Perpiña et al. [22] used an MCDA method to identify suitable areas for locating biomass plants. Marques-Perez et al. [16] used a GIS-based approach combined with a multi-criteria evaluation methodology for the territorial planning of photovoltaic power plants. In contrast, Mokarram et al. [17] defined a novel optimal placing of solar farms utilizing MDCA and GIS. Sánchez-Lozano et al. [23] used MCDA techniques to evaluate GIS-based photovoltaic solar farms’ site selection. Finally, Rediske et al. [20] utilized GIS-MCDA tools for the decision location of photovoltaic power plants’ installation in Brazil. In the context of location problems, several spatial variables are usually involved, such as environmental protection areas, proximity to rivers, roads, populations, and spatial characteristics of the region, like geology or even slope issues [21,24].



The present study applied MCDA in a GIS environment to select the most suitable CAES reservoir sites using the simple additive weighting (SAW) MCDA method. The SAW method was chosen because it has been largely employed in management and engineering problems, such as facility location problems [25,26], especially for RES site selection [10] and also for ES purposes [27]. Finally, a robust assessment of the results found was conducted through a sensibility analysis (SA).




2. Compressed Air Energy Storage Reservoirs and GIS


In a large-scale CAES plant, the off-peak power from the grid or the electricity generated from RES is used to compress ambient air stored under pressure in an underground geological reservoir. Later, when power demand requirements are high, the pressurized air is released back up to the surface, where it is heated and expanded, rushing through a turbine and driving a generator to produce electricity [2,4,28,29].



The suitable geological reservoirs for CAES technologies are (a) host rocks (engineered caverns and abandoned mines), (b) caverns in salt formations (salt domes or bedded salt), and (c) porous rocks (saline aquifers or depleted hydrocarbon reservoirs) [30]. CAES usage in salt caverns is demonstrated at the industrial scale in two large-scale facilities: Huntorf (Germany) and McIntosh (USA) [30,31]. Porous rocks appear to be the lowest cost option, but these have not been studied at an industrial scale. Cavities in host rocks are a more expensive alternative due to the cost of mining a new reservoir unless abandoned mines are possible [30,31].



This study mainly addressed CAES underground reservoirs in Portugal, and, besides considering the potential geological formations suitable for these reservoirs identified in ESTMAP [5], it also considered deep mines. Hence, these reservoirs were obtained through the inspection of public access data collected from geological surveys, geological maps, scientific publications, drilling records, and borehole logs, as well as data collected from companies and governmental and regulatory authorities, such as the Directorate-General for Energy and Geology (DGEG), the National Laboratory of Energy and Geology (LNEG), the Nacional Entity for the Energy Sector (ENMC), the Mining Development Company (EDM), National Energy Networks (REN), CUF Industrial Chemicals SA, and Solvay Portugal. The potential reservoirs considered were igneous host rocks, deep mines, salt formations, and saline aquifers. However, since there are no depleted hydrocarbon fields in Portugal, these reservoirs were not considered. Instead, a spatial database was compiled with the publicly available information for each reservoir type in a GIS environment (ArcGIS software, Évora, Portugal). Then, it was cross-checked with the pre-selected criteria for CAES potential reservoirs (available in [32]) and spatial, environmental, and social constraints and positive incentives.



GIS technologies are widely used to collect, store, manage, calculate, analyze, display, and describe geo-referenced data. Thus, they are valuable tools for assisting planning and decision-making in multiple contexts in which geo-referenced information plays a relevant role [10]. Subsequently, GIS data can generate inputs to spatial decision-making analysis [9], utilizing functions of overlay analysis [10].



The identified potential reservoirs are represented in the GIS environment by an ArcGIS attribute map (Figure 1), showing a total of six-ty-two potential sites with geological characteristics suitable for CAES, namely twenty, host rocks, nine deep mines, eighteen salt formations, nine salt caverns, and six saline aquifers.



Then, the selection of the most suitable reservoirs for CAES was obtained by applying the SAW methodology to these sixty-two potential geological sites (Figure 1).




3. Methodology


The SAW method, also called the weighted linear combination (WLC) method, is a widely known and often used MCDA technique [25,27,33], integrating criteria values and weights into a single framework [34] due to its reliability and proven results. The SAW method is based on a weighted average, calculating a score for each alternative by multiplying the scaled value given to the alternative of that attribute by the weights of relative importance directly assigned by the decision-makers [25].



This method was chosen because it is reliable and has the advantage of allowing a proportional linear transformation of raw data, meaning that the relative order of magnitude of standardized scores remains equal [25]. The chosen method is based on the MCDA method selection tool [35] developed by Wątróbski et al. [7].



Figure 2 illustrates the different phases of this MCDA method.



3.1. Problem Definition and Alternatives


The approach followed herein aimed to identify the best and most suitable potential reservoir sites for the possible installation of a CAES facility to better integrate RES into the Portuguese electricity grid. In this case, the generated alternatives are the sixty-two potential geological reservoirs depicted in Figure 1, according to CAES suitability analysis for Portugal based on the criteria established by [32]. These alternatives are listed in Tables in Appendix A, namely: twenty igneous host rocks (Table A1), nine deep mines (Table A2), eighteen salt formations and nine salt caverns (Table A3), and six saline aquifers (Table A4).




3.2. Criteria Definition: Constraints and Factors


The second SAW phase selects and evaluates the criteria that directly influence the CAES facility site choice. In this study, thirteen criteria were adopted and subdivided into constraints and incentives. All the presented criteria are based on measures and legislation used for Portugal’s natural gas (NG) storage safety [36]. Although compressed air does not have the same explosive potential as NG, assuming a conservative stance, it was decided to adopt the same criteria regarding distances to infrastructures since there is still subsidence risk due to potential underground caverns.



Constraints stand for the criteria that can limit or restrict the placement of a CAES reservoir at a particular location. For this study, seven constraints were identified (Table 1), overlaid individually with the identified reservoirs, and cross-checked with the defined criteria, resorting to basic GIS operations such as buffering and overlapping.



Incentives are the criteria that may be beneficial to the implementation of a CAES reservoir and facility. In this research, six incentives were identified (Table 2) and overlaid with the sixty-two reservoirs.



The thirteen criteria were divided by decision-makers into three classes (Table 3): (a) environmental, (b) social, and (c) economic.



Constraints are non-beneficial criteria to be minimized, while incentives are beneficial criteria to be maximized, as depicted in Table 4. Although SAW may be used if all the criteria are being maximized [34], there are ways of converting minimizing into maximizing criteria, just by using a simple inversion of the scale for the minimizing criteria, as explained in the following sub-section.



On the one hand, a CAES facility should be as far away as possible from sensitive areas, such as ecological and agricultural value, like special protection areas, Natura 2000 areas, and sites of community importance, to protect the environment and reduce any risk. On the other hand, proximity to energy sources (RES, HV networks, or even NG networks), proximity to roads, and land slope are important factors when considering the economic feasibility of any candidate site. Last but not least, social factors such as distance to populated areas should also be considered since a CAES plant can impact the population living within proximity to the chosen site due to noise, safety, or even a decrease in property value.



Some incentives are related to the proximity to energy sources. RES are used to store energy provided by renewable sources; transmission grid high-voltage (HV) networks are used for transmission and distribution purposes; and NG networks are used since natural gas is usually the fossil fuel used in the diabatic CAES expansion phase [30]. Other incentives are the availability of deep geological data, proven caverns for storage, and the technology’s maturity depending on the type of geological reservoir. Table 4 depicts this last incentive showing that salt caverns are the most mature and implemented type of reservoirs. They are implemented in two diabatic CAES plants (Huntorf and McIntosh) and are widely implemented for NG storage and hydrogen worldwide [32].




3.3. Normalization Process


The next step is the normalization process since some criteria are qualitative, and others are quantitative. Normalization in MCDA is a transformation process to obtain numerical and comparable input data using a common scale [37]. Normalization (or transformation) of the initial data is generally used so that the best criterion value (the largest one for a maximizing criterion and the smallest one for a minimizing criterion) would obtain the largest value equal to unity [34]. There are several normalization methods, but given the subjectivity of the qualitative criteria, a simplification was done by the experts using a rating scale and attributing values. The chosen rating scale is comparable for all criteria and sets in the interval (0, 1) with intervals of 0.25, and a linear normalization method was used, where:




	(a)

	
For non-beneficial criteria or constraints


   X ¯  i j = 1 −   X i j   X j M a x    



(1)








	(b)

	
For beneficial criteria or incentives


   X ¯  i j =   X i j   X j M a x    



(2)













Constraints were normalized and transformed into maximizing criteria by inverting their scale through Equation (1). Hence, constraints were rated from 0 to 1 with intervals of 0.25, where 0 means the most favorable situation, and 1 depicts the most unfavorable situation. However, the rating scale was inverted, and 0 became the most unfavorable situation and 1 the most favorable (Table 5). Incentives (already maximizing criteria) were also rated from 0 to 1 (with intervals of 0.25) and normalized according to Equation (2), where 0 means the most unfavorable situation, and 1 represents the most favorable situation (Table 5).



Despite the equal rating scale, there is always some arbitrariness in this conversion and normalization process. It depends on the analysis of the overlaying layers of reservoirs; each of the criteria; and the scale that GIS maps are analyzed with.




3.4. Assigning Weights to the Criteria


An essential step of the methodology is the assignment of weights to the criteria. A weight can be defined as a value assigned to an evaluation criterion that indicates its importance relative to other criteria under consideration [8]. Such assigned weights are based on experts’ judgments and should provide a general priority set to evaluate and compare the alternatives.



Two research team members, experts on underground energy storage, were responsible for this decision-making process. First, the experts (i.e., decision-makers) individually assigned the weights according to their experience to identify Portugal’s most suitable CAES sites. This methodology considered all the environmental, social, and economic criteria (Table 3) and weighted together all the constraints and incentives. Then, the two experts were engaged in a discussion to reach a consensus and assign the weights in Table 6.



The weights of constraints and incentives (Table 6) were attributed according to the level of importance, limitation, or motivation for the CAES purposes that each criterion can impose on an area.



Environmental criteria such as sensitive areas and groundwater constraints have higher weights since they can completely limit a potential site if they are overlapped with the potential reservoir. Sensitive areas are fundamental constraints in respecting environmental, conservative, and protectionist policies (flora, fauna, heritage, and natural reserves). Groundwater resources are also a significant constraint since underground reservoirs should be placed in areas with the minimum risk of contamination for groundwater, including natural springs and geothermal resources.



The land slope is important because slopes greater than 12% can increase the instability for surface CAES facilities, and their correction can also increase the project’s capital costs. So, areas with slopes from 0% to 12% are the most suitable for a CAES plant due to lower economic costs and minimum morphological problems.



Portugal is a country with significant seismic risk due to its location near the boundaries of the European and African tectonic plates. Thus, the seismic risk may be an essential constraint for selecting CAES potential reservoirs where the risk is lower in the north of the country and higher in the south (according to Portugal’s seismic risk map).



Lastly, constraints such as neotectonic structures, populated areas, and roads should also be considered. However, their attributed weights are lower since they are not disabling factors.



According to Costa [36], for safety reasons (mainly subsidence risk), the distance between populated areas and CAES facilities should be at least 200 m, and the distance between roads or highways should be at least 100 m. So, a buffer was used in ArcGIS to determine the safety area around these constraints and visualize the site free of constraint.



RES and HV have higher weights because they are the most important energy sources for a large-scale CAES facility. However, HV networks have a slightly bigger weight than RES because HV lines can work as sources supplying energy from the grid to feed the CAES plant in periods of electricity shortage from RES or high energy demand.



NG has a lower weight than the previous two since NG pipelines proximity only matters for diabatic CAES facilities, which need fossil fuels for the expansion phase. Although the only two CAES facilities in the world are diabatic systems (Huntorf—Germany, and McIntosh—USA) [4,6], this criterion is not disabling because it is possible to build a more efficient system with Adiabatic CAES technology.



Deep geological data and technology maturity have similar weights to those assigned to NG networks. They are important factors to consider since they both can increase the capital costs of a CAES project. Deep geological data are scarce in Portugal, and acquiring such information is extremely expensive, meaning that potential areas with deep data are favored. CAES technology maturity depends on the type of geological reservoir. For instance, salt is the lithology where CAES technology is already proven and mature.



Lastly, proven caverns for storage have the lowest weight of all the incentives, demonstrating the area can support that type of underground caverns and decreasing the initial cost of a project if those caverns could be reused.




3.5. Obtaining SAW Results


SAW results were obtained by analyzing local conditions of the different criteria at the alternative locations in the GIS database and applying Equation (3) to each alternative and each criterion (constraints and incentives individually):


  S  (   a i   )  =   ∑   j = 1  n   w j  ·  v j   (   a i   )   



(3)




where    a i    is the alternative, S(ai) is the suitability level of alternative i or the result of the weighted sum for alternative    a i   , wj is the weight of criterion j, and vj is the value of alternative    a i    in criterion j.



Therefore, the last steps of this MCDA methodology consist of sorting and applying the evaluation method and selecting the best alternatives after classifying and ordering them. Thus, Equation (3) was applied directly to all of the criteria. Therefore, the higher the total score, the better the alternative for CAES purposes, meaning the highest results obtained indicate the best alternatives and chose the best potential CAES reservoir sites in mainland Portugal.




3.6. Sensibility Analysis


Saltelli et al. [38,39] state that sensibility analysis aims to ascertain how much the uncertainty in input factors influences the uncertainty in a model’s output. So, MCDA methods usually resort to sensibility analysis as the last step of evaluation in all decision problems [22] because the majority of data in MCDA problems are unstable and changeable [40], and model outcomes are open to multiple types of uncertainty [41]. That is why doing a sensibility analysis after problem-solving can effectively contribute to make robust decisions [42]. A “what if” sensibility analysis is recommended to check the stability of results against the subjectivity of the experts [11], explaining how much the decision-makers judgements bias the assessment of an MCDA study [43]. The sensibility analysis helps in the validation of results and enables assessing its robustness [44]. The aim is to ensure that results are more reliable and to identify the criteria that can significantly influence them [22].



The most common sensibility analysis method for MDCA is to modify the weighting obtained from the experts’ judgment [11,27,42]. Thus, in this study, sensibility analysis was done using an approach based on Memariani et al. [42], where the effect of change in the weight of one attribute or criteria on the weight of other criteria was evaluated and the change in the final score of alternatives when a change occurred in the weight of criteria was calculated.



Within the scope of this work, two different sensibility analyses were developed to ensure that the results of the SAW method were robust. The first was based on the variation of the weights of two defined main clusters of criteria: constraints and incentives. The second one was developed with four new criteria sub-clusters. Then, the results obtained in both sensibility analyses were evaluated and compared with the original SAW results.



The first step of sensibility analysis is to determine the assumptions for the changes in criteria weights. After that, the computation must be executed, and the results are checked and compared.



For the first sensibility analysis, a uniform distribution of weights was used with variations of 5%. Since thirteen criteria were distributed in two main clusters (constraints and incentives), the variation of weights was done by cluster. It starts and ends with extreme cases, such as 100% weight for constraints and 0% weight for incentives, applying variations of 5% until the opposite percentage of 0% weight for constraints and 100% weight for incentives were reached (Table A5, in Appendix A). The criteria variations’ computation was executed in Excel for each of the percentages, evaluating the change in the final score of alternatives (in light of criteria weight changes) and observing the influence of the weights’ variation on the results.



For this step, the weighted linear summation represented by Equation (3) was used.



As a matter of sensibility analysis comparison, the previous clusters were subdivided into sub-clusters. Constraints were divided into (a) surface and (b) sub-surface constraints. Incentives were divided into (c) energy sources and (d) technology/reservoirs maturity and data. Then, a new sensibility analysis was executed with weight variations of 0%, 25%, 50%, 75%, and 100% distributed by the new sub-clusters, according to the assumptions depicted in Table A3 (Table A6 and Table A7, in Appendix A).



All the sensibility analyses results were cross-checked with the obtained SAW results, and the changes in the final score of alternatives were observed.





4. Results and Discussion


4.1. Results of the MCDA


In this MCDA-SAW method, the results obtained did not rely only on selecting one alternative, usually classified as the best. However, since choosing the best case studies for CAES was desired, it was decided to select several best alternatives.



The ranking of the best ten results is depicted in Table 7. The complete final results are represented in Table A8 (Appendix A) with a color gradation from green to red (from the best to the less good).



The chosen final results are the three best sets of potential reservoirs for CAES in Portugal (Table 7), depicted in Figure 1, and also in a higher detail, from north to south in Figure 3, Figure 4 and Figure 5. They are:




	(a)

	
Alternatives 34 to 42 are Carriço NG storage caverns belonging to Monte Real salt dome (alternative 33). Together they are the Monte Real salt dome set (Figure 3);




	(b)

	
Alternative 19 corresponds to the Sines liquid petroleum gas (LPG) reservoir located in Sines host rock massif (Figure 4).




	(c)

	
Alternative 29 corresponds to the Campina de Cima salt mine located in the Loulé salt dome (Figure 5).









Other alternatives or potential CAES reservoirs with good SAW scores and a high potential for CAES could be considered: the Matacães salt mine and salt dome, or the Pinhal Novo, Loulé, and Bolhos salt domes. However, the Matacães salt mine is abandoned and has severe stability issues (according to Solvay Portugal), and the other mentioned salt domes lack deep geological data that are very sparse or inexistent.



The chosen alternatives for CAES potential reservoirs are generally located in the western and southern part of the country (Figure 3, Figure 4 and Figure 5), having the most favorable locations with fewer constraints and more incentives.



Alternative 33 corresponds to the Monte Real salt dome, and alternatives 34 to 42 are six dissolution salt caverns and three other planned ones (Figure 3), held by REN Armazenagem in Carriço (Pombal). On the one hand, these salt caverns are being used to store NG in that geological formation, meaning that the Monte Real salt dome has already proved its suitability for storing energy underground. On the other hand, REN storage facilities have infrastructure like HV lines and NG networks available on-site, decreasing the costs of a possible CAES project. Thus, joining the absence of limiting constraints, deep geological data availability, and the proximity to the sea, Monte Real/Carriço would be a great suitable location for settling new salt caverns to a CAES system in Portugal.



Alternative 19 corresponds to the Sines LPG reservoir, an engineered cavern to store LPG built in Sines’ sub-volcanic massif (Figure 4). This potential underground reservoir has deep geological data and a proven storage capacity, both a plus when considering a CAES geological reservoir. It is located in the coastal line and has special wind conditions for installing wind parks. Sines is one of the most important Portuguese seaports and is the country’s principal port of energy supply (oil and by-products, coal, and natural gas) [45]. So, it already has energy surface infrastructures such as HV lines and gas pipelines (necessary in case of potential diabatic CAES facilities), and it still has the potential to grow.



Alternative 29 corresponds to the Campina de Cima—Loulé salt mine (Figure 5). This mine is settled in Loulé diapir and has several salt excavated galleries, which could host CAES underground reservoirs, decreasing the initial costs of a possible CAES project.




4.2. Results of the Sensitivity Analysis


The sensibility analysis provides information about the influence that criteria and clusters may have on the final score of alternatives and how the variation in weights of criteria may change the final results in terms of the chosen reservoirs for CAES purposes, contributing to accurate decisions.



The first sensibility analysis was done considering cluster weights with variations of 5%, analyzing twenty-one scenarios. The summary depicting only the main results (with intervals of 25%) is shown in Table A9 (Appendix A).



The results comparison did not show significant differences between scenarios, even in the extreme and improbable ones where 100% of the weight was attributed to one cluster. Thus, the possible reservoirs with the best scores remain the same throughout the various analyses: (a) the Monte Real/Carriço NG storages and salt dome, (b) the LPG Sines in the Sines Sub-Volcanic Complex, and (c) the Campina de Cima—Loulé salt mine.



The second sensibility analysis dividing each main cluster into sub-clusters evaluated seven scenarios (even the most extreme and improbable ones) to determine which sub-cluster had the most influence on the results. Those results are shown in Table A10 (in Appendix A). The results of scenarios one to three did not significantly change the previous GIS-SAW results. Thus, the case studies selected for CAES purposes were the same as before. However, this selection varied when extreme cases were contemplated. The best results for scenario four (placing 100% of the weight on the sub-cluster of surface constraints) were Sines LPG, Ervideira, the Loulé salt mine, the Carriço salt caverns, and the S. Pedro de Moel and Várzea da Rainha salt domes. Scenario five’s (with 100% of the weight on the sub-cluster of subsurface constraints) best results were four host rocks (Vila Verde de Raia, Vila Nova de Covelo, Celorico da Beira, and Capinha) and five deep mines (Jales, Borralha, Pejão-Germunde, S. Pedro da Cova, and Panasqueira) followed by Soure, Ervideira, the S. Pedro de Moel saline domes, the Carriço salt caverns, and also the Lusitanian On_A3 aquifer. Scenario six’s (with 100% of the weight in the sub-cluster of energy sources) best results were the Lusitanian On_J1 and Lusitanian On_A1 saline aquifers. Finally, scenario seven’s (placing 100% of the weight in the sub-cluster of technology/reservoir maturity and data) best results were the Carriço salt caverns, the Monte Real and Matacães salt domes, and the Loulé salt mine.



Both sensibility analyses were done with different weights for clusters, sub-clusters, and criteria. In the first SA, there were minor variations in potential reservoirs with better scores. Still, there were no significant changes in the results with the highest scores, which gives robustness to the initial combination of GIS and SAW results and suggests they are correct. It also indicates that weight variation influence was not significant and did not drastically alter the outcome of the chosen case studies. Despite the first three scenarios maintaining the same highest score reservoirs in the second sensibility analysis, the last four scenarios changed the highest-score potential reservoirs. However, those four scenarios were based on extreme, unlikely, and unreal assumptions, where the entire weight of the criteria was placed only in one cluster or sub-cluster. They serve to understand the types of criteria that value certain reservoirs at the expense of others and the possible influence that each sub-cluster may have on the final decision of case studies for CAES.



Therefore, according to the analysis carried out through GIS-MDCA and corroborated by the sensibility analysis, the criteria that seem to have greater weight and influence in the three chosen case studies were:




	(a)

	
For Monte Real/Carriço, the maturity and data availability on the reservoirs were predominant factors, but other criteria such as a lower absence of constraints and proximity of energy sources were also important;




	(b)

	
For LPG—Sines, the lower absence of surface constraints;




	(c)

	
For Campina de Cima-Loulé, the less lower of constraints and the reservoir’s maturity and data availability.









