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Abstract: In this paper, a twelve-band hysteresis control is applied to a recent thirteen-level asymmet-
rical inverter topology by employing a robust proportional-integral (PI) controller whose parameters
are decided online by genetic algorithm (GA). The asymmetrical inverter topology can generate
thirteen levels of output voltage incorporating only ten switches and exhibits boosting capability.
A 12-band hysteresis current control strategy is applied to ensure the satisfactory operation of the
inverter. It is designed to provide a sinusoidal line current at the unity power factor. The tuning of the
PI controller is achieved by a nature inspired GA. Comparative analysis of the results obtained after
application of the GA and the conventional Ziegler–Nichols method is also performed. The efficacy
of the proposed control on WE topology is substantiated in the MATLAB Simulink environment and
was further validated through experimental/real-time implementation using DSC TMS320F28379D
and Typhoon HIL real-time emulator (Typhoon-HIL-402).

Keywords: multilevel inverter; multiband hysteresis control; genetic algorithm; Ziegler–Nichols
method

1. Introduction

Voltage source inverters (VSI) produce a sinusoidal voltage of desired phase and mag-
nitude using PWM techniques. Multilevel voltage source inverters (MLIs) have emerged
as feasible solutions to improve the performance of renewable energy systems (RES), grid
integration, electric vehicles, uninterruptible power supplies (UPS) and other state of the
art power electronics utilities [1,2]. These converters can generate output voltages of the
better harmonic spectrum and reduced THD levels through appropriate switching [3]. The
conventional multilevel inverters are the neutral point clamped multilevel inverter (NPC-
MLI) [4], cascaded H bridge inverter and flying capacitor multilevel inverter (FC-MLI).
With the increase in the output voltage levels count, a number of the flying capacitors in
FC-MLI, the number of the clamping diodes in NPC-MLI and the number of isolated DC
sources in CHB-MLI increases considerably. Moreover, FC and NPC converters require
additional circuit and sophisticated algorithms to maintain the voltage balance across
the capacitors.

Furthermore, load end transformers or DC-DC converters are also required to obtain
the high value of AC voltage. All of these requirements make the inverter more complex,
large and costly. To overcome the drawbacks of traditional topologies, switched capacitor
based multilevel inverters are presented in [5–11]. These topologies aim to reduce the DC
source count and number of active switches. In this work, a recently introduced 13-level
WE type inverter [12], a switched capacitor multilevel inverter, is explored for hysteresis
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control with the 12-band operation. This topology was also introduced as a 9-level topology
in [13]. The bands are decided by applying the genetic algorithm (GA), and the balancing
of the DC link is maintained by using redundant states. By choosing the proper switching
sequence and charging and discharging paths, capacitor voltage balancing is achieved. A
single sensor is required across the DC link to operate in closed-loop control [14]. High
quality stabilized load voltage is required by industrial applications. The performance and
operation of multilevel inverters depend on the type of control strategy [15]. Various control
techniques are used in multilevel inverters such as conventional pulse width modulation
(PWM), hysteresis control, sliding mode control techniques and modern predictive control.
Current control techniques for conventional inverters have been discussed in [15,16].

Hysteresis current control technique is employed in [17] for multilevel inverters.
In [17], although a constant switching frequency is achieved, implementation is complex,
and in [18], another method with variable switching frequency and ease in implementation
is achieved. The hysteresis current control technique has a major challenge of selecting
the number of levels to limit the current error to the hysteresis bands [19]. One strategy is
time-based lockout which will repetitively limit the current error in the bounds. Another
approach is using multiple bands to control the current error [20]. This type of control is
also discussed in [21–23]. Different types of hysteresis control such as multiband, multi
offset band and time-based multi offset band controls are used in [24]. These methods are
widely applicable to the topologies that have inherited capacitor balancing. Still, if the
external capacitor balancing is required, then an additional proportional integrator (PI)
control loop is required to balance the capacitors and generate the desired current error
reference [25].

Tuning PI control parameters is cumbersome and various difficulties such as non-
linearities, time delays and higher-order systems make it time-consuming and less precise.
Over the past few years, heuristic methods have been proposed to solve the problem of
tuning. Ziegler–Nichols is one of the classical methods, but it is hard to find the optimal
parameters in industrial power converters. Therefore, the capability of the PI tuning
method has to be increased by adding more features. Many AI techniques are used in
tunings, such as neural networks, fuzzy neural logic [26] and fuzzy system, to find the
optimal value of PI constants. Nature inspired techniques such as genetic algorithm
(GA) [27,28], particles swarm optimization (PSO) [29], bee algorithm (BA) [30] and bat
algorithm (BAT) [31] have gained interest in achieving high efficiency and finding an
optimal solution to the problem [32].

In this paper, a new GA based PI-controlled 12-band hysteresis current control is
applied on WE topology. The 13-level WE type inverter topology and its switching states are
described in Section 2. Section 3 discusses the implementation of 12-band hysteresis control
of the WE inverter topology with the GA for tuning the PI controller and the conventional
Ziegler–Nichols method, along with their comparative analysis. Section 4 shows and
analyzes simulation results with different hysteresis bandwidth (h), load conditions and
tuning methods. In Section 5, experimental results are presented and discussed, and
Section 6 concludes and summarizes the paper.

2. WE Topology Circuit Description and Operation

Proposed 12-band hysteresis control is tested on a 13-level inverter topology resem-
bling the English letters “WE”. This topology generates 13 levels at the load voltage.
Figure 1 illustrates the circuit of the 13-level WE-type inverter topology. The arrangements
consist of a DC source that forms the main DC link, two capacitors forming the auxiliary
DC link, nine insulated gate bipolar junction transistors (IGBTs) and one anti-parallel
connected AC switch. The switches S1, S2, S3, S1

′, S2
′, S3

′ and S4 form a W and S5, S5
′ and

the AC switch S6 form the letter E, hence the name WE-type inverter. With a single DC
source in its main DC link, this topology is capable of producing 1.5 times boosted output
voltage. The switches S1 and S1

′, S2 and S2
′, S3 and S3

′ and also S5, S5
′ and S6 perform in a

complimentary fashion. As persistent with the asymmetrical topologies, the switches of
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this topology are also subjected to different voltage stresses and operational frequencies.
The circuit configuration suggests that the upper switches of the converter will block higher
voltage and operate at low frequency, while the lower switches will block a lower voltage
and operate at high frequency compared to the upper switches. Figure 2 exhibits all the
possible sixteen states of the converter. Each subfigure highlights the conduction path
and the current flow from left to right in the load is the positive current. The states also
explain the charging and discharging conditions of the capacitors with current directions
in Table 1.
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Table 1. States of WE-13 inverter.

State S1 S2 S3 S4 S5 S5
′ S6 Io C1 C2 Vo

1 1 0 1 1 0 1 0 + D D 3Vdc/2
2 1 0 1 1 0 0 1 + - D 5Vdc/4
3 1 0 0 0 0 1 0 + - - Vdc
4 1 0 0 0 0 0 1 + C - 3Vdc/4
5 1 0 0 0 1 0 0 + C C Vdc/2
6 1 1 1 0 0 1 0 + D D Vdc/2
7 1 1 1 0 0 0 1 + - D Vdc/4
8 1 1 1 0 1 0 0 + - - 0
9 0 0 0 0 0 1 0 + - - 0

10 0 0 0 0 0 0 1 + C - −Vdc/4
11 0 0 0 0 1 0 0 + C C −Vdc/2
12 0 1 1 0 0 1 0 + D D −Vdc/2
13 0 1 1 0 0 0 1 + - D −3Vdc/4
14 0 1 1 0 1 0 0 + - - −Vdc
15 0 1 0 1 0 0 1 + C - −5Vdc/4
16 0 1 0 1 1 0 0 + C C 3Vdc/2

If Sf1, Sf1
′, Sf2, Sf2

′, Sf3, Sf3
′, Sf4, Sf5, Sf5

′ and Sf6 represent the switching functions of S1,
S1
′, S2, S2

′, S3, S3
′, S4, S5, S5

′ and S6, the output voltage of the converter that represents all
the states can be derived as follows. Each switching function will have a value as follows:

Sfj =

{
0 if Sj is off
1 if Sj is on

(1)

The output voltage ex.
The output voltage expression in the preliminary form as:

Vo = Vab + Vbc + Vcd + Vