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Abstract: The analysis of waveforms related to transient events is an important task in power system
maintenance. Currently, electric power systems are monitored by several event recorders called
phasor measurement units (PMUs) which generate a large amount of data. The number of records
is so high that it makes human analysis infeasible. An alternative way of solving this problem is to
group events in similar classes so that it is no longer necessary to analyze all the events, but only the
most representative of each class. Several automatic clustering algorithms have been proposed in
the literature. Most of these algorithms use validation indexes to rank the partitioning quality and,
consequently, find the optimal number of clusters. However, this issue remains open, as each index
has its own performance highly dependent on the data spatial distribution. The main contribution of
this paper is the development of a methodology that optimizes the results of any clustering algorithm,
regardless of data spatial distribution. The proposal is to evaluate the internal correlation of each
cluster to proceed or not in a new partitioning round. In summary, the traditional validation indexes
will continue to be used in the cluster’s partition process, but it is the internal correlation measure of
each one that will define the stopping splitting criteria. This approach was tested in a real waveforms
database using the K-means algorithm with the Silhouette and also the Davies–Bouldin validation
indexes. The results were compared with a specific methodology for that database and were shown
to be totally consistent.

Keywords: clustering; oscilographies; power quality

1. Introduction

Industrial networks, as well as electric power ones, play a fundamental role in the
goods and services production. Reliability and security are fundamental requirements
that guide the technologies development associated to these equipments. The recorded
events, also called oscilographies, can represent disturbances on the system. As mentioned
in the abstract, these oscillographic databases are immense and the scientific community
has been working on this topic to find solutions that allow a better use them for knowledge
generation purposes. Works [1–3] are prominent examples in the literature.

The authors of [4] made a primary classification (Table 1) of main disturbances that may
affect power systems. The massive instrumentation of these networks has motivated research
in data analysys for the development of predictive maintenance strategies. Refs. [5,6] bring
an extensive literature review of machine learning methods applied to this theme.

Machine Learning is a research area dedicated to knowledge extraction from databases
to decision making support. Two distinct branches of research are derived from Machine
Learning: supervised and unsupervised learning. In the first, the data are labeled; that is,
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there is prior knowledge about the desired system output. In the second, there is no prior
information about the relationship between the data and the system’s response.

Table 1. Primary classification of the main electrical disturbances.

Disturbance Features Probable Causes

Voltage Sag Short duration and
low amplitude

Power line tripping and reclosing
(thunder and lightning)

Voltage Sag Short duration and
median amplitude Capacitor bank switching

Voltage Swell Short duration and
low amplitude Transformer backup protection-restore

Voltage Swell Very short duration and
low amplitude Transformer main protection-restore

Complex I Long duration and
low amplitude Transformer restore

Complex II Very long duration and
low amplitude

Bus protection, segment protection,
transformer switch break-restore

Clustering is considered one of the most relevant approaches in unsupervised learning
because it deals with database partition [7] in unknown scenarios. In many cases clustering
is the starting point of a complex knowledge extraction process. In short, clustering is
a procedure of grouping objects according to their similarity, that is, similar objects will
belong to the same cluster.

In case of electrical power networks, the unlabeled data generation rate from massive
instrumentation is much higher than the human analysis capacity. The clustering can
reduce the dimensionality of the problem by grouping oscillographic records in similar
classes, allowing the experts to focus only on the most characteristic events. Several
research lines have been engaged in the development of automatic clustering methods.

Still on this issue, several researchers have engaged to proposing metrics (or valida-
tions indexes) that support clustering schemes. The authors of [8,9] propose density-based
algorithms. The performance of these techniques is highly dependent on very large data
volumes as shown in the work of [10]. Refs. [11,12] highlight the proximity of events as a
grouping metric.

The validation indexes for clustering are divided into two categories: external and
internal [13]. External indexes use a standard (labeled) test set to rank the results. Internal
ones, on the other hand, refer to the analysis of the intrinsic information of the database
itself. The second option was chosen in this work because, in general, real oscillographic
records are totally unlabelled.

This work proposes a hybrid technique using a proximity-based validation index
for clustering in the attribute space. In the time series representation space, a similarity-
based confidence metric was used to check whether clusters need a new partitioning
round. This metric was calculated by cross-correlation between individual events and the
most representative waveform. This proposal proved to be quite adequate for grouping
time series.

This paper is organized as follows. Section 2 gives a brief description of the main works
related to the clustering problem. Section 3 details the clustering algorithm and validation
indexes used in this work. Section 4 explores a case where simultaneous application of
same clustering technique to an oscillographic database and a labeled subset of it yields
completely inconsistent results. Section 5 describes the proposal of using cross-correlation
as a confidence metric to complement traditional clustering validation indexes. Section 6
presents the results of applying the proposed methodology, comparing and validating
them with those ones obtained from a specific methodology. Finally, Section 7 presents
conclusions of this work, as well as some suggestions for future works.
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2. Related Works

The scientific community has been dedicated to the development of algorithms and
evaluation metrics related to the clustering problem. Despite the huge amount of published
works, an independent approach to the database’s intrinsic characteristics has not yet been
found, resulting in a large number of particular solutions, each one with its advantages
and disadvantages.

Therefore, it is necessary to verify the different methodologies used, in order to
facilitate the algorithm’s understanding, as well as the metrics used for their evaluations.

Ref. [7] presents a very broad classification of the main clustering alternatives proposed
in the literature. That paper also points out the advantages and disadvantages of each
algorithm. Table 2 summarizes these categories with examples of their implementations.

Table 2. Clustering Algorithms Categories.

Category Typical Algorithm

based on partition K-means [14], K-medoids [15], X-means [16], PAM [17],
CLARA [18], CLARANS [19]

based on hierarchy BIRCH [20], CURE [21], ROCK [22], Chameleon [23]

based on fuzzy theory FCM [24], FCS [25], MM [26]

based on distribution DBCLASD [27], GMM [27]

based on density DBSCAN [27,28], OPTICS [29], Mean-shift [30]

based on graph theory CLICK [31], MST [32]

based on grid STING [33], CLIQUE [33]

based on swarm intelligence ACO_based(LF) [34], PSO_based [35], SFLA_based [36],
ABC_based [37]

Recent works have proposed complex algorithms to overcome the weaknesses pre-
sented by their predecessors. However, such alternatives come at a high computational
cost. The work of [38] proposes clustering and validation process based on graphs theory.
The graphs are generated from an iterative process where clusters are recursively divided
in two via principal component analysis. Finally a minimum spanning tree is constructed
and used to estimate cluster quality from the distance between centroids. The authors state
that this new approach overcomes limitations of traditional algorithms and it is effective
for partitions of different shapes and sizes.

Ref. [39] argue that traditional clustering algorithms such as K-means and DBSCAN [40]
are uneffective for partitioning geometrically indistinguishable databases (e.g., databases
with the same mean and different variances). Authors propose the use of Kullback–
Leibler Divergence [41] as a similarity metric to be integrated in density-based clustering
techniques. The high computational cost of this implementation was minimized by using
the Gauss Transform for density estimation. The proposed technique were validated
considering a synthetic database using two distribution types: Gaussian and Inverse
Gaussian.

A new separation measure for clustering was proposed in [42]. The non-Gaussianity
of a mixture of Gaussians to evaluate the difference between two clusters was explored.
Authors applied the Quadratic Rényi Entropy [43] to establish an analytical solution
to diferentiate merged gaussians. This new method was tested on complex data sets,
synthetic and real. Despite the good performance, the authors did not make it clear what
the computational cost is for less complex databases. The methodology integration with
different clustering algorithms has not been explored either.

The work of [44] presents a methodology for automatic analysis of disturbances in
power plants, based on fuzzy reasoning. The purpose of the system is to support people
responsible for pre-classifying data and also diagnosing relevant occurrences. In general,
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the authors propose the decomposition of voltage and current transients in symmetrical
components to feed the fuzzy classification logic. Although the results demonstrate an
excellent performance, the work limited the search space to three types of failures, not
making clear its applicability to other disturbances.

Ref. [45] presented a methodology to improve the efficiency of hierarchical clustering.
Instead of clustering on individual data objects, the hierarchy was based on a group of
sub-clusters created by a partitional method like K-means. The results showed a significant
reduction in computational cost besides of high correlation with the results based on the
hierarchization performed using database without any preprocessing. However, the work
does not address any alternative to automate the clustering process.

The authors of [46] proposed a new algorithm based on graph connectivity concept.
Such an approach uses geodesic distance [47] as a measure of dissimilarity which defines
the vertices that will be connected by edges. The algorithm showed good performance in
synthetic databases built with different distributions, but still kept the number of clusters
as an input parameter.

The works of [48,49] bring a semi-supervised approach to the classification of oscilo-
graphies, ie a labeled database is needed for the classification of known disturbances and
the respective indication of novelties. The purpose of this work does not depend on prior
knowledge of the database.

3. Clustering Approach

The algorithm chosen for data clustering was the traditional K-Means [14]. This choice
is justified because it is an algorithm widely evaluated by the scientific community, in
addition to being easy to implement. These qualifications allow the exploration of a large
and reliable database for comparison and analysis.

The clustering process performed by K-Means consists of the initial definition of K
centroids and the assignment of events (vectors of attributes), which are being inserted as
input, to the cluster with the nearest centroid. As the objects are inserted and assigned to
the clusters, the centroids are updated until they have no or little changes.

As previously mentioned, the allocation of objects to a given cluster is based on
proximity to the centroids, measured according to a specific function. Different distance
metrics can be applied according to the data nature. Among them, the chosen one was the
Euclidean distance. In this context, each database event can be represented by a point in
the euclidean space, whose coordinates correspond to their respective attributes.

The process of assigning objects to the clusters and updating centroids is iterative and
the objective function is the so-called Sum of Squared Errors (SSE), in which errors are
measured as the Euclidean distances from each point to the nearest centroid as shown in
Equation (1).

SSE =
K

∑
i=1

∑
x∈Ci

dist(ci, x)2 (1)

where:

• K is the number of clusters;
• x is a object represented by a attributes vector;
• Ci i-th cluster;
• dist is Euclidean distance function;
• ci is the centroid of Ci.

The centroids correspond to the average of the attribute vectors that represent the
objects in each cluster. The respective update function is presented by Equation (2).

ci =
1

mi
∑

x∈Ci

x (2)

where:
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• x is object (point in euclidean space);
• Ci i-th cluster;
• ci centroid of Ci;
• mi number of objects in Ci.

In summary, the goal is to obtain centroids that minimize the SSE value, that is, the
best separation of the objects and the best representation points (centroids) of each cluster.
However, regardless of seeking the minimization of SSE, the K-Means algorithm does not
guarantee to reach global minimum, that is, the best possible result of separating events,
since it depends on centroids initialization and the optimization process does not consider
all possible combinations of the initial centroids.

3.1. Clustering Validation Indices

As previously presented in Section 1, external validation metrics are applied, prefer-
ably, when there is a prior knowledge about database. However, due to the lack of such
information in many real data sets, internal validation metrics are more widely used. These
indices are based on the characteristics of coherence(maximizing the intragroup similarity)
or groups separation (maximizing the intergroup dissimilarity) [50].

There are several validation indices, based on metrics described above. Among others,
the Silhouette Index, Davies–Bouldin Index (DB), Dunn Index, and Calinski–Harabasz
Index can be cited [51]. These indices, based on intrinsic knowledge of dataset, generate
values that correctly interpreted indicate how good the results were, as well as, in some
cases, the optimal number of clusters.

The following are the two indices used in this work:

3.1.1. Silhouette Index

The Silhouette Index is applied in cases of exclusive partitional grouping and takes
into account measures of coherence and separation of events in a cluster [50]. To obtain the
individual Silhouette value of each event, Equation (3) is used.

s(i) =
b(i)− a(i)

Max{a(i), b(i)} (3)

where:

• i represents the a object in database;
• a(i) is the average distance between object i and all objects of the same cluster;
• b(i) is the average distance between object i and all objects out of its cluster;
• Max{a(i), b(i)} is the normalization factor.

The Silhouette Index ranges between [−1,1] and is characterized by having high
values (closer to 1) when an object i exhibits greater degree of belonging to its own cluster.
Otherwise this index tends to approach −1. Therefore, high Silhouette values reflect good
solutions for clustering process [50].

3.1.2. Davies–Bouldin (DB) Index

The Davies–Bouldin Index takes into account the intergroup distance, i.e., how far
the clusters are from each other, and intragroup distance, that is, the compactness of each
cluster [52,53]. To obtain DB Index, Equation (4) is used.

DB =
1
K

K

∑
m=1,n=1,...,k,m 6=n

max
{

Sm + Sn

Mmn

}
(4)

where:

• Sm and Sn are variances of clusters m and n, respectively;
• K is the number of clusters;
• Mmn is the distance between clusters m and n.
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Cluster variance is related to the intragroup distance, that is, based on the distance
between each cluster event and its respective centroid. The distance between clusters is
related to the intergroup distance, i.e., based on the distance between centroids [52,53].

In general terms, good clustering results are achieved by obtaining cohesive and
well-separated clusters characterized by having small DB values [53].

4. Problem Identification

The problem arose from the need to analyze a database with 52,299 oscillographic
records from a substation of the Brazilian Electric Power System (EPS). After intense and
time-consuming manual work, only 438 records were analyzed and partitioned in four
classes of known events. Then, the same data subset was submitted to clustering using
the K-means algorithm, configured to generate four clusters. The clusters composition
coincided perfectly with the separation made by experts.

Considering that this new labeled database has less than 1% of all events and that
a supervised classification method (e.g., artificial neural network) would require more
than 50% records for training, this alternative, as well as the analysis of all events became
impracticable. To start the investigation of this problem, two approaches were compared:

• Performing clustering on entire database using the same technique used on labeled subset;
• Assigning events from original database to the clusters of reduced subset. An event

would be assigned to a cluster if it was inside of a virtual sphere represented by
cluster’s centroid and its radius. Otherwise it would belong a new particular cluster.

4.1. Database

The database used in this work was provided by the Electric Energy Research Center
(CEPEL). This basis is constituted by transient voltage events collected in a substation
of Brazilian EPS. Signals were sampled at 1MHz in one second time window, that is,
each event was characterized by 1,000,000 samples. It is important to emphasize that the
fundamental component was filtered by the system acquisition before signal recording. The
instrumentation installed at each stage produced different attenuation levels and therefore
it was necessary to establish a scale factor for the measurements uniformization.

It is noteworthy that the consistency of the data was guaranteed by the mentioned
institution. If there was no such guarantee, the work proposals [54,55] could be applied.

4.2. Attributes Extraction

Three attributes were elected to be processed: the maximum signal excursion, its RMS
value and its energy. Before the extraction itself, the scaling factor was applyed and the DC
component was also suppressed in order to eliminate signal offset.

The maximum excursion (Excχ) was obtained by subtracting the maximum and
minimum values of the amplitude of each recorded event.

RMS value was calculated according to Equation (5) [56].

RMSχ =

√√√√ 1
N

N

∑
n=1

[xn]2 (5)

where:

• N is sample’s length;
• xn is teh n-sample.

Energy was calculated according to Equation (6), limited by one second time win-
dow [57].

Eχ =
+∞

∑
n=−∞

|xn|2 (6)
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The attributes extraction allowed the database transformation in such a way that each
event, previously characterized by 1,000,000 samples, became a three-dimensional vector
(point in Euclidean space).

In order to ensure that all attributes will have the same influence on the clustering
process, the Z-Score [51] standardization was applied. Equation (7) defines the calculation
procedure for this normalization.

A′ =
A− µ

σ
(7)

where:

• A′ is attribute normalized value;
• A attribute original value;
• µ is tha attribute means value;
• σ is attribute standard deviation.

After this process, each database attribute had zero mean and unit variance, without
changing the database shape.

4.3. Preliminary Clustering Results

As previously mentioned, the K-Means algorithm was chosen to test the proposed
methodology. The K-Means configuration was as follows:

• Minimum number of clusters: 2.
• Maximum number of clusters: 30.
• Initialization of centroids: K-Means ++ [58].
• Maximum number of iterations: 500.
• Distance function: Euclidean.

The best number of clusters was found using Silhouette and Davies–Bouldin (DB)
validation indexes. The original database is composed of 52,299 oscilographies and the
reduced (initial) subset is formed with 438 ones. As shown in Figure 1, the best results of
reduced subset partitioning, for both indexes, produced four clusters whose composition
can be observed in Table 3.

Figure 1. Clustering evaluation for 438 events.



Energies 2021, 14, 6778 8 of 18

Table 3. Clustering result.

Cluster Events Number

1 242
2 166
3 13
4 17

It would be expected that aplying the same approach on entire database provided at
least the same number of clusters as was obtained from reduced labeled database since it
is a subset from original one. However, as shown in Figure 2, the two validation indices
indicated only two clusters as the best clustering result. The composition of each cluster
can be seen in Table 4.

Figure 2. Clustering evaluation for 52,299 events.

Table 4. Clustering for 52,299 events.

Cluster Events Number

1 51,132
2 1167

Following the planned procedure, an attempt was made to clustering the entire
database using the supporting spheres obtained from the reduced subset. As stated
before, each data object that was within a virtual cluster sphere would be assigned to this
cluster and all events that did not match this rule would be grouped into a particular new
cluster. The results presented in Table 5 show that 90% of the events were not allocated
to supporting spheres, suggesting a generalization of the solution for objects outside the
reduced database.
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Table 5. Assigning data events to support clusters.

Cluster Events Number

1 448
2 1254
3 937
4 2529
New cluster 47,132

It should be noted that the maximum and minimum points in Figure 2 are not as
evident as those in Figure 1, suggesting a certain weakness in the criterion adopted to
discover the optimal value of “k”. To investigate this problem in depth, it was decided
to use the methodology proposed by [59] which, in short, uses a variant of Bayesian
Information Criterion (BIC) to determine the optimal value of K in a clustering process.

BIC index is calculated as Equation (8)

BIC =
m

∑
i=1

(ni log
ni
n
− ni ∗ d

2
log(2π)

−ni
2

log ∑
i
−ni −m

2
)− 1

2
m log n

(8)

where:

• m is the number of clusters;
• n is the size of dataset;
• ni is the size of ith cluster;
• d degree of freedom.

Under identical spherical Gaussian assumption, maximum BIC value is related to
optimal number of clusters. Nevertheless this assumption does not reflect the reality of
oscillographic records whose partitions can take completely different forms. In general,
there is an initial asymptotic growth of BIC with high angular coefficient and from a certain
value, the index keeps growing but slower. This tipping point is called the “BIC knee”
that represents the threshold value for finding the best solution for the clustering process.
Numerous techniques for finding this “knee” are presented in the literature.

The procedures for using this technique can be summarized as follows:

1. Record p BIC values for K range (number of clusters) to be investigated;
2. Calculate and record p− 1 angular coefficients of lines passing through the point

related to the first calculated BIC and other recorded values;
3. Normalize both sequences to be on the same scale;
4. Find the intersection point of curves formed by the two normalized sequences.

The last step of these procedures provides the upper limit of the BIC range that needs
to be analyzed. With this information, it is defined that optimal BIC is the maximum value
found in the new range, excluding the upper limit.

Figure 3 shows the result of applying the described technique to determine the upper
limit of clusters related to the partitioning of original database.
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Figure 3. K range difinition by normalized BIC.

According to Figure 3, the two curves intersect at a point corresponding to K = 9.
This is considered the “knee” of the BIC growth curve and, therefore, it can be concluded
that such methodology points to eight clusters as the optimal solution.

The previous results can be summarized in the following sequence:

1. The validation indexes accurately indicated the four groupings contained in a reduced
and labeled subset of the original database.

2. The clustering of the original base, using the same validation indexes applied in the
first experiment, produced a completely incoherent result, that is, only two clusters.

3. The attempt to use the supporting spheres obtained in the first experiment to cluster
the original database proved inadequate, since most events occurred outside them.

4. Using a BIC-based metric to choose the optimal number of clusters for the original
database indicated that validation indices might be unreliable.

5. Methodology

The methodology used in this work derives from final considerations of previous
section. As the validation indexes are based on statistical methods or related to similar-
ity/dissimilarity measures, the results are very dependent on the spatial distribution of
each data set. Thus, if a subset of a database has a spatial distribution that does not reflect
the global distribution, its clustering will produce a partition pattern inconsistent with that
produced when the entire database was used.

Now it is necessary to answer this question of how to measure the reliability of the
clustering validation index. In other words: how can we check if the events belonging to a
cluster are similar enough?

Cross-correlation emerges as a suitable technique for such verification, since it is a
similarity measure of two sequences. In general terms, the cross-correlation of two vectors
x and y can be expressed by Equation (9):

Ccorrx,y = xᵀy (9)
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However, comparing cross-correlation values only makes sense when the energy
levels of the two signals have the same order of magnitude. Therefore, it is necessary to
use a scale factor to normalize the two vectors. Equation (10) presents this procedure.

NCcorrx,y =
xᵀy√

(xᵀx)(yᵀy)
(10)

−1 ≤ NCcorrx,y ≤ 1

The upper limit of normalized cross-correlation occurs when the two vectors are
identical. On the other hand, the lower limit of this metric is achieved when the two
sequences are totally uncorrelated, i.e., when the vectors are reversed.

It should be noted that another metric very similar to Equation (10) could also be used.
It is the Modal Assurance Criterion (MAC), presented in [60,61]. It is nothing more than
the square of Equation (10). MAC values close to 1 indicate strong similarity, while those
close to 0 indicate low similarity.

The previous definitions considered the cross-correlation as a static overlap of two
vectors. Thinking of this metric as a coherent similarity value, they must be in phase.
However, there is no guarantee that all recording triggers have been aligned. Thus, it
is necessary to evaluate this metric by making a dynamic overlap by shifting one of the
vectors. The result will be the maximum value found. Equation (11) presents this metric:

LNCcorrx,y = max
−N+1≤k≤0

(
N−1

∑
n=0

x[n]y[k + n]

)
(11)

where:

• N is the dimension of vectors;
• n is the index of vectors;
• k is the shift parameter.

It remains to determine how to apply this metric to evaluate the cluster confidence
level. This paper proposes the use of normalized mean cross-correlation value between
the most representative event of the cluster, and others. The most representative event is
considered the one closest to the centroid.

Clusters with low cross-correlation values will be subjected to clustering process again.
In general terms, the proposed methodology can be summarized by the Algorithm 1.

Algorithm 1 New Clustering Approach
Input: data, tolerance
Output: goodClusterList

1: function MAIN
2: initialCluster ← data
3: badClusterList[0]← initialCluster
4: do
5: clusters← CLUSTERING(badClusterList[0])
6: for cluster in clusters do
7: if EVALCLUSTER(cluster, tolerance) then
8: badClusterList← [badClusterList, cluster]
9: else

10: goodClusterList← [goodClusterList, cluster]
11: badClusterList.remove(badClusterList[0])
12: while badClusterList 6= []

13:
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Algorithm 1 Cont.

14: function CLUSTERING(data) . k is the number of clusters.
15: for k in krange do
16: clusterList← Kmeans(data)
17: index ← ValidationIndex(clusterList)
18: if index > Ibest then
19: Ibest ← index
20: Cbest ← clusterList

return Cbest

21:
22: function EVALCLUSTER(cluster, tolerance) . New partition round evaluation.
23: centroid← Mean(clusterevents)
24: eventBase← Closest(clusterevents, eventBase)
25: for event in clusterevents do
26: cc← cc + LNCcorr(event, eventBase)
27: i← i + 1
28: ccAverage← cc

i
29: if ccAverage < tolerance then
30: return TRUE . New partition round indication.
31: else
32: return FALSE

6. Results

The results to be explored in this section refer to the application of the methodology
(Section 5) in two databases: the original set of 52,299 oscillographic records from a Brazilian
EPS substation and a subset of it (438 waveforms), whose events were previously classified
by experts.

For an intuitive view of the data, Figure 4 presents four types of disturbances from
the set of oscillographies that are visually distinguishable.

Figure 4. Different disturbances examples of database.

6.1. Scenario 1: Database Subset

As presented in Section 4, the best Silhouette validation index was 0.9541570340615262
that corresponded to K = 4.
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The results presented in Table 6 show that all clusters in this scenario presented high
cross-correlation values indicating high confidence level of clustering process. Considering
that the clustering result reflects exactly the previous classification of subset, this confidence
level was coherent.

Table 6. Clustering confidence level evaluation for 438 osciligraphies.

Cluster Events Number LNCcorr

1 242 0.999979
2 166 0.999892
3 13 0.999985
4 17 0.999872

6.2. Scenario 2: Complete Database

The partitioning evaluation of complete database pointed to 2 as the best K, for an
average Silhouette index of 0.95722464398. This value is slightly higher than that found in
the labeled subset evaluation. However, the number of clusters was totally inconsistent,
since it was already known that there were at least four classes of events.

Regarding the cross-correlation metric presented in Table 7, it can be observed that
cluster 1 (the largest one) presented a value approximately 22% lower than cluster 2, indi-
cating that the confidence level of clustering process got worse. Following the methodology
proposed in the Section 5, cluster 1 must undergo a new clustering process. The results of
this second round can be seen in Table 8.

Table 7. Clustering confidence level evaluation for 52,299 osciligraphies.

Cluster Events Number LNCcorr

1 51,132 0.769274
2 1167 0.999971

Table 8. Clustering confidence level evaluation for 51,132 osciligraphies.

Cluster Events Number LNCcorr

1 48,098 0.862648
2 3034 0.999627

As can be seen in Table 8, the cluster submitted to the clustering second round
produced two new clusters. The average Silhouette index in this case was 0.91633596. Once
again, it was observed that cluster 1 had a confidence level about 13% lower than the second
one. The iterative approach continues and cluster 1 will undergo a new partitioning round.

The highest Silhouette index value for the third clustering round was 0.7775881013.
This value was found for K = 6. The results of this new clustering step are shown in
Table 9.

Table 9. Clustering confidence level evaluation for 48,098 osciligraphies.

Cluster Events Number LNCcorr

1 41,083 0.999625
2 1357 0.997375
3 1584 0.986145
4 779 0.999559
5 1280 0.997867
6 2015 0.998057
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Third clustering round produced cross-correlation values very close to 1 and variation
between these metrics was no more than 2%, giving these results high robustness and
stopping iterative process.

The final result of new proposed approach is summarized in Table 10. Additionally,
the clusters distribution in Euclidean space can be observed in Figure 5. It is noteworthy
that cluster 1.2 was quite detached from the others and therefore, to provide a better
visualization of general distribution, it was not visualized in this figure.

Table 10. New clustering approach: 52,299 oscilographies.

Round/Cluster Events Number LNCcorr

1.2 1167 0.999971
2.2 3034 0.999627
3.1 41,083 0.999625
3.2 1357 0.997375
3.3 1584 0.986145
3.4 779 0.999559
3.5 1280 0.997867
3.6 2015 0.998057

Figure 5. Clustering result in Euclidean space.

The result of applying a confidence metric to the clustering validation process ac-
cording to the methodology presented in Section 5 yielded a much more coherent result
since the number of clusters increased from 2 to 8, which is higher than number of clusters
found in the expert database subset clustering. In addition to the result that confirms the
understanding that in practice a power substation is certainly susceptible to more than two
types of transient events, it confirms the result obtained in Section 4.3, when the BIC was
used as a metric for choosing the optimal number of clusters.

It is also necessary to check whether the composition of each cluster matches the
clustering result by setting in advance the number of clusters.

This procedure can be done immediately by applying K-means with K = 8 in the
same database and comparing the results obtained with results of proposed approach. This
comparison is presented in Table 11.
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Considering 52,299 events, 1732 had different allocation in the two clustering ap-
proaches. This variation represents less than 3% of the total, confirming the validity of the
proposal of this work.

As shown in Table 12, the cross-correlation measures for both approaches were quite
similar with a slight superiority to the iterative process proposed in this paper.

Table 11. Composition comparison: New Approach vs. K-Means (K = 8).

New Approach K-Means Difference % Variation

1167 565 602
3034 3034 0

41083 41,068 15
1357 602 755 2.62
1584 896 −117
779 1302 −22
1280 3232 −1217
2015 1600 −16

Table 12. LNCcorr comparison: New Approach vs. K-Means (K = 8).

New Approach LNCcorr K-Means LNCcorr

1167 0.9999 565 0.9999
3034 0.9996 3034 0.9996

41083 0.9996 41,068 0.9996
1357 0.9973 602 0.9999
1584 0.9861 896 0.9994
779 0.9995 1302 0.9920
1280 0.9978 3232 0.9939
2015 0.9980 1600 0.9833

Mean 0.997278776 Mean 0.996010452

7. Conclusions and Future Works

This paper addressed the difficulty of obtaining reliable clustering results, consid-
ering that shape and intrinsic properties of each database can decisively influence the
performance of differents clustering algorithms and respective validation indexes.

This theme was well illustrated with simultaneous application of K-means algorithm,
Silhouette and DB validation indexes to an oscillographic database and a labeled subset
of it. Results were completely inconsistent although validation indices indicated optimal
solutions.

A subset of a database of 52,299 oscillographic records was previously classified by
experts, who found four distinct disturbances classes. The application of the K-means
algorithm together with the Silhouette and Davis Boudain validation indexes reproduced
an identical partitioning. The same approach applied to the entire database generated only
two clusters.

A new methodology was proposed to verify the reliability of validation indexes. The
metric chosen was the average value of the cross-correlation between the most representa-
tive event of a cluster and its respective neighbors. Clusters with low reliability would be
subjected to a new round of partitioning. When all clusters have an acceptable reliability,
the iterative process stops.

The results of applying this new methodology were quite consistent, since the non-
conformities found between clustering a large database and a subset of it were repaired.
In addition, the results were validated by comparing the partitions generated by the new
approach with specific techniques (Refs. [14,59]) for finding an optimal partitioning.

A qualitative comparison between this proposal and previous benchmarks
(Figures 2 and 3) is visually difficult to make, since in this approach each cluster is evalu-
ated individually, while in traditional methods the quality of all partitioning is evaluated.
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Another advantage of the methodology proposed in this work is that there is no dependence
on the geometry of the clusters, which is a basic premise for BIC proper functioning.

It can be concluded that the methodology proposed in this work represents a first
step for development of algorithms and validation indexes immune to particular database
features. Investigating other approaches to applying cross-correlation as a confidence
metric and exploring results with more robust techniques for extracting and selecting
attributes are some alternatives for future works.
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