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Abstract: We examine the predictive value of gold-to-silver and gold-to-platinum price ratios, as
proxies for global risks affecting the realized variance (RV) of oil-price movements, using monthly
data over the longest available periods of 1915:01–2021:03 and 1968:01–2021:03, respectively. Using
the two ratios, we find statistically significant evidence of in-sample predictability for increases in RV
for both ratios. This finding also translates into statistically significant out-of-sample forecasting gains
derived from these two ratios for RV. Given the importance of real-time forecasts of the volatility of
oil-price movements, our results have important implications for investors and policymakers.
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1. Introduction

Gold is not only a consumption good, but also a good for investment, especially
during severe financial distress when the values of many assets drop sharply but the gold
price increases. This is because gold is a well-established safe haven [1]. In other words,
investors often turn to gold because it potentially offers portfolio diversifications and
hedging benefits during periods of turmoil in conventional financial markets. Silver and
platinum, in contrast, are precious metals with similar consumption-based uses as gold.
Therefore, the gold-to-silver and gold-to-platinum price ratios should be largely unaffected
by consumption (jewelry demand) shocks, and hence variations should reveal variations
in risk, implying that the two ratios could serve as alternative proxies for a key economic
state variable [2–4].

Given this hypothesis, the objective of our research is to analyze the forecastability
of the volatility of oil-price movements, as measured by monthly realized variance (RV),
based on the information content of gold-to-silver and gold-to-platinum price ratios, by
undertaking a historical analysis of the monthly West Texas Intermediate (WTI) oil price
over the periods 1915:01–2021:03 and 1968:01–2021:03, respectively. It should be noted
that [2–4] dealt with the forecasting of excess aggregate and industry-level stock returns,
and bond premia in the United States (US), using the gold-to-platinum price ratio. Here,
we not only look at the gold-to-platinum price ratio but also add the gold-to-silver price
ratio for forecasting oil RV, given that silver shares similar properties with platinum from
the perspective of consumption.
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Intuitively, higher gold-to-silver and gold-to-platinum price ratios signal increased
risks in financial markets, which, in turn, would suggest deteriorating economic con-
ditions [5], as seen in Figure A1 in the Appendix A. One can observe from the figure
that the two ratios increased before every major National Bureau of Economic Research
(NBER)-based economic recession in the US, as shown by the shaded months. The ratios
also had an upward trend during the recent US-China trade war that started in 2016 (and
also the Brexit negotiations), which resulted in a slowdown of the global economy. This
finding is not surprising, since a common view is that the US-China trade war has made
the world a riskier place (risk is commonly viewed as that type of uncertainty which
rational agents face when making their decisions: even though the agents can contemplate
all possible states of nature and their likelihood, the exact realization is not known [6];
that is, risk is characterized by situations where one knows the odds of the unknown or
the probability distribution of stochastic events). Economic theory suggests that more
uncertain prospects for international trade have the potential to affect the economic deci-
sions of households and firms. For example, [7] argues that an agent’s decision-making
is influenced by uncertainty because uncertainty raises the option value of waiting. Real
options theory generally explains the negative impact of uncertainty on economic activity.
In other words, uncertainty makes economic agents more cautious, due to the high cost
of making the wrong investment decision (due to irreversibility), and as a result they
postpone investment, hiring, and consumption (of durable goods) decisions. This then
results in cyclical fluctuations of macroeconomic aggregates. At the same time, oil-price
volatility is known to be countercyclical, due to the fact that oil-price increases (decreases)
associated with higher (lower) demand due to expansions (recessions) are considered to be
good (bad) news for the oil market, and hence reduce (increase) oil-market volatility [8–10].
This reasoning is based on the intuition that higher global risks tend to make the path of
the future aggregate demand of oil (and commodities in general) and, as a result, aggregate
production, less predictable [11]. The ‘theory of storage’ [12,13] outlines the increased
volatility of commodity prices resulting from a rise in convenience yield, as risk-averse
oil (commodity) producers prefer to hold physical stock. Naturally, higher global risk,
reflected by the higher gold-to-silver and gold-to-platinum ratios, resulting in US recessions
or downturns, will produce large oil-price fluctuations. In summary, we can hypothesize
that the RV of oil-price movements is positively linked to these two ratios.