However, it is mandatory to mention that these choices result from evaluating all the criteria, clusters, and sub-clusters together since, in reality, they are essential and take a significant part in the final decision.





5. Conclusions


The grouping of GIS-MCDA and sensibility analysis methods is a powerful tool for selecting sites for different installations, representing a promising research line in large-scale ES, especially for selecting the best location of facilities.



This study is not comparable to others since the combined techniques of GIS and MCDA were never used, as far as we know, to select the most suitable CAES potential reservoirs in Portugal. Thus, it represents an innovation since, apart from the ESTMAP European project (which had a different scope), no exclusively CAES studies in Portugal could select and determine the three best reservoir case studies to store the excess RES.



Some uncertainties can be held since this method yields a certain degree of arbitrariness, where the most significant one is the decision-makers’ subjective choices. Specifically, the criteria evaluation, the process of normalization, or attributing weights to the criteria are subjective, having a considerable effect on the entire evaluation process. However, most of the selection processes commonly used in the literature also present arbitrariness and are mainly dependent on the decision-makers’ choices, turning them subjective. Thus, this well-known MCDA-SAW method was chosen since it can be straightforward and efficient to serve the defined purpose and provide the expected results.



In total, for sixty-two potential reservoirs for CAES represented in a GIS environment, thirteen criteria (seven constraints and six incentives) were identified. First, criteria and potential reservoir sites (the alternatives) were cross-checked using GIS techniques and the MCDA-SAW method, and the best results were chosen. Then, two sensibility analyses were conducted to check the robustness of previous results.



The most suitable reservoir sites for a possible CAES facility were Monte Real-Carriço Sines LPG and Campina de Cima-Loulé. The Monte Real salt dome holds NG reserves for the country in REN Armazenagem salt caverns, and Sines has an LPG engineered cavern. So, these two suitable sites have the advantage of being already proven capacity. Furthermore, Campina de Cima in Loulé salt dome is an out-of-labor salt mine with several salt galleries that could be reused for storage. Thus, these three sites have the highest potential and best location for a CAES system regarding lower constraints and proximity/overlapping positive incentives.



These results are important for the Portuguese electricity grid because they show the best potential CAES sites for large-scale ES of RES, adding flexibility to the grid and an alternative to the country’s weather and topography-dependent PHES.



The results also show that this GIS-based and MCDA-SAW method integrating spatial and non-spatial information provided a multidimensional view of the potential reservoir CAES systems.



Techno-economic studies need to be done for further work, including more detailed studies about these three selected reservoirs.
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Table A1. Alternatives represented by the igneous host rocks’ potential reservoirs.






Table A1. Alternatives represented by the igneous host rocks’ potential reservoirs.










	Alternative (a)
	Reservoir’s Name
	Reservoir’s Type





	1
	Monção
	



	2
	Peneda
	



	3
	Gerês
	



	4
	Vila Verde da Raia
	



	5
	Vila Pouca de Aguiar
	



	6
	Vila Real—Alvão
	



	7
	Vila Nova de Gaia
	



	8
	Fiães
	



	9
	Vila Nova de Foz Côa
	Host



	10
	Penedono
	rocks



	11
	Moimenta da Beira
	



	12
	Esmolfe
	



	13
	Vila Nova de Covelo
	



	14
	Celorico da Beira
	



	15
	Linhares
	



	16
	Capinha
	



	17
	Sintra
	



	18
	Sines
	



	19
	LPG_Sines
	



	20
	Monchique
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Table A2. Alternatives represented by deep mines’ potential reservoirs, including salt mines.






Table A2. Alternatives represented by deep mines’ potential reservoirs, including salt mines.










	Alternative (a)
	Reservoir’s Name
	Reservoir’s Type





	21
	Jales
	



	22
	Borralha
	



	23
	Pejão-Germunde
	



	24
	S. Pedro da Cova
	



	25
	Panasqueira
	Deep



	26
	Matacães
	mines



	27
	Aljustrel
	



	28
	Neves-Corvo
	



	29
	Loulé—Campina de Cima
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Table A3. Alternatives represented by salt formations and salt domes potential reservoirs, including salt caverns.






Table A3. Alternatives represented by salt formations and salt domes potential reservoirs, including salt caverns.










	Alternative (a)
	Reservoir’s Name
	Reservoir’s Type





	30
	Verride salt dome
	



	31
	Soure salt dome
	



	32
	Ervideira salt dome
	



	33
	Monte Real salt dome
	



	34
	Carriço—1S
	



	35
	Carriço—2
	



	36
	Carriço—3
	



	37
	Carriço—4
	



	38
	Carriço—5
	



	39
	Carriço—6
	



	40
	Carriço—7
	



	41
	Carriço—8
	



	42
	Carriço—9
	



	43
	S. Pedro de Moel salt dome
	Salt



	44
	Parceiros (Leiria) salt dome
	formations



	45
	Porto de Mós salt dome
	



	46
	Fonte da Bica (Rio Maior) salt dome
	



	47
	Caldas da Rainha diapir
	



	48
	Várzea da Rainha salt dome
	



	49
	Bolhos salt dome
	



	50
	Maceira (Vimeiro) salt dome
	



	51
	Santa Cruz salt dome
	



	52
	Matacães salt dome
	



	53
	Pinhal Novo salt dome
	



	54
	Sesimbra salt dome
	



	55
	Loulé salt dome
	



	56
	Faro salt dome
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Table A4. Alternatives represented by saline aquifers’ potential reservoirs.






Table A4. Alternatives represented by saline aquifers’ potential reservoirs.










	Alternative (a)
	Reservoir’s Name
	Reservoir’s Type





	57
	Lusitanian On_A1
	



	58
	Lusitanian On_A2
	



	59
	Lusitanian On_A3
	Saline



	60
	Lusitanian On_A4
	aquifers



	61
	Lusitanian On_C1
	



	62
	Lusitanian On_J1
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Table A5. Assumptions table for the first sensitivity analysis with variation in criteria weights for the ratio of clusters constraints/incentives with intervals of 5%, from 100% to 0% (in constraints weights and 0% to 100% in incentives weights).






Table A5. Assumptions table for the first sensitivity analysis with variation in criteria weights for the ratio of clusters constraints/incentives with intervals of 5%, from 100% to 0% (in constraints weights and 0% to 100% in incentives weights).





	

	

	
Ratio of Weights of Criteria: Constraints/Incentives (%)

	




	

	
Criteria

	
Classification

	
Original

	
SAW

	
(100/0)

	
(95/5)

	
(90/10)

	
(85/15)

	
(80/20)

	
(75/25)

	
(70/30)

	
(65/35)

	
(60/40)

	
55/45)

	
(50/50)

	
(45/55)

	
(40/60)

	
(35/65)

	
(30/70)

	
(25/75)

	
(20/80)

	
(15/85)

	
(10/90)

	
(5/95)

	
(0/100)




	

	

	
G. W.

	
IW.

	






	
J1

	
Sensitive areas

	

	

	
10%

	
14.29

	
13.57

	
12.86

	
12.14

	
11.43

	
10.71

	
10

	
9.29

	
8.57

	
7.86

	
7.14

	
6.429

	
5.71

	
5.00

	
4.29

	
3.57

	
2.86

	
2.14

	
1.43

	
0.71

	
0.00




	
J2

	
Groundwater

	

	

	
10%

	
14.29

	
13.57

	
12.86

	
12.14

	
11.43

	
10.71

	
10

	
9.29

	
8.57

	
7.86

	
7.14

	
6.429

	
5.71

	
5.00

	
4.29

	
3.57

	
2.86

	
2.14

	
1.43

	
0.71

	
0.00




	
J3

	
Neotectonics

	

	

	
5%

	
14.29

	
13.57

	
12.86

	
12.14

	
11.43

	
10.71

	
10

	
9.29

	
8.57

	
7.86

	
7.14

	
6.429

	
5.71

	
5.00

	
4.29

	
3.57

	
2.86

	
2.14

	
1.43

	
0.71

	
0.00




	
J4

	
Seismic risk

	
Constraints

	
50

	
7.5%

	
14.29

	
13.57

	
12.86

	
12.14

	
11.43

	
10.71

	
10

	
9.29

	
8.57

	
7.86

	
7.14

	
6.429

	
5.71

	
5.00

	
4.29

	
3.57

	
2.86

	
2.14

	
1.43

	
0.71

	
0.00




	
J5

	
Populated areas

	

	

	
5%

	
14.29

	
13.57

	
12.86

	
12.14

	
11.43

	
10.71

	
10

	
9.29

	
8.57

	
7.86

	
7.14

	
6.429

	
5.71

	
5.00

	
4.29

	
3.57

	
2.86

	
2.14

	
1.43

	
0.71

	
0.00




	
J6

	
Land Slope

	

	

	
7.5%

	
14.29

	
13.57

	
12.86

	
12.14

	
11.43

	
10.71

	
10

	
9.29

	
8.57

	
7.86

	
7.14

	
6.429

	
5.71

	
5.00

	
4.29

	
3.57

	
2.86

	
2.14

	
1.43

	
0.71

	
0.00




	
J7

	
Roads

	

	

	
5%

	
14.29

	
13.57

	
12.86

	
12.14

	
11.43

	
10.71

	
10

	
9.29

	
8.57

	
7.86

	
7.14

	
6.429

	
5.71

	
5.00

	
4.29

	
3.57

	
2.86

	
2.14

	
1.43

	
0.71

	
0.00




	
J8

	
Renewable Energy Sources (RES)

	

	

	
12.5%

	
0

	
0.83

	
1.67

	
2.5

	
3.33

	
4.17

	
5

	
5.83

	
6.67

	
7.5

	
8.33

	
9.167

	
10

	
10.83

	
11.67

	
12.50

	
13.33

	
14.17

	
15.00

	
15.83

	
16.67




	
J9

	
High-voltage (HV) network

	

	

	
12.5%

	
0

	
0.83

	
1.67

	
2.5

	
3.33

	
4.17

	
5

	
5.83

	
6.67

	
7.5

	
8.33

	
9.167

	
10

	
10.83

	
11.67

	
12.50

	
13.33

	
14.17

	
15.00

	
15.83

	
16.67




	
J10

	
Natural gas (NG) network

	

	

	
5%

	
0

	
0.83

	
1.67

	
2.5

	
3.33

	
4.17

	
5

	
5.83

	
6.67

	
7.5

	
8.33

	
9.167

	
10

	
10.83

	
11.67

	
12.50

	
13.33

	
14.17

	
15.00

	
15.83

	
16.67




	
J11

	
Deep geological data

	
Incentives

	
50

	
7.5%

	
0

	
0.83

	
1.67

	
2.5

	
3.33

	
4.17

	
5

	
5.83

	
6.67

	
7.5

	
8.33

	
9.167

	
10

	
10.83

	
11.67

	
12.50

	
13.33

	
14.17

	
15.00

	
15.83

	
16.67




	
J12

	
Maturity of technology

	

	

	
7.5%

	
0

	
0.83

	
1.67

	
2.5

	
3.33

	
4.17

	
5

	
5.83

	
6.67

	
7.5

	
8.33

	
9.167

	
10

	
10.83

	
11.67

	
12.50

	
13.33

	
14.17

	
15.00

	
15.83

	
16.67




	
J13

	
Existence of proven caverns

	

	

	
5%

	
0

	
0.83

	
1.67

	
2.5

	
3.33

	
4.17

	
5

	
5.83

	
6.67

	
7.5

	
8.33

	
9.167

	
10

	
10.83

	
11.67

	
12.50

	
13.33

	
14.17

	
15.00

	
15.83

	
16.67




	
Total

	

	

	
100

	
100%

	
100.00

	
100.00

	
100.00

	
100.00

	
100.00

	
100.00

	
100.00

	
100.00

	
100.00

	
100.00

	
100.00

	
100.00

	
100.00

	
100.00

	
100.00

	
100.00

	
100.00

	
100.00

	
100.00

	
100.00

	
100.00




	
Where:

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	




	
G.W. means group weight

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	




	
I. W. means individual weights
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Table A6. Assumptions table for the second sensitivity analysis with variation in criteria weights for the ratio of the four sub-clusters: (A) surface constraints; (B) sub-surface constraints; (C) Energy sources; and (D) maturity and data of the technology/reservoirs.






Table A6. Assumptions table for the second sensitivity analysis with variation in criteria weights for the ratio of the four sub-clusters: (A) surface constraints; (B) sub-surface constraints; (C) Energy sources; and (D) maturity and data of the technology/reservoirs.





	

	

	

	

	

	

	

	

	

	
Assumptions

	

	

	

	

	

	




	
Sub-Clusters

	
Original

	
Original

	
1

	

	
2

	

	
3

	

	
4

	

	
5

	

	
6

	

	
7

	




	

	
Weights

	
Weights

	
G. W.

	
Clusters

	
G. W.

	
Clusters

	
G. W.

	
Clusters

	
G. W.

	
Clusters

	
G. W.

	
Clusters

	
G. W.

	
Clusters

	
G. W.

	
Clusters






	
A—Surface constraints

	
50%

	
27.5%

	
50

	
25

	
75

	
37.5

	
25

	
12.5

	
100

	
100

	
100

	
0

	
0

	
0

	
0

	
0




	
B—Sub-surface constraints

	

	
22.5%

	

	
25

	

	
37.5

	

	
12.5

	

	
0

	

	
100

	

	
0

	

	
0




	
C—Energy sources

	
50%

	
30%

	
50

	
25

	
25

	
12.5

	
75

	
12.5

	
0

	
0

	
0

	
0

	
100

	
100

	
100

	
0




	
D—Maturity and data

	

	
20%

	

	
25

	

	
12.5

	

	
12.5

	

	
0

	

	
0

	

	
0

	

	
100




	
Total

	
100%

	
100%

	
100

	
100

	
100

	
100

	
100

	
50

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100
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Table A7. Assumptions table for the second sensitivity analysis with variation in individual criteria weights according to the variation of the sub-clusters’ weights of Table A6.






Table A7. Assumptions table for the second sensitivity analysis with variation in individual criteria weights according to the variation of the sub-clusters’ weights of Table A6.





	

	
Assumptions

	




	
Classification

	
Clusters

	
Original

	
1

	
2

	
3

	
4

	
5

	
6

	
7




	

	

	
SAW Weights

	

	

	

	

	

	

	






	

	
A

	
10%

	
6.25%

	
9.38%

	
3.125%

	
25.00%

	
0.00%

	
0.00%

	
0.00%




	

	
B

	
10%

	
8.33%

	
12.50%

	
4.167%

	
0.00%

	
33.33%

	
0.00%

	
0.00%




	

	
B

	
5%

	
8.33%

	
12.50%

	
4.167%

	
0.00%

	
33.33%

	
0.00%

	
0.00%




	
Constraints

	
B

	
7.5%

	
8.33%

	
12.50%

	
4.167%

	
0.00%

	
33.33%

	
0.00%

	
0.00%




	

	
A

	
5%

	
6.25%

	
9.38%

	
3.125%

	
25.00%

	
0.00%

	
0.00%

	
0.00%




	

	
A

	
7.5%

	
6.25%

	
9.38%

	
3.125%

	
25.00%

	
0.00%

	
0.00%

	
0.00%




	

	
A

	
5%

	
6.25%

	
9.38%

	
3.125%

	
25.00%

	
0.00%

	
0.00%

	
0.00%




	

	
C

	
12.5%

	
8.33%

	
4.167%

	
4.167%

	
0.00%

	
0.00%

	
33.33%

	
0.00%




	

	
C

	
12.5%

	
8.33%

	
4.167%

	
4.167%

	
0.00%

	
0.00%

	
33.33%

	
0.00%




	

	
C

	
5%

	
8.33%

	
4.167%

	
4.167%

	
0.00%

	
0.00%

	
33.33%

	
0.00%




	
Incentives

	
D

	
7.5%

	
8.33%

	
4.167%

	
4.167%

	
0.00%

	
0.00%

	
0.00%

	
33.33%




	

	
D

	
7.5%

	
8.33%

	
4.167%

	
4.167%

	
0.00%

	
0.00%

	
0.00%

	
33.33%




	

	
D

	
5%

	
8.33%

	
4.167%

	
4.167%

	
0.00%

	
0.00%

	
0.00%

	
33.33%




	

	

	
100%

	
100%

	
100%

	
100%

	
100%

	
100%

	
100%

	
100%
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Table A8. Table presenting the results from the application of Equation (3) to constraints and incentives and the final score results with a color gradation (from green until red) and the chosen case studies highlighted in dark green.






Table A8. Table presenting the results from the application of Equation (3) to constraints and incentives and the final score results with a color gradation (from green until red) and the chosen case studies highlighted in dark green.





	
Alternatives

	

	

	
Constraints

	

	

	

	

	

	
Incentives

	

	

	
Total Score




	

	
J1

	
J2

	
J3

	
J4

	
J5

	
J6

	
J7

	
J8

	
J9

	
J10

	
J11

	
J12

	
J13






	
a1

	
0.1

	
0.075

	
0.038

	
0.038

	
0.038

	
0.025

	
0.075

	
0.063

	
0.063

	
0.025

	
0

	
0

	
0

	
0.538




	
a2

	
0

	
0.1

	
0.05

	
0.05

	
0

	
0.038

	
0.075

	
0

	
0

	
0

	
0

	
0

	
0

	
0.313




	
a3

	
0

	
0.075

	
0.038

	
0.038

	
0

	
0.025

	
0.075

	
0.125

	
0.031

	
0

	
0

	
0

	
0

	
0.406




	
a4

	
0.1

	
0.1

	
0.038

	
0.038

	
0.038

	
0.05

	
0.075

	
0.063

	
0

	
0

	
0

	
0

	
0

	
0.500




	
a5

	
0.075

	
0

	
0.038

	
0.038

	
0

	
0

	
0.075

	
0.125

	
0.125

	
0

	
0

	
0

	
0

	
0.475




	
a6

	
0

	
0.1

	
0.05

	
0.038

	
0

	
0.038

	
0.075

	
0.063

	
0

	
0

	
0

	
0

	
0

	
0.363




	
a7

	
0.1

	
0.1

	
0

	
0.025

	
0.075

	
0.025

	
0.075

	
0

	
0.125

	
0.05

	
0

	
0

	
0

	
0.575




	
a8

	
0.1

	
0.1

	
0

	
0.025

	
0.075

	
0.025

	
0.075

	
0

	
0.125

	
0.05

	
0

	
0

	
0

	
0.575




	
a9

	
0.1

	
0.1

	
0.05

	
0.038

	
0

	
0.038

	
0.075

	
0

	
0.031

	
0

	
0

	
0

	
0

	
0.431




	
a10

	
0.1

	
0.1

	
0.025

	
0.038

	
0.038

	
0.038

	
0.075

	
0.063

	
0

	
0

	
0

	
0

	
0

	
0.475




	
a11

	
0.075

	
0.1

	
0.025

	
0.038

	
0.038

	
0.038

	
0.075

	
0.063

	
0

	
0

	
0

	
0

	
0

	
0.450




	
a12

	
0.1

	
0.075

	
0.025

	
0.05

	
0

	
0.05

	
0.075

	
0

	
0

	
0

	
0

	
0

	
0

	
0.375




	
a13

	
0.1

	
0.1

	
0.038

	
0.05

	
0

	
0.05

	
0.075

	
0

	
0

	
0

	
0

	
0

	
0

	
0.413




	
a14

	
0.1

	
0.1

	
0.013

	
0.025

	
0

	
0.05

	
0.075

	
0

	
0.063

	
0.025

	
0

	
0

	
0

	
0.450




	
a15

	
0.025

	
0

	
0.038

	
0.038

	
0

	
0.038

	
0.075

	
0

	
0.063

	
0.025

	
0

	
0

	
0

	
0.300




	
a16

	
0.1

	
0.1

	
0.05

	
0.038

	
0

	
0.05

	
0.075

	
0

	
0.063

	
0

	
0

	
0

	
0

	
0.475




	
a17

	
0

	
0.1

	
0.038

	
0.025

	
0

	
0.05

	
0.019

	
0

	
0

	
0

	
0

	
0

	
0

	
0.231




	
a18

	
0.1

	
0.1

	
0.025

	
0.038

	
0.075

	
0.05

	
0.019

	
0.063

	
0.063

	
0.025

	
0

	
0

	
0.05

	
0.606




	
a19

	
0.1

	
0.1

	
0.05

	
0.05

	
0.075

	
0.05

	
0.019

	
0.063

	
0.063

	
0.025

	
0.075

	
0

	
0.05

	
0.719




	
a20

	
0

	
0.05

	
0.025

	
0.038

	
0

	
0.038

	
0.019

	
0.125

	
0.125

	
0

	
0

	
0

	
0

	
0.419




	
a21

	
0.1

	
0.1

	
0.05

	
0.05

	
0.038

	
0.05

	
0.075

	
0.063

	
0.063

	
0

	
0

	
0

	
0

	
0.588




	
a22

	
0.1

	
0.1

	
0.038

	
0.05

	
0

	
0.05

	
0.075

	
0.063

	
0.063

	
0

	
0

	
0

	
0

	
0.538




	
a23

	
0.1

	
0.1

	
0.05

	
0.05

	
0

	
0.05

	
0.075

	
0

	
0.063

	
0

	
0

	
0

	
0

	
0.488




	
a24

	
0.1

	
0.1

	
0.025

	
0.05

	
0

	
0.05

	
0.075

	
0

	
0.063

	
0.025

	
0

	
0

	
0

	
0.488




	
a25

	
0.1

	
0.1

	
0.05

	
0.05

	
0

	
0.05

	
0.075

	
0.063

	
0.063

	
0

	
0

	
0

	
0

	
0.550




	
a26

	
0.1

	
0.1

	
0.05

	
0.019

	
0.038

	
0

	
0.038

	
0.063

	
0.063

	
0.013

	
0.075

	
0.075

	
0.025

	
0.656




	
a27

	
0.05

	
0.1

	
0.013

	
0.05

	
0.038

	
0.05

	
0.038

	
0

	
0.063

	
0

	
0

	
0

	
0

	
0.400




	
a28

	
0

	
0.1

	
0.05

	
0.05

	
0.075

	
0.05

	
0.038

	
0.063

	
0.063

	
0

	
0

	
0

	
0

	
0.488




	
a29

	
0.1

	
0.1

	
0.038

	
0.05

	
0.075

	
0.05

	
0.038

	
0.063

	
0.063

	
0

	
0.075

	
0.075

	
0.025

	
0.750




	
a30

	
0.1

	
0.1

	
0.038

	
0.05

	
0.075

	
0.038

	
0.056

	
0

	
0.031

	
0.013

	
0.038

	
0.075

	
0

	
0.613




	
a31

	
0.1

	
0.1

	
0.038

	
0.038

	
0.075

	
0.05

	
0.056

	
0

	
0

	
0.025

	
0.038

	
0.075

	
0

	
0.594




	
a32

	
0.1

	
0.1

	
0.05

	
0.05

	
0.075

	
0.05

	
0.056

	
0

	
0

	
0

	
0

	
0.075

	
0

	
0.556




	
a33

	
0.1

	
0.075

	
0.038

	
0.038

	
0.075

	
0.038

	
0.056

	
0

	
0.125

	
0.05

	
0.038

	
0.075

	
0.05

	
0.756




	
a34

	
0.1

	
0.1

	
0.038

	
0.05

	
0.075

	
0.05

	
0.056

	
0

	
0.125

	
0.05

	
0.075

	
0.075

	
0.05

	
0.844




	
a35

	
0.1

	
0.1

	
0.038

	
0.05

	
0.075

	
0.05

	
0.056

	
0

	
0.125

	
0.05

	
0.075

	
0.075

	
0.05

	
0.844




	
a36

	
0.1

	
0.1

	
0.038

	
0.05

	
0.075

	
0.05

	
0.056

	
0

	
0.125

	
0.05

	
0.075

	
0.075

	
0.05

	
0.844




	
a37

	
0.1

	
0.1

	
0.038

	
0.05

	
0.075

	
0.05

	
0.056

	
0

	
0.125

	
0.05

	
0.075

	
0.075

	
0.05

	
0.844




	
a38

	
0.1

	
0.1

	
0.038

	
0.05

	
0.075

	
0.05

	
0.056

	
0

	
0.125

	
0.05

	
0.075

	
0.075

	
0.05

	
0.844




	
a39

	
0.1

	
0.1

	
0.038

	
0.05

	
0.075

	
0.05

	
0.056

	
0

	
0.125

	
0.05

	
0.075

	
0.075

	
0.05

	
0.844




	
a40

	
0.1

	
0.1

	
0.038

	
0.05

	
0.075

	
0.05

	
0.056

	
0

	
0.125

	
0.05

	
0.075

	
0.075

	
0.013

	
0.806




	
a41

	
0.1

	
0.1

	
0.038

	
0.05

	
0.075

	
0.05

	
0.056

	
0

	
0.125

	
0.05

	
0.075

	
0.075

	
0.013

	
0.806




	
a42

	
0.1

	
0.1

	
0.038

	
0.05

	
0.075

	
0.05

	
0.056

	
0

	
0.125

	
0.05

	
0.075

	
0.075

	
0.013

	
0.806




	
a43

	
0.1

	
0.1

	
0.05

	
0.038

	
0.075

	
0.05

	
0.056

	
0

	
0

	
0

	
0.038

	
0.075

	
0

	
0.581




	
a44

	
0.1

	
0.05

	
0

	
0.025

	
0.038

	
0.05

	
0.056

	
0

	
0.125

	
0

	
0.038

	
0.075

	
0

	
0.556




	
a45

	
0.025

	
0.05

	
0.025

	
0.038

	
0

	
0

	
0.056

	
0.063

	
0.125

	
0

	
0.038

	
0.075

	
0

	
0.494




	
a46

	
0.025

	
0.05

	
0.038

	
0.05

	
0

	
0.013

	
0.038

	
0.063

	
0.125

	
0.025

	
0.038

	
0.075

	
0

	
0.538




	
a47

	
0.1

	
0.075

	
0.038

	
0.038

	
0.075

	
0.05

	
0.038

	
0.063

	
0

	
0.025

	
0.038

	
0.075

	
0

	
0.613




	
a48

	
0.1

	
0.1

	
0.038

	
0.05

	
0.075

	
0.05

	
0.038

	
0

	
0

	
0

	
0.038

	
0.075

	
0

	
0.563




	
a49

	
0.1

	
0.1

	
0.038

	
0.038

	
0.075

	
0.038

	
0.038

	
0.125

	
0

	
0

	
0

	
0.075

	
0

	
0.625




	
a50

	
0.1

	
0.05

	
0.038

	
0.05

	
0.038

	
0.05

	
0.038

	
0

	
0

	
0

	
0

	
0.075

	
0

	
0.438




	
a51

	
0.05

	
0.1

	
0

	
0.025

	
0.075

	
0.05

	
0.038

	
0

	
0

	
0

	
0

	
0.075

	
0

	
0.413




	
a52

	
0.1

	
0.1

	
0.05

	
0.019

	
0.038

	
0.038

	
0.038

	
0.063

	
0.063

	
0.013

	
0.075

	
0.075

	
0.025

	
0.694




	
a53

	
0.075

	
0.1

	
0.025

	
0.038

	
0.075

	
0.038

	
0.019

	
0

	
0.125

	
0.038

	
0.038

	
0.075

	
0

	
0.644




	
a54

	
0

	
0.1

	
0.025

	
0.038

	
0

	
0.038

	
0.019

	
0

	
0

	
0

	
0

	
0.075

	
0

	
0.294




	
a55

	
0.1

	
0.1

	
0.025

	
0.038

	
0.038

	
0.038

	
0.038

	
0.063

	
0.063

	
0

	
0.038

	
0.075

	
0.025

	
0.638




	
a56

	
0.1

	
0.1

	
0.025

	
0.038

	
0.075

	
0.038

	
0.019

	
0

	
0

	
0

	
0

	
0.15

	
0

	
0.544




	
a57

	
0.05

	
0.075

	
0.038

	
0.038

	
0

	
0.013

	
0.056

	
0.063

	
0.125

	
0.05

	
0.038

	
0

	
0

	
0.544




	
a58

	
0.1

	
0.075

	
0.025

	
0.038

	
0.038

	
0.038

	
0.056

	
0.031

	
0.031

	
0.05

	
0.038

	
0

	
0

	
0.519




	
a59

	
0.1

	
0.1

	
0.038

	
0.038

	
0.075

	
0.05

	
0.056

	
0.063

	
0

	
0

	
0.038

	
0

	
0

	
0.556




	
a60

	
0.1

	
0.1

	
0.038

	
0.038

	
0

	
0.05

	
0.038

	
0.031

	
0.094

	
0.05

	
0.038

	
0

	
0

	
0.575




	
a61

	
0.1

	
0.075

	
0.025

	
0.025

	
0.038

	
0.038

	
0.056

	
0

	
0.094

	
0.05

	
0.038

	
0

	
0

	
0.538




	
a62

	
0.1

	
0.075

	
0

	
0.025

	
0

	
0.038

	
0.038

	
0.125

	
0.125

	
0.05

	
0.038

	
0

	
0

	
0.613
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Table A9. Summary of the first SA results with the variation of criteria weights by cluster or classification of types of criteria.






Table A9. Summary of the first SA results with the variation of criteria weights by cluster or classification of types of criteria.





	
Reservoirs

	

	
Original SAW

	

	

	

	

	




	

	

	
Score

	
(100/0)

	
(75/25)

	
(50/50)

	
(25/75)

	
(0/100)




	
Reservoir Name

	
Alternatives

	

	

	

	

	

	






	
Monção

	
a1

	
0.538

	
0.750

	
0.625

	
0.500

	
0.375

	
0.250




	
Peneda

	
a2

	
0.313

	
0.679

	
0.509

	
0.339

	
0.170

	
0.000




	
Gerês

	
a3

	
0.406

	
0.536

	
0.454

	
0.372

	
0.290

	
0.208




	
Vila Verde da Raia

	
a4

	
0.500

	
0.857

	
0.663

	
0.470

	
0.277

	
0.083




	
Vila Pouca de Aguiar

	
a5

	
0.475

	
0.464

	
0.431

	
0.399

	
0.366

	
0.333




	
Vila Real—Alvão

	
a6

	
0.363

	
0.643

	
0.503

	
0.363

	
0.223

	
0.083




	
Vila Nova de Gaia

	
a7

	
0.575

	
0.715

	
0.619

	
0.524

	
0.429

	
0.333




	
Fiães

	
a8

	
0.575

	
0.715

	
0.619

	
0.524

	
0.429

	
0.333




	
Vila Nova de Foz Côa

	
a9

	
0.431

	
0.786

	
0.599

	
0.414

	
0.228

	
0.042




	
Penedono

	
a10

	
0.475

	
0.786

	
0.610

	
0.435

	
0.259

	
0.083




	
Moimenta da Beira

	
a11

	
0.450

	
0.750

	
0.583

	
0.417

	
0.250

	
0.083




	
Esmolfe

	
a12

	
0.375

	
0.750

	
0.562

	
0.375

	
0.187

	
0.000




	
Vila Nova de Covelo

	
a13

	
0.413

	
0.822

	
0.616

	
0.411

	
0.205

	
0.000




	
Celorico da Beira

	
a14

	
0.450

	
0.679

	
0.550

	
0.423

	
0.295

	
0.167




	
Linhares

	
a15

	
0.300

	
0.500

	
0.417

	
0.333

	
0.250

	
0.167




	
Capinha

	
a16

	
0.475

	
0.822

	
0.637

	
0.452

	
0.268

	
0.083




	
Sintra

	
a17

	
0.231

	
0.500

	
0.375

	
0.250

	
0.125

	
0.000




	
Sines

	
a18

	
0.606

	
0.786

	
0.693

	
0.601

	
0.509

	
0.417




	
LPG_Sines

	
a19

	
0.719

	
0.893

	
0.815

	
0.738

	
0.661

	
0.583




	
Monchique

	
a20

	
0.419

	
0.393

	
0.378

	
0.363

	
0.348

	
0.333




	
Jales

	
a21

	
0.588

	
0.929

	
0.738

	
0.548

	
0.357

	
0.167




	
Borralha

	
a22

	
0.538

	
0.822

	
0.657

	
0.494

	
0.330

	
0.167




	
Pejão-Germunde

	
a23

	
0.488

	
0.857

	
0.663

	
0.470

	
0.277

	
0.083




	
S. Pedro da Cova

	
a24

	
0.488

	
0.786

	
0.631

	
0.476

	
0.321

	
0.167




	
Panasqueira

	
a25

	
0.550

	
0.857

	
0.684

	
0.512

	
0.339

	
0.167




	
Matacães

	
a26

	
0.656

	
0.679

	
0.665

	
0.652

	
0.638

	
0.625




	
Aljustrel

	
a27

	
0.400

	
0.679

	
0.530

	
0.381

	
0.232

	
0.083




	
Neves-Corvo

	
a28

	
0.488

	
0.786

	
0.631

	
0.476

	
0.321

	
0.167




	
Loulé—Campina de Cima

	
a29

	
0.750

	
0.893

	
0.815

	
0.738

	
0.661

	
0.583




	
Verride salt dome

	
a30

	
0.613

	
0.893

	
0.753

	
0.613

	
0.473

	
0.333




	
Soure salt dome

	
a31

	
0.594

	
0.893

	
0.753

	
0.613

	
0.473

	
0.333




	
Ervideira salt dome

	
a32

	
0.556

	
0.965

	
0.765

	
0.565

	
0.366

	
0.167




	
Monte Real salt dome

	
a33

	
0.756

	
0.822

	
0.803

	
0.786

	
0.768

	
0.750




	
Carriço—1S

	
a34

	
0.844

	
0.929

	
0.904

	
0.881

	
0.857

	
0.834




	
Carriço—2

	
a35

	
0.844

	
0.929

	
0.904

	
0.881

	
0.857

	
0.834




	
Carriço—3

	
a36

	
0.844

	
0.929

	
0.904

	
0.881

	
0.857

	
0.834




	
Carriço—4

	
a37

	
0.844

	
0.929

	
0.904

	
0.881

	
0.857

	
0.834




	
Carriço—5

	
a38

	
0.844

	
0.929

	
0.904

	
0.881

	
0.857

	
0.834




	
Carriço—6

	
a39

	
0.844

	
0.929

	
0.904

	
0.881

	
0.857

	
0.834




	
Carriço—7

	
a40

	
0.806

	
0.929

	
0.873

	
0.818

	
0.763

	
0.708




	
Carriço—8

	
a41

	
0.806

	
0.929

	
0.873

	
0.818

	
0.763

	
0.708




	
Carriço—9

	
a42

	
0.806

	
0.929

	
0.873

	
0.818

	
0.763

	
0.708




	
S. Pedro de Moel salt dome

	
a43

	
0.581

	
0.929

	
0.759

	
0.589

	
0.420

	
0.250




	
Parceiros (Leiria) salt dome

	
a44

	
0.556

	
0.607

	
0.559

	
0.512

	
0.464

	
0.417




	
Porto de Mós salt dome

	
a45

	
0.494

	
0.393

	
0.420

	
0.446

	
0.473

	
0.500




	
Fonte da Bica (Rio Maior) salt dome

	
a46

	
0.538

	
0.464

	
0.494

	
0.524

	
0.554

	
0.583




	
Caldas da Rainha diapir

	
a47

	
0.613

	
0.822

	
0.720

	
0.619

	
0.518

	
0.417




	
Várzea da Rainha salt dome

	
a48

	
0.563

	
0.893

	
0.732

	
0.571

	
0.411

	
0.250




	
Bolhos salt dome

	
a49

	
0.625

	
0.822

	
0.699

	
0.577

	
0.455

	
0.333




	
Maceira (Vimeiro) salt dome

	
a50

	
0.438

	
0.750

	
0.604

	
0.458

	
0.312

	
0.167




	
Santa Cruz salt dome

	
a51

	
0.413

	
0.643

	
0.524

	
0.405

	
0.286

	
0.167




	
Matacães salt dome

	
a52

	
0.694

	
0.750

	
0.719

	
0.688

	
0.656

	
0.625




	
Pinhal Novo salt dome

	
a53

	
0.644

	
0.715

	
0.671

	
0.628

	
0.585

	
0.542




	
Sesimbra salt dome

	
a54

	
0.294

	
0.464

	
0.390

	
0.315

	
0.241

	
0.167




	
Loulé salt dome

	
a55

	
0.638

	
0.715

	
0.660

	
0.607

	
0.554

	
0.500




	
Faro salt dome

	
a56

	
0.544

	
0.750

	
0.604

	
0.458

	
0.312

	
0.167




	
Lusitanian On_A1

	
a57

	
0.544

	
0.536

	
0.527

	
0.518

	
0.509

	
0.500




	
Lusitanian On_A2

	
a58

	
0.519

	
0.715

	
0.619

	
0.524

	
0.429

	
0.333




	
Lusitanian On_A3

	
a59

	
0.556

	
0.893

	
0.711

	
0.530

	
0.348

	
0.167




	
Lusitanian On_A4

	
a60

	
0.575

	
0.715

	
0.640

	
0.565

	
0.491

	
0.417




	
Lusitanian On_C1

	
a61

	
0.538

	
0.679

	
0.602

	
0.527

	
0.451

	
0.375




	
Lusitanian On_J1

	
a62

	
0.613

	
0.500

	
0.521

	
0.542

	
0.562

	
0.583
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Table A10. Summary of the second sensibility analysis results with the variation of criteria weights by sub-cluster or classification of sub-types of criteria.






Table A10. Summary of the second sensibility analysis results with the variation of criteria weights by sub-cluster or classification of sub-types of criteria.





	
Reservoirs

	

	
Original

	

	

	
Sensibility Analysis of Clusters

	




	

	

	
SAW

	
1

	
2

	
3

	
4

	
5

	
6

	
7




	
Reservoir Name

	
Alternatives

	
Score

	

	

	

	

	

	

	






	
Monção

	
a1

	
0.538

	
0.500

	
0.6252

	
0.3672

	
0.750

	
0.750

	
0.500

	
0.000




	
Peneda

	
a2

	
0.313

	
0.354

	
0.5314

	
0.2083

	
0.500

	
0.917

	
0.000

	
0.000




	
Gerês

	
a3

	
0.406

	
0.385

	
0.4740

	
0.3203

	
0.375

	
0.750

	
0.417

	
0.000




	
Vila Verde da Raia

	
a4

	
0.500

	
0.479

	
0.6772

	
0.2813

	
0.750

	
1.000

	
0.167

	
0.000




	
Vila Pouca de Aguiar

	
a5

	
0.475

	
0.391

	
0.4194

	
0.3385

	
0.563

	
0.333

	
0.667

	
0.000




	
Vila Real—Alvão

	
a6

	
0.363

	
0.380

	
0.5287

	
0.2630

	
0.438

	
0.917

	
0.167

	
0.000




	
Vila Nova de Gaia

	
a7

	
0.575

	
0.531

	
0.6303

	
0.4323

	
0.625

	
0.833

	
0.667

	
0.000




	
Fiães

	
a8

	
0.575

	
0.531

	
0.6303

	
0.4323

	
0.625

	
0.833

	
0.667

	
0.000




	
Vila Nova de Foz Côa

	
a9

	
0.431

	
0.422

	
0.6121

	
0.2318

	
0.688

	
0.917

	
0.083

	
0.000




	
Penedono

	
a10

	
0.475

	
0.443

	
0.6225

	
0.2630

	
0.688

	
0.917

	
0.167

	
0.000




	
Moimenta da Beira

	
a11

	
0.450

	
0.427

	
0.5991

	
0.2630

	
0.625

	
0.917

	
0.167

	
0.000




	
Esmolfe

	
a12

	
0.375

	
0.385

	
0.5783

	
0.1849

	
0.625

	
0.917

	
0.000

	
0.000




	
Vila Nova de Covelo

	
a13

	
0.413

	
0.422

	
0.6330

	
0.2109

	
0.688

	
1.000

	
0.000

	
0.000




	
Celorico da Beira

	
a14

	
0.450

	
0.443

	
0.5808

	
0.3047

	
0.438

	
1.000

	
0.333

	
0.000




	
Linhares

	
a15

	
0.300

	
0.339

	
0.4246

	
0.2448

	
0.438

	
0.583

	
0.333

	
0.000




	
Capinha

	
a16

	
0.475

	
0.464

	
0.6538

	
0.2734

	
0.688

	
1.000

	
0.167

	
0.000




	
Sintra

	
a17

	
0.231

	
0.266

	
0.3985

	
0.1641

	
0.313

	
0.750

	
0.000

	
0.000




	
Sines

	
a18

	
0.606

	
0.599

	
0.6903

	
0.5078

	
0.813

	
0.750

	
0.500

	
0.333




	
LPG_Sines

	
a19

	
0.719

	
0.729

	
0.8023

	
0.6563

	
1.000

	
0.750

	
0.500

	
0.667




	
Monchique

	
a20

	
0.419

	
0.370

	
0.3881

	
0.3672

	
0.313

	
0.500

	
0.667

	
0.000




	
Jales

	
a21

	
0.588

	
0.552

	
0.7450

	
0.3594

	
0.875

	
1.000

	
0.333

	
0.000




	
Borralha

	
a22

	
0.538

	
0.505

	
0.6746

	
0.3359

	
0.688

	
1.000

	
0.333

	
0.000




	
Pejão-Germunde

	
a23

	
0.488

	
0.479

	
0.6772

	
0.2813

	
0.750

	
1.000

	
0.167

	
0.000




	
S. Pedro da Cova

	
a24

	
0.488

	
0.490

	
0.6512

	
0.3281

	
0.625

	
1.000

	
0.333

	
0.000




	
Panasqueira

	
a25

	
0.550

	
0.521

	
0.6981

	
0.3438

	
0.750

	
1.000

	
0.333

	
0.000




	
Matacães

	
a26

	
0.656

	
0.656

	
0.6720

	
0.6406

	
0.625

	
0.750

	
0.417

	
0.833




	
Aljustrel

	
a27

	
0.400

	
0.391

	
0.5444

	
0.2526

	
0.563

	
0.833

	
0.167

	
0.000




	
Neves-Corvo

	
a28

	
0.488

	
0.479

	
0.6356

	
0.3542

	
0.750

	
0.833

	
0.333

	
0.000




	
Loulé—Campina de Cima

	
a29

	
0.750

	
0.734

	
0.8101

	
0.6589

	
0.938

	
0.833

	
0.333

	
0.833




	
Verride salt dome

	
a30

	
0.613

	
0.609

	
0.7476

	
0.4714

	
0.938

	
0.833

	
0.167

	
0.500




	
Soure salt dome

	
a31

	
0.594

	
0.615

	
0.7554

	
0.4740

	
0.875

	
0.917

	
0.167

	
0.500




	
Ervideira salt dome

	
a32

	
0.556

	
0.562

	
0.7606

	
0.3646

	
1.000

	
0.917

	
0.000

	
0.333




	
Monte Real salt dome

	
a33

	
0.756

	
0.781

	
0.7971

	
0.7578

	
0.875

	
0.750

	
0.667

	
0.833




	
Carriço—1S

	
a34

	
0.844

	
0.880

	
0.9039

	
0.8568

	
0.938

	
0.917

	
0.667

	
1.000




	
Carriço—2

	
a35

	
0.844

	
0.880

	
0.9039

	
0.8568

	
0.938

	
0.917

	
0.667

	
1.000




	
Carriço—3

	
a36

	
0.844

	
0.880

	
0.9039

	
0.8568

	
0.938

	
0.917

	
0.667

	
1.000




	
Carriço—4

	
a37

	
0.844

	
0.880

	
0.9039

	
0.8568

	
0.938

	
0.917

	
0.667

	
1.000




	
Carriço—5

	
a38

	
0.844

	
0.880

	
0.9039

	
0.8568

	
0.938

	
0.917

	
0.667

	
1.000




	
Carriço—6

	
a39

	
0.844

	
0.880

	
0.9039

	
0.8568

	
0.938

	
0.917

	
0.667

	
1.000




	
Carriço—7

	
a40

	
0.806

	
0.818

	
0.8726

	
0.7630

	
0.938

	
0.917

	
0.667

	
0.750




	
Carriço—8

	
a41

	
0.806

	
0.818

	
0.8726

	
0.7630

	
0.938

	
0.917

	
0.667

	
0.750




	
Carriço—9

	
a42

	
0.806

	
0.818

	
0.8726

	
0.7630

	
0.938

	
0.917

	
0.667

	
0.750




	
S. Pedro de Moel salt dome

	
a43

	
0.581

	
0.589

	
0.7580

	
0.4193

	
0.938

	
0.917

	
0.000

	
0.500




	
Parceiros (Leiria) salt dome

	
a44

	
0.556

	
0.521

	
0.5730

	
0.4531

	
0.500

	
0.750

	
0.333

	
0.500




	
Porto de Mós salt dome

	
a45

	
0.494

	
0.448

	
0.4220

	
0.4818

	
0.375

	
0.417

	
0.500

	
0.500




	
Fonte da Bica (Rio Maior) salt dome

	
a46

	
0.538

	
0.521

	
0.4897

	
0.5599

	
0.500

	
0.417

	
0.667

	
0.500




	
Caldas da Rainha diapir

	
a47

	
0.613

	
0.615

	
0.7137

	
0.5078

	
0.875

	
0.750

	
0.333

	
0.500




	
Várzea da Rainha salt dome

	
a48

	
0.563

	
0.568

	
0.7268

	
0.4089

	
0.938

	
0.833

	
0.000

	
0.500




	
Bolhos salt dome

	
a49

	
0.625

	
0.573

	
0.6929

	
0.4531

	
0.875

	
0.750

	
0.333

	
0.333




	
Maceira (Vimeiro) salt dome

	
a50

	
0.438

	
0.453

	
0.5965

	
0.2943

	
0.813

	
0.667

	
0.000

	
0.333




	
Santa Cruz salt dome

	
a51

	
0.413

	
0.417

	
0.5418

	
0.3073

	
0.500

	
0.833

	
0.000

	
0.333




	
Matacães salt dome

	
a52

	
0.694

	
0.687

	
0.7189

	
0.6563

	
0.750

	
0.750

	
0.417

	
0.833




	
Pinhal Novo salt dome

	
a53

	
0.644

	
0.625

	
0.6668

	
0.5912

	
0.750

	
0.667

	
0.583

	
0.500




	
Sesimbra salt dome

	
a54

	
0.294

	
0.328

	
0.4089

	
0.2787

	
0.313

	
0.667

	
0.000

	
0.333




	
Loulé salt dome

	
a55

	
0.638

	
0.609

	
0.6642

	
0.5547

	
0.688

	
0.750

	
0.333

	
0.667




	
Faro salt dome

	
a56

	
0.544

	
0.453

	
0.5965

	
0.3099

	
0.813

	
0.667

	
0.000

	
0.333




	
Lusitanian On_A1

	
a57

	
0.544

	
0.521

	
0.5314

	
0.5182

	
0.500

	
0.583

	
0.833

	
0.167




	
Lusitanian On_A2

	
a58

	
0.519

	
0.526

	
0.6225

	
0.4219

	
0.688

	
0.750

	
0.500

	
0.167




	
Lusitanian On_A3

	
a59

	
0.556

	
0.531

	
0.7137

	
0.3490

	
0.875

	
0.917

	
0.167

	
0.167




	
Lusitanian On_A4

	
a60

	
0.575

	
0.573

	
0.6512

	
0.4948

	
0.625

	
0.833

	
0.667

	
0.167




	
Lusitanian On_C1

	
a61

	
0.538

	
0.531

	
0.6095

	
0.4453

	
0.625

	
0.750

	
0.583

	
0.167




	
Lusitanian On_J1

	
a62

	
0.613

	
0.552

	
0.5365

	
0.5599

	
0.375

	
0.667

	
1.000

	
0.167











References


	



APREN. Balanço da Produção de Electricidade de Portugal Continental. 2019. Available online: https://www.apren.pt/pt/energias-renovaveis/producao (accessed on 1 July 2019).

	



ESA. Energy Storage Association 2016. Available online: http://energystorage.org/ (accessed on 16 December 2016).

	



Wang, J.; Lu, K.; Ma, L.; Wang, J.; Dooner, M.; Miao, S.; Li, J.; Wang, D. Overview of compressed air energy storage and technology development. Energies 2017, 10, 991. [Google Scholar] [CrossRef]

	



Venkataramani, G.; Parankusam, P.; Ramalingam, V.; Wang, J. A review on compressed air energy storage—A pathway for smart grid and polygeneration. Renew. Sustain. Energy Rev. 2016, 62, 895–907. [Google Scholar] [CrossRef]

	



Carneiro, J.F.; Matos, C.R.; van Gessel, S. Opportunities for large-scale energy storage in geological formations in mainland Portugal. Renew. Sustain. Energy Rev. 2019, 99, 201–211. [Google Scholar] [CrossRef]

	



Belton, V.; Stewart, T. Multiple Criteria Decision Analysis: An Integrated Approach; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]

	



Wątróbski, J.; Jankowski, J.; Ziemba, P.; Karczmarczyk, A.; Zioło, M. Generalised framework for multi-criteria method selection. Omega 2019, 86, 107–124. [Google Scholar] [CrossRef]

	



Sener, B.; Süzen, M.L.; Doyuran, V. Landfill site selection by using geographic information systems. Environ. Geol. 2006, 49, 376–388. [Google Scholar] [CrossRef]

	



Malczewski, J. GIS and Multicriteria Decision Analysis; John Wiley and Sons: New York, NY, USA, 1999. [Google Scholar]

	



Shao, M.; Han, Z.; Sun, J.; Xiao, C.; Zhang, S.; Zhao, Y. A review of multi-criteria decision-making applications for renewable energy site selection. Renew. Energy 2020, 157, 377–403. [Google Scholar] [CrossRef]

	



Georgiou, A.; Skarlatos, D. Optimal site selection for sitting a solar park using multi-criteria decision analysis and geographical information systems. Geosci. Instrum. Methods Data Syst. 2016, 5, 321–332. [Google Scholar] [CrossRef]

	



Carver, S.J. Integrating multi-criteria evaluation with geographical information systems. Int. J. Geogr. Inf. Syst. 1991, 5, 321–339. [Google Scholar] [CrossRef]

	



Jankowski, P. Integrating geographical information systems and multiple criteria decision-making methods. Int. J. Geogr. Inf. Syst. 1995, 9, 251–273. [Google Scholar] [CrossRef]

	



Malczewski, J. GIS-based multi-criteria decision analysis: A survey of the literature. Int. J. Geogr. Inf. Sci. 2006, 20, 703–726. [Google Scholar] [CrossRef]

	



Ehrgott, M.; Naujoks, B.; Stewart, T.J.; Wallenius, J. Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]

	



Marques-Perez, I.; Guaita-Pradas, I.; Gallego, A.; Segura, B. Territorial planning for photovoltaic power plants using an outranking approach and GIS. J. Clean. Prod. 2020, 257, 120602. [Google Scholar] [CrossRef]

	



Mokarram, M.; Mokarram, M.J.; Gitizadeh, M.; Niknam, T.; Aghaei, J. A novel optimal placing of solar farms utilizing multi-criteria decision-making (MCDA) and feature selection. J. Clean. Prod. 2020, 261, 121098. [Google Scholar] [CrossRef]

	



Simão, A.; Densham, P.J.; Haklay, M. Web-based GIS for collaborative planning and public participation: An application to the strategic planning of wind farm sites. J. Environ. Manag. 2009, 90, 2027–2040. [Google Scholar] [CrossRef] [PubMed]

	



Wanderer, T.; Herle, S. Creating a spatial multi-criteria decision support system for energy-related integrated environmental impact assessment. Environ. Impact Assess. Rev. 2015, 52, 2–8. [Google Scholar] [CrossRef]

	



Rediske, G.; Siluk, J.C.M.; Michels, L.; Rigo, P.D.; Rosa, C.B.; Cugler, G. Multi-criteria decision-making model for assessment of large photovoltaic farms in Brazil. Energy 2020, 197, 1–16. [Google Scholar] [CrossRef]

	



Silva, S.; Alçada-Almeida, L.; Dias, L.C. Biogas plants site selection integrating Multicriteria Decision Aid methods and GIS techniques: A case study in a Portuguese region. Biomass Bioenergy 2014, 71, 58–68. [Google Scholar] [CrossRef]

	



Perpiña, C.; Martínez-Llario, J.C.; Pérez-Navarro, Á. Multicriteria assessment in GIS environments for siting biomass plants. Land Use Policy 2013, 31, 326–335. [Google Scholar] [CrossRef]

	



Sánchez-Lozano, J.M.; Antunes, C.H.; García-Cascales, M.S.; Dias, L.C. GIS-based photovoltaic solar farms site selection using ELECTRE-TRI: Evaluating the case for Torre Pacheco, Murcia, Southeast of Spain. Renew. Energy 2014, 66, 478–494. [Google Scholar] [CrossRef]

	



Church, R.L. Geographical information systems and location science. Comput. Oper. Res. 2002, 29, 541–562. [Google Scholar] [CrossRef]

	



Abdullah, L.; Adawiyah, W.C. Simple Additive Weighting Methods of Multicriteria Decision Making and Applications: A Decade Review. Int. J. Inf. Process. Manag. 2014, 5, 39–49. [Google Scholar]

	



Rezaeisabzevar, Y.; Bazargan, A.; Zohourian, B. Landfill site selection using multi-criteria decision making: Influential factors for comparing locations. J. Environ. Sci. 2020, 93, 170–184. [Google Scholar] [CrossRef] [PubMed]

	



Baumann, M.; Weil, M.; Peters, J.F.; Chibeles-Martins, N.; Moniz, A.B. A review of multi-criteria decision making approaches for evaluating energy storage systems for grid applications. Renew. Sustain. Energy Rev. 2019, 107, 516–534. [Google Scholar] [CrossRef]

	



Budt, M.; Wolf, D.; Span, R.; Yan, J. A review on compressed air energy storage: Basic principles, past milestones and recent developments. Appl. Energy 2016, 170, 250–268. [Google Scholar] [CrossRef]

	



Foley, A.; Lobera, I.D. Impacts of compressed air energy storage plant on an electricity market with a large renewable energy portfolio. Energy 2013, 57, 85–94. [Google Scholar] [CrossRef]

	



Succar, S.; Williams, R.H. Compressed Air Energy Storage: Theory, Resources, and Applications for Wind Power. Princet. Environ. Inst. Rep. 2008, 8, 81. [Google Scholar]

	



Barnes, F.S.; Levine, G.J. Large Energy Storage Systems Hand Book; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2011. [Google Scholar]

	



Matos, C.R.; Carneiro, J.F.; Silva, P.P. Overview of Large-Scale Underground Energy Storage Technologies for Integration of Renewable Energies and Criteria for Reservoir Identification. J. Energy Storage 2019, 21, 241–258. [Google Scholar] [CrossRef]

	



Afshari, A.; Mojahed, M.; Yusuff, R. Simple additive weighting approach to personnel selection problem. Int. J. Innov. Manag. Technol. 2010, 1, 511–515. [Google Scholar]

	



Podvezko, V. The Comparative Analysis of MCDA Methods SAW and COPRAS. Eng. Econ. 2011, 22, 134–146. [Google Scholar] [CrossRef]

	



Wątróbski, J.; Jankowski, J.; Ziemba, P.; Karczmarczyk, A.; Zioło, M. MCDA Method Selection Tool. 2020. Available online: http://mcda.it/ (accessed on 12 October 2021).

	



Costa, L.-D. Potencial de armazenamento subterrâneo de gás natural do território nacional—Rel/LC/AP/1/2009 (1° Draft). DGEG 2009, 2009, 1–16. [Google Scholar]

	



Vafaei, N.; Ribeiro, R.A.; Camarinha-Matos, L.M. Selection of Normalization Technique for Weighted Average Multi-criteria Decision Making. Technol. Innov. Resilient Syst. 2018, 521, 73–86. [Google Scholar]

	



Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Global Sensitivity Analysis—The Primer; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]

	



Saltelli, A.; Tarantola, S.; Chan, K. A Role for Sensitivity Analysis in Presenting the Results from MCDA Studies to Decision Makers. J. Multi-Criteria Decis. Anal. 1999, 8, 139–145. [Google Scholar] [CrossRef]

	



Simanaviciene, R.; Ustinovichius, L. Sensitivity analysis for multiple criteria decision-making methods: TOPSIS and SAW. Procedia—Soc. Behav. Sci. 2010, 2, 7743–7744. [Google Scholar] [CrossRef]

	



Feizizadeh, B.; Jankowski, P.; Blaschke, T. A GIS-based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis. Comput. Geosci. 2014, 64, 81–95. [Google Scholar] [CrossRef] [PubMed]

	



Memariani, A.; Amini, A.; Alinezhad, A. Sensitivity analysis of simple additive weighting method (SAW): The results of change in the weight of one attribute on the final ranking of alternatives. J. Ind. Eng. 2009, 4, 13–18. [Google Scholar]

	



Zavadskas, E.K.; Turskis, Z.; Dejus, T.; Viteikiene, M. Sensitivity analysis of a simple additive weight method. Int. J. Manag. Decis. Mak. 2007, 8, 555–574. [Google Scholar] [CrossRef]

	



Iooss, B.; Lemaître, P. Uncertainty Management in Simulation-Optimization of Complex Systems. Oper. Res. Comput. Sci. Interfaces Ser. 2015, 59, 101–122. [Google Scholar]

	



Porto de Sines, Características Gerais. 2018. Available online: http://www.portodesines.pt/o-porto/características-gerais/ (accessed on 12 October 2021).








[image: Energies 14 06793 g001 550] 





Figure 1. Potential CAES reservoirs in mainland Portugal are represented in an ArcGIS map. 
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Figure 2. Schematic representation of the MCDA-GIS process for site selection of CAES reservoirs. 
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Figure 3. ArcGIS representation of the first best potential reservoir site, Monte Real salt dome colored in violet, and Carriço salt caverns represented in blue circles inside the violet salt dome. 
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Figure 4. ArcGIS representation of the best potential host rock reservoir, the Sines LPG storage depicted in black inside the Sines sub-volcanic massif represented in light red. 
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Figure 5. ArcGIS representation of the best potential reservoir Campina de Cima salt mine inside the Loulé salt dome depicted in grey. 






Figure 5. ArcGIS representation of the best potential reservoir Campina de Cima salt mine inside the Loulé salt dome depicted in grey.



[image: Energies 14 06793 g005]







[image: Table] 





Table 1. Description of the constraints defined as criteria for the suitable CAES reservoirs analysis.
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	Constraints
	Description





	Sensitive areas
	Environmental sensitive areas, including Natura 2000 areas, sites of community importance, and special protection areas.



	Groundwater
	Groundwater protection zones.



	Populated Areas
	Distance to populated areas of less than 200 m.



	Roads
	Distance to roadways or highways of less than 100 m.



	Land Slope
	Terrain slope of above 12%.



	Neotectonics
	Known active faults.



	Seismic risk
	High seismic risk.
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Table 2. Description of the incentives defined as criteria for the suitability CAES reservoirs analysis.
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	Incentives
	Description





	Renewable energy sources (RES)
	Proximity to existing RES (wind, solar, hydro) power generation facilities



	High-voltage (HV) network
	Proximity to high-voltage electricity lines



	Natural gas (NG) network
	Proximity to natural gas pipelines (only for diabatic CAES technologies)



	Deep geological data
	Availability of deep geological data



	Technology maturity
	Maturity of the technology according to the type of reservoir



	Existence of proven caverns
	Existence of already proved caverns as a storage mean
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Table 3. Scheme of the classification of each criterion (constraints and incentives) and their objectives.
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	Type
	Criteria
	Name
	Objective





	Environmental
	Sensitive areas
	J1
	Minimize



	
	Groundwater
	J2
	Minimize



	
	Neotectonics
	J3
	Minimize



	
	Seismic risk
	J4
	Minimize



	Social
	Populated areas
	J5
	Minimize



	Economic
	Land slope
	J6
	Minimize



	
	Roads
	J7
	Minimize



	
	Renewable energy sources (RES)
	J8
	Maximize



	
	High voltage (HV) network
	J9
	Maximize



	
	Natural gas (NG) network
	J10
	Maximize



	
	Deep geo data
	J11
	Maximize



	
	Maturity of the technology
	J12
	Maximize



	
	Existence of proven caverns
	J13
	Maximize
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Table 4. Maturity of the CAES technology according to the type of geological reservoir (based on [32]).
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	STORAGES
	Reservoirs
	CAES





	Salt formations
	Salt caverns
	Mature technology, widely implemented



	Host rocks
	Engineered cavities
	Prospective technology, pre-commercial pilots, and conceptual designs



	
	Abandoned mines
	Prospective technology, pre-commercial pilots, and conceptual designs



	Porous Media
	Aquifers and traps
	Prospective technology, pre-commercial pilots, and conceptual designs



	
	Depleted hydrocarbons reservoirs
	Prospective technology, pre-commercial pilots, and conceptual designs
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Table 5. Normalized rating scale (0,1) attributed to all the criteria (constraints and incentives).
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Criteria

	
Rating Scale—Normalized




	

	
1

	
0.75

	
0.5

	
0.25

	
0






	
J1

	
Absence of constraint

	
Presence of constraint not limiting more than 25% area.

	
Presence of constraint not limiting more than 50% area.

	
Presence of constraint not limiting more than 75% area.

	
Presence of constraint limiting the area.




	
J2

	
Absence of constraint

	
Presence of constraint not limiting more than 25% area.

	
Presence of constraint not limiting more than 50% area.

	
Presence of constraint not limiting more than 75% area.

	
Presence of constraint limiting the area.




	
J3

	
Absence of constraint

	
Presence of constraint not limiting more than 25% area.

	
Presence of constraint not limiting more than 50% area.

	
Presence of constraint not limiting more than 75% area.

	
Presence of constraint limiting the area.




	
J4

	
IV ≤ Seismic risk ≤ VII

	
VII < Seismic risk ≤ VIII

	
VIII < Seismic risk ≤ IX

	
IX < Seismic risk ≤ X

	
Seismic risk > X




	
J5

	
Absence of constraint

	
Presence of constraint not limiting more than 25% area.

	
Presence of constraint not limiting more than 50% area.

	
Presence of constraint not limiting more than 75% area.

	
Presence of constraint limiting the area.




	
J6

	
Land slope < 12%

	
n.a.

	
Land slope ≥12% not limiting all the area.

	
n.a.

	
Land slope ≥12% limiting the area




	
J7

	
Roads not present

	
Roads not crossing more than 25% of the area.

	
Roads not crossing more than 50% of the area.

	
Roads not crossing more than 50% of the area.

	
Roads crossing and limiting the use of the area.




	
J8

	
Presence of RES

	
Proximity of RES of less than 5 km.

	
Proximity of RES of approximately 5 km.

	
Proximity of RES of more than 5 km.

	
Absence of RES.




	
J9

	
Presence of HV network

	
Proximity of HV network of less than 5 km.

	
Proximity of HV network of approximately 5 km.

	
Proximity of HV network of more than 5 km.

	
Absence of HV network.




	
J10

	
Presence of HG network

	
Proximity of NG network of less than 5 km.

	
Proximity of NG network of approximately 5 km.

	
Proximity of NG network of more than 5 km.

	
Absence of NG network.




	
J11

	
Availability of deep geological data

	
Availability of 75% deep geological data but without enough data.

	
Availability of 50% deep geological data but without enough data.

	
Availability of 25% of deep geological data but without enough data.

	
Absence of deep geological data.




	
J12

	
Mature technology

	
Proven technology without installed facilities.

	
Proven technology.

	
Prospective technology with proven research.

	
Prospective technology.




	
J13

	
Existence of proven caverns for storage

	
Presence of caverns with bad conditions for storage.

	
Presence of caverns.

	
Projected caverns.

	
Absence of proven caverns.
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Table 6. Weights assigned to the criteria (constraints and incentives) for CAES potential reservoirs.
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	Criteria
	Constraints & Incentives
	Weights (%)





	J1
	Sensitive areas
	10%



	J2
	Groundwater
	10%



	J3
	Neotectonics
	5%



	J4
	Seismic risk
	7.5%



	J5
	Populated areas
	5%



	J6
	Land slope
	7.5%



	J7
	Roads
	5%



	J8
	Renewable energy sources (RES)
	12.5%



	J9
	High-voltage (HV) network
	12.5%



	J10
	Natural gas (NG) network
	5%



	J11
	Deep geological data
	7.5%



	J12
	Maturity of technology
	7.5%



	J13
	Existence of proven caverns
	5%



	Total
	
	100%
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Table 7. MCDA-SAW final results, ranking the best ten alternatives and identifying them by their reservoir name, set, and type of reservoirs. The columns “score” and “ranking have a greenish color gradation from darkest greens to lighter tones representing the decreasing gradation of the alternatives scores and ranking. The blue colors in the column “set of reservoirs” represent the gradation of each set of reservoirs according to their ranking since several alternatives can correspond to the same set of reservoirs.
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Ranking of the Best Ten Alternatives




	
Score

	
Ranking

	
Alternative

	
Reservoir

	
Set of Reservoirs

	
Type of Reservoirs






	
0.844

	
1

	
a34

	
Carriço—1S

	

	




	
0.844

	
1

	
a35

	
Carriço—2

	

	




	
0.844

	
1

	
a36

	
Carriço—3

	

	




	
0.844

	
1

	
a37

	
Carriço—4

	

	




	
0.844

	
1

	
a38

	
Carriço—5

	
1

	
Salt Rocks




	
0.844

	
1

	
a39

	
Carriço—6

	

	




	
0.806

	
2

	
a40

	
Carriço—7

	

	




	
0.806

	
2

	
a41

	
Carriço—8

	

	




	
0.806

	
2

	
a42

	
Carriço—9

	

	




	
0.800

	
3

	
a29

	
Loulé—Campina de Cima

	
2

	




	
0.744

	
4

	
a19

	
LPG_Sines

	
3

	
Host Rock




	
0.731

	
5

	
a33

	
Monte Real salt dome

	
1

	




	
0.731

	
5

	
a52

	
Matacães salt dome

	
4

	




	
0.694

	
6

	
a26

	
Matacães Mine

	

	




	
0.663

	
7

	
a55

	
Loulé salt dome

	
2

	
Salt Rocks




	
0.631

	
8

	
a53

	
Pinhal Novo salt dome

	
5

	




	
0.625

	
9

	
a30

	
Verride salt dome

	
6

	




	
0.625

	
9

	
a49

	
Bolhos salt dome

	
7

	




	
0.613

	
10

	
a47

	
Caldas da Rainha diapir

	
8
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