To the best of our knowledge, this is the first paper to use gold-to-silver and gold-to-
platinum price ratios for forecasting the RV of oil-price movements (that is, returns) using
a century and a half of historical data. We must emphasize that using RV (calculated by
taking the sum of squared daily returns over a month) following [14] to measure volatility,
an otherwise latent process, provides us with an observable and unconditional metric of
volatility, as opposed to using generalized autoregressive conditional heteroscedasticity
(GARCH), including the numerous variants of GARCH models discussed in the existing
literature such as, for example, EGARCH models and multivariate GARCH models (see,
for example, [15,16]) or stochastic volatility (SV) models. By considering the role of gold-
to-silver and gold-to-platinum ratios as proxies for global risk, our paper adds to the
vast existing literature on the forecastability of oil-returns volatility based on a wide
array of models and predictors, including macroeconomic, financial, behavioral, and
climate-patterns-related predictors (for detailed reviews, see [17–20]). We also note that
by considering the longest possible monthly data spans for relating these two ratios to
the oil RV, we avoid the issue of sample selection bias in our analysis. We must also
emphasize that the objective of our paper is not to make a methodological contribution,
but to introduce two metrics of global risk when forecasting the longest possible datasets
for oil-market volatility, using standard models available in the literature.

Accurate forecasting of oil-returns volatility has important implications for both in-
vestors and policymakers. The authors of [21] note that volatility, interpreted as uncertainty,
becomes a key input to investment decisions and portfolio allocation; hence, the ability to
precisely forecast oil-returns volatility is of paramount importance for oil traders, especially
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in the wake of the recent financialization of the oil market [22]. Moreover, oil-returns
volatility has been associated with a negative impact on global economic activity [23], and
thus forecasts of the future path of oil-returns volatility also provide key information for
policymakers who are responsible for developing monetary and fiscal policies.

The remainder of the paper is organized as follows: Section 2 describes the data and
methodology, Section 3 discusses the forecasting results, and Section 4 concludes the paper.

2. Data and Methodologies

The data we used for our analysis were daily and monthly WTI crude oil spot prices,
obtained from Global Financial Data (https://globalfinancialdata.com/ (accessed on 1
July 2021)), with the start and end dates determined by the availability of the data for the
predictors at the time of writing this paper. For both the daily and monthly frequencies of
the oil-price data, we calculated the first difference of the price and then multiplied it by
100 to obtain log returns in percentages. Then, the RV was computed as the sum of daily
squared returns over a month, as per the availability of daily data. It should be noted that
oil-price data were available at a monthly frequency only over the period 1920–1976, and
hence, we measured RV as the monthly squared log-returns over these parts of the overall
sample. We conducted the forecasting analysis using R̃V = ln(1 + RV) for all t, rather than
modelling RV directly, because the latter method exhibits a very large peak at the end of
the sample period, associated with the outbreak of the COVID-19 pandemic.

Following [24], we initially specified a heterogenous autoregressive (HAR)-RV model,
which included one lag each of the averages of R̃V over a quarter and a year, but the
corresponding coefficients were insignificant, and hence we used the specification in
Equation (1).

The forecasting model of R̃V used is given by:

R̃Vt+h = c + θR̃Vt + γRatiot + εt+h (1)

where R̃Vt is the realized volatility at time t and R̃Vt+h is the average value of R̃V over
t + 1 to t + h, where h represents the five forecasting horizons considered in our paper,
i.e., 1, 3, 6, 9, and 12 months ahead. Ratiost is the ratio of either gold-to-silver prices or
gold-to-platinum prices in their natural-logarithmic form, and acts as a proxy for risk at
time t, and εt+h is the disturbance term. Our benchmark model is nested in Equation (1)
and obtained by setting γ = 0.

The nominal gold and silver prices in US dollars were derived from Macrotrends
(https://www.macrotrends.net/ (accessed on 1 July 2021)) while the nominal platinum
price was obtained from Kitco (https://www.kitco.com/ (accessed on 1 July 2021)). The
nominal gold- and silver-price data started from 1915:01, and that month defines the
starting point of the analysis involving the logarithmic value of the gold-to-silver price
ratio (GSt). Because platinum data were only available from 1968:01 onward, the analysis
associated with the logarithm of the gold-to-platinum price ratio (GPt) was conducted over
a shorter sample period beginning at that month. Our analyses ended in 2021:03, which
was the last available data point for all our variables at the time of writing this paper.

Figure A1 (Appendix A) plots the variables of concern, i.e., R̃V, GS, and GP, with the
latter two superimposed on the recession dates of the US. All these three variables were
found to be stationary, based on standard unit root tests (i.e., without incorporating breaks),
with complete details of these results available upon request from the authors.

3. Empirical Results

We focused our predictive analysis on the out-of-sample performance of our models,
as [25] notes that this is the ultimate test of any predictive model (in terms of the econo-
metric methodologies and predictors employed). However, for the sake of completeness,
the full-sample estimation results of Equation (1) for both Ratios and for h = 1, 3, 6, 9,
and 12, with [26] heteroscedasticity and autocorrelation-adjusted (HAC) standard errors,

https://globalfinancialdata.com/
https://www.macrotrends.net/
https://www.kitco.com/
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are provided in Table 1. We find that both these precious-metals ratios consistently increase
RV in a statistically significant manner (at the 1% significance level when we use GS and
at the 5% significance level when we use GP) for all five forecasting horizons considered.
This finding is in line with the intuition outlined in the Introduction, which pointed out
that increases in GS or GP are indicative of higher risk and lower economic activity, which,
in turn, increases the oil-price volatility due to its countercyclical nature.

Table 1. In-Sample Predictability.

h Coefficient γ under GS (1915:01–2021:03) Coefficient γ under GP (1968:01–2021:03)

1 0.5491 [5.3552] *** 0.1300 [1.9973] **

3 0.3662 [6.4103] *** 0.0983 [2.5209] **

6 0.6096 [6.5661] *** 0.1913 [2.3836] **

9 0.7195 [6.2945] *** 0.2325 [2.2702] **

12 0.7871 [6.1143] *** 0.2605 [2.2859] **

Note: the entries in the table corresponds to the estimate of γ for the equation R̃Vt+h = c + θR̃Vt + γRatiot + εt+h,
at forecasting horizons h = 1, 3, 6, 9, and 12 months ahead, with Ratio being the natural logarithm of gold–silver
(GS) or natural logarithm of gold–platinum (GP). The t-statistics are reported in square brackets, and *** and **
indicate significance, i.e., in-sample predictability at 1% and 5% levels, respectively.

Based on the suggestion of an anonymous referee, we also conducted linear Granger
tests of causality and found statistically significant evidence of in-sample predictability
at the 1% and 5% levels, respectively, under GS and GP, with no feedback from R̃V. In
addition, impulse response analysis, with the structural shocks identified using Cholesky
decomposition, i.e., with GS or GP ordered first in the VAR, showed that shocks to these
two predictors affect R̃V in a positive and significant manner over the entire one-year-
ahead forecast horizon, in line with the data reported in Table 1. A variance decomposition
analysis showed that the ability of GS and GP to explain the variability in R̃V increased
over the one- to twelve-month-ahead forecast horizon, and GS explains 2.3613% of the
variation in R̃V on average, while the corresponding figure is 2.2251% for GP. Complete
details of these results are available upon request from the authors.

In order to conduct the forecasting exercise, we first determined the in- and out-of-
sample split, based on the [27] tests of multiple structural breaks applied to Equation (1)
under GS and GP for h = 1, 3, 6, 9, and 12 months ahead. The tests detected 5 breaks in
each of the 10 cases, with the earliest structural change detected in 1935:08 and 1976:01 for
GS and GP, respectively (complete details of the structural break dates are available upon
request from the authors). Therefore, our in-sample periods covered 1915:01–1936:07 and
1968:01–1975:12, and the out-of-sample periods were 1936:08–2021:03 and 1976:01–2021:03
for GS and GP, respectively. Our forecasting models with and without the two ratios were
estimated recursively over their respective out-of-sample periods, which ensured that the
changes in the parameter estimates of the model due to all other breaks that existed over
the forecasting sample were accounted for.

As suggested by an anonymous referee, in order to track the evolution of the effects of
GS and GP on R̃V, we plotted the recursive estimates of γ corresponding to GS and GP,
respectively, over the corresponding out-of-sample periods for h = 1, 3, 6, 9, and 12, as
shown in Figure A2a,b in the Appendix A. As shown in the plots, the effects of GS and
GP on R̃V over the relevant out-of-sample periods were not only consistently positive and
statistically significant but also increased in strength over time.

Table 2 presents the ratio of mean-squared forecast errors (MSFEs) for the unrestricted
model with GS or GP and the restricted model without the two ratios, for h = 1, 3, 6, 9,
and 12. It should be noted that MSE-F = (T − R − h + 1) (MSFER −MSFEUR)/MSFEUR,
where T is the sample size, R is the length of the in-sample, h is the forecast horizon, and
MSFER and MSFEUR are MSFEs from the restricted (benchmark) and unrestricted (with the
Ratio as predictor) models, respectively. A positive and significant MSE-F statistic indicates
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that the unrestricted model forecasts are statistically superior to those of the restricted
model. As can be seen, the relative MSFEs were less than one under both GS and GP for
all five forecast horizons. This suggests that including information on the two proxies for
global risks in the model produces lower forecast errors associated with RV compared
to the case when the ratios are excluded. More specifically, the forecasting gains from
GS were equal to 7.1713%, 8.2584%, 9.7727%, 10.2746%, and 10.2948% for h = 1, 3, 6, 9,
and 12, respectively. The corresponding values for GP were: 6.9194%, 8.3239%, 9.3775%,
9.8184%, and 10.3285% for the same set of forecasting horizons. Note that the forecasting
gains increased over the out-of-sample period as the horizon became longer, suggesting
that as the information on global risks is incorporated into investment decisions over the
horizon of one year, the accuracy of the predictions of oil-market volatility improve. This
is probably because heightened risks affect the oil-market volatility via a reduction in
investment and consumption, which takes time to feed into the business cycles, and hence
is reflected more strongly at longer horizons involving RV.

Table 2. Out-of-sample Forecasting Results.

h Relative MSFEs under GS Relative MSFEs under GP

1 0.9283 [78.4893] *** 0.9308 [40.3654] ***

3 0.9174 [91.2785] *** 0.9168 [49.1210] ***

6 0.9023 [109.5039] *** 0.9062 [55.6714] ***

9 0.8973 [115.4273] *** 0.9018 [58.2474] ***

12 0.8971 [115.3361] *** 0.8967 [61.2767] ***
Note: see note to Table 1. The entries in the table correspond to the ratio of the MSFE for the out-of-sample

forecast over 1941:08–2021:03 for GP and 1976:01–2021:03 for GS under the unrestricted model R̃Vt+h = c + θR̃Vt +
γRatiot + εt+h at forecasting horizons of h = 1, 3, 6, 9, and 12 months ahead, relative to the same from the restricted

model R̃Vt+h = c + θR̃Vt + εt+h, where *** indicates significance of the one-sided [28] MSE-F test statistic reported
in square brackets at the 1% level (with critical value of 3.9510), i.e., rejection of the null hypothesis of equal
forecast accuracy of the two nested models, with the alternative hypothesis that the unrestricted model produces
lower forecast errors; *** indicate significance at the 1% level.

More importantly, using the MSE-F test discussed in [28], the forecasting gains derived
from GS or GP at h = 1, 3, 6, 9, and 12 months ahead were statistically significant at the 1%
level, relative to the nested benchmark (which excludes the Ratios). In summary, higher
values of the ratios of the gold price to the silver and platinum prices can forecast accurately
the volatility (increases) in the oil-price returns for short, medium, and long forecasting
horizons in a statistically significant fashion.

Based on the recommendation of an anonymous referee, we aimed to obtain more
detailed information about our results by re-conducting our forecasting exercise using
quantiles-based estimation of Equation (1). The general quantile regression model in [29]
is as follows: yt = x′tβ(τ) + εt, where τ ∈ (0, 1) and εt+1 are assumed to be independent,
and derived from an error distribution gτ(ε), such that:

∫ 0
−∞ gτ(ε)dε = τ, with the τ-th

quantile equal to 0. The coefficients of the τ-th conditional quantile distribution are esti-
mated as: β̂(τ) = argmin ∑τ

t=1

(
τ − 1{yt<x′t β(τ)}

)
|yt − x′tβ(τ)|, where β(τ) determines the

relationship between the independent variable(s) and the τ-th conditional quantile of the
dependent variable, with 1{yt<x′t β(τ)} being the indicator function. The decision to use this
approach emanated from the recent popularity of quantile-RV models, given that such
estimation goes beyond the conditional mean-type (ordinary least squares (OLS)) approach
used above, and is more informative, since it provides an analysis of the entire conditional
distribution of the dependent variable [30]. In the process, we were able to gauge whether
the forecasting gains reported in Table 1 were specific to the conditional state of RV, with
the lower, median, and upper quantiles capturing low, normal, and high volatilities in
the oil market, respectively. This could provide additional information to investors and
policymakers when taking their respective decisions, enabling them to understand clearly



Energies 2021, 14, 6775 6 of 12

whether the role of these two global risk proxies is important for specific parts of the
conditional distribution of RV or for its entirety. In the former case, clearly these agents
would need to look for other predictors for predicting the specific states of RV where the
gold-to-silver and gold-to-platinum ratios do not produce forecasting gains.

For this reason, we plotted the ratio of the MSFEs over the entire conditional distribu-
tion of the RV due to GS and GP, respectively, derived under the same forecasting (i.e., in-
and out-of-sample) setup as the conditional mean-based analysis, as shown in Figure A3a,b
in the Appendix A. As shown the figures, in the case of GS, the ratio was virtually less
than one for the entire conditional distribution of RV, for forecast horizons larger than two
months, with the strongest gains obtained around the median and moderately low and
high quantiles. For GP, the range of combinations of forecast horizons and quantiles for
which the ratios of MSFEs were less than one was smaller than for GS, but it was again
centered around the median, becoming larger in terms of the quantile values for the short
and long forecast horizons. That is, the best predictive performances of both GS and GP
tended to be concentrated around the normal state of the RV. Relatively weaker results at
the two ends of the conditional distribution of RV seem to suggest that, during extreme
conditions of oil-market volatility, oil traders are likely to herd [31], and hence do not
require too much additional information from predictors over and above the past volatility.
In other words, under very low- and high-volatility states of the oil market, investors and
policymakers can just rely on the lagged volatility to predict the future path (or they may
have to look for alternative predictors).

As an alternative metric of forecast performance, we used the check function underly-
ing the quantile regression estimator as a loss function forecaster. To this end, we used the
check function to compute the ratio of cumulated losses. Results showed that, in the case
of GS, this ratio was less than one mainly for quantiles above the median, with the range
of quantiles for which we observed ratios to be less than one increasing with the length
of the forecast horizon. As for GP, the combinations of quantiles and forecast horizons
yielding a ratio less than one were fragmented, with a center at quantiles above the median.
Complete details of these results are available upon request from the authors.

4. Conclusions

We examined the predictive value of the (log) gold-to-silver and gold-to-platinum
price ratios, which serve as proxies for risks, for the realized variance (RV) of oil-price
movements (that is, returns) using monthly data for the sample periods 1915:01–2021:03
and 1968:01–2021:03. The results of an in-sample predictability analysis showed that these
two ratios tend to increase RV in a statistically significant manner at all five forecasting
horizons (h) of 1, 3, 6, 9, and 12 months ahead. We then turned to a forecasting analysis
that is well established as a more powerful test of predictability, over the out-of-sample
periods 1941:08–2021:03 and 1976:01–2021:03 for the gold-to-silver and gold-to-platinum
price ratios (given the in-sample periods of 1915:01–1941:07 and 1968:01–1975:12), with
the split being determined by structural break tests. From this setup, we found that
statistically significant forecasting gains could be obtained from both these two ratios at
short-, medium-, and long-term forecasting horizons, i.e., for h = 1, 3, 6, 9, and 12 months.
In other words, in-sample evidence of predictability translates into predictability in the
context of a forecasting experiment.

Our results have valuable implications for investors and policymakers as economic
agents, given the importance of real-time forecasts of oil-price volatility for both investors
and policy authorities. Policymakers in particular, could use our findings to obtain infor-
mation on the future path of oil-price volatility due to global proxies of risks, as captured
by the easy-to-calculate gold-to-silver and gold-to-platinum price ratios, in the short to
long term. This knowledge, and the known negative impact of oil-price volatility on
real economic activity, may be useful in anticipating economic recessions and designing
appropriate monetary and fiscal policies for the stabilization or recovery of the macroe-
conomy. Moreover, as volatility is a key input in portfolio decisions, the forecastability of
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oil-price volatility due to the two precious-metals price ratios may be of vital importance
to oil investors.

As an extension of this study, it would be interesting to investigate the role of these
two ratios in predicting the volatility of other energy prices. To account for the effects of
these two ratios on different frequency and time components of the volatility, one could
use wavelet-based decomposition of the underlying returns data before computing RV, to
obtain more detailed results.
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Figure A2. Plot of Recursive Estimate of γ. Note: see note to Table 1. Plots include the recursive estimate of γ (blue
line) along with the 95% confidence bands (red dotted lines). (a) Time-varying predictability of GS. (b) Time-varying
predictability of GP.
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Figure A3. Plot of relative MSFEs from the quantiles-based predictive regression. Note: relative MSFE values less than 
one in the above figures are indicative of better performance of the model with a predictor (GS or GP), relative to the 
model without it, across forecasting horizons and conditional distribution of RV. (a) Forecasting performance of GS. (b) 
Forecasting performance of GP. 

References 
1. Boubaker, H.; Cunado, J.; Gil-Alana, L.A.; Gupta, R. Global crises and gold as a safe haven: Evidence from over seven and a 

half centuries of data. Phys. A 2020, 540, 123093. 
2. Huang, D.; Kilic, M. Gold, platinum, and expected stock returns. J. Financ. Econ. 2019, 132, 50–75. 
3. Bouri, E.; Demirer, R.; Gupta, R.; Wohar, M.E. Gold, platinum and the predictability of bond risk premia? Financ. Res. Lett. 

2021, 38, 101490. 
4. Pham, Q.T.T.; Rudolf, M. Gold, platinum, and industry stock returns. Int. Rev. Econ. Financ. 2021, 75, 252–266. 
5. Bekaert, G.; Engstrom, E.C.; Xu, N.R. The time variation in risk appetite and uncertainty. Manage. Sci. 

https://doi.org/10.1287/mnsc.2021.4068. 
6. Knight, F.H. Risk, Uncertainty and Profit; Houghton Mifflin Company: Boston, MA, USA; New York, NY, USA, 1921. 
7. Bernanke, B.S. Irreversibility, uncertainty, and cyclical investment. Q. J. Econ. 1983, 98, 85–106. 
8. Conrad, C.; Loch, K.; Rittler, D. On the macroeconomic determinants of long-term volatilities and correlations in US stock and 

crude oil markets. J. Empir. Financ. 2014, 29, 26–40. 
9. Pan, Z.; Wang, Y.; Wu, C.; Yin, L. Oil price volatility and macroeconomic fundamentals: A regime switching GARCH-MIDAS 

model. J. Empir. Financ. 2017, 43, 130–142. https://doi.org/10.1016/j.jempfin.2017.06.005. 

Figure A3. Plot of relative MSFEs from the quantiles-based predictive regression. Note: relative MSFE values less than one
in the above figures are indicative of better performance of the model with a predictor (GS or GP), relative to the model
without it, across forecasting horizons and conditional distribution of RV. (a) Forecasting performance of GS. (b) Forecasting
performance of GP.

References
1. Boubaker, H.; Cunado, J.; Gil-Alana, L.A.; Gupta, R. Global crises and gold as a safe haven: Evidence from over seven and a half

centuries of data. Phys. A 2020, 540, 123093. [CrossRef]
2. Huang, D.; Kilic, M. Gold, platinum, and expected stock returns. J. Financ. Econ. 2019, 132, 50–75. [CrossRef]
3. Bouri, E.; Demirer, R.; Gupta, R.; Wohar, M.E. Gold, platinum and the predictability of bond risk premia? Financ. Res. Lett. 2021,

38, 101490. [CrossRef]
4. Pham, Q.T.T.; Rudolf, M. Gold, platinum, and industry stock returns. Int. Rev. Econ. Financ. 2021, 75, 252–266. [CrossRef]
5. Bekaert, G.; Engstrom, E.C.; Xu, N.R. The time variation in risk appetite and uncertainty. Manag. Sci. 2021. [CrossRef]
6. Knight, F.H. Risk, Uncertainty and Profit; Houghton Mifflin Company: Boston, MA, USA; New York, NY, USA, 1921.
7. Bernanke, B.S. Irreversibility, uncertainty, and cyclical investment. Q. J. Econ. 1983, 98, 85–106. [CrossRef]
8. Conrad, C.; Loch, K.; Rittler, D. On the macroeconomic determinants of long-term volatilities and correlations in US stock and

crude oil markets. J. Empir. Financ. 2014, 29, 26–40. [CrossRef]
9. Pan, Z.; Wang, Y.; Wu, C.; Yin, L. Oil price volatility and macroeconomic fundamentals: A regime switching GARCH-MIDAS

model. J. Empir. Financ. 2017, 43, 130–142. [CrossRef]

http://doi.org/10.1016/j.physa.2019.123093
http://doi.org/10.1016/j.jfineco.2018.11.004
http://doi.org/10.1016/j.frl.2020.101490
http://doi.org/10.1016/j.iref.2021.04.002
http://doi.org/10.1287/mnsc.2021.4068
http://doi.org/10.2307/1885568
http://doi.org/10.1016/j.jempfin.2014.03.009
http://doi.org/10.1016/j.jempfin.2017.06.005


Energies 2021, 14, 6775 12 of 12

10. Demirer, R.; Gupta, R.; Pierdzioch, C.; Shahzad, S.J.H. The predictive power of oil price shocks on realized volatility of oil: A note.
Resour. Policy 2020, 69, 101856. [CrossRef] [PubMed]

11. Gupta, R.; Pierdzioch, C. Forecasting the Volatility of Crude Oil: The Role of Uncertainty and Spillovers. Energies 2021, 14, 4173.
[CrossRef]

12. Bakas, D.; Triantafyllou, A. The impact of uncertainty shocks on the volatility of commodity prices. J. Int. Money Financ. 2018, 87,
96–111. [CrossRef]

13. Bakas, D.; Triantafyllou, A. Commodity price volatility and the economic uncertainty of pandemics. Econ. Lett. 2020, 193, 109283.
[CrossRef]

14. Andersen, T.G.; Bollerslev, T. Answering the skeptics: Yes, standard volatility models do provide accurate forecasts. Int. Econ.
Rev. 1998, 39, 885–905. [CrossRef]

15. Do, H.Q.; Bhatti, M.I.; Shahbaz, M. Is ‘oil and gas’ industry of ASEAN5 countries integrated with the US counterpart? Appl. Econ.
2020, 52, 4112–4134. [CrossRef]

16. Iqbal, N.; Manzoor, M.S.; Bhatti, M.I. Asymmetry and Leverage with News Impact Curve Perspective in Australian Stock Returns’
Volatility during COVID-19. J. Risk Financ. Manag. 2021, 14, 314. [CrossRef]

17. Gkillas, K.; Gupta, R.; Pierdzioch, C. Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss. J.
Int. Money Financ. 2020, 104, 102137. [CrossRef]

18. Bouri, E.; Gupta, R.; Pierdzioch, C.; Salisu, A.A. El Niño and forecastability of oil-price realized volatility. Theor. Appl. Climatol.
2021, 144, 1173–1180. [CrossRef]

19. Demirer, R.; Gkillas, K.; Gupta, R.; Pierdzioch, C. Risk aversion and the predictability of crude oil market volatility: A forecasting
experiment with random forests. J. Oper. Res. Soc. 2021. [CrossRef]

20. Salisu, A.A.; Gupta, R.; Bouri, E.; Ji, Q. Mixed-frequency forecasting of crude oil volatility based on the information content of
global economic conditions. J. Forecast. 2021. [CrossRef]

21. Poon, S.-H.; Granger, C.W.J. Forecasting volatility in financial markets: A review. J. Econ. Lit. 2003, 41, 478–539. [CrossRef]
22. Bampinas, G.; Panagiotidis, T. Oil and stock markets before and after financial crises: A local Gaussian correlation approach. J.

Futures Mark. 2017, 37, 1179–1204. [CrossRef]
23. Van Eyden, R.; Difeto, M.; Gupta, R.; Wohar, M.E. Oil price volatility and economic growth: Evidence from advanced economies

using more than a century of data. Appl. Energ. 2019, 233, 612–621. [CrossRef]
24. Corsi, F. A simple approximate long-memory model of realized volatility. J. Financ. Econom. 2009, 7, 174–196. [CrossRef]
25. Campbell, J.Y. Viewpoint: Estimating the equity premium. Can. J. Econ. 2008, 41, 1–21. [CrossRef]
26. Newey, W.K.; West, K.D. A simple positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix.

Econometrica 1987, 55, 703–708. [CrossRef]
27. Bai, J.; Perron, P. Computation and analysis of multiple structural change models. J. Appl. Econ. 2003, 18, 1–22. [CrossRef]
28. McCracken, M.W. Asymptotics for out of sample tests of Granger causality. J. Econom. 2007, 140, 719–752. [CrossRef]
29. Koenker, R.; Bassett, G. Regression quantiles. Econometrica 1978, 4, 33–50. [CrossRef]
30. Gkillas, K.; Gupta, R.; Pierdzioch, C. Forecasting realized gold volatility: Is there a role of geopolitical risks? Financ. Res. Lett.

2020, 35, 101280. [CrossRef]
31. Balcilar, M.; Demirer, R. Effect of Global Shocks and Volatility on Herd Behavior in an Emerging Market: Evidence from Borsa

Istanbul. Emerg. Mark. Financ. Trade 2015, 51, 140–159. [CrossRef]

http://doi.org/10.1016/j.resourpol.2020.101856
http://www.ncbi.nlm.nih.gov/pubmed/34173422
http://doi.org/10.3390/en14144173
http://doi.org/10.1016/j.jimonfin.2018.06.001
http://doi.org/10.1016/j.econlet.2020.109283
http://doi.org/10.2307/2527343
http://doi.org/10.1080/00036846.2020.1731408
http://doi.org/10.3390/jrfm14070314
http://doi.org/10.1016/j.jimonfin.2020.102137
http://doi.org/10.1007/s00704-021-03569-1
http://doi.org/10.1080/01605682.2021.1936668
http://doi.org/10.1002/for.2800
http://doi.org/10.1257/.41.2.478
http://doi.org/10.1002/fut.21860
http://doi.org/10.1016/j.apenergy.2018.10.049
http://doi.org/10.1093/jjfinec/nbp001
http://doi.org/10.1111/j.1365-2966.2008.00453.x
http://doi.org/10.2307/1913610
http://doi.org/10.1002/jae.659
http://doi.org/10.1016/j.jeconom.2006.07.020
http://doi.org/10.2307/1913643
http://doi.org/10.1016/j.frl.2019.08.028
http://doi.org/10.1080/1540496X.2015.1011520

	Introduction 
	Data and Methodologies 
	Empirical Results 
	Conclusions 
	
	References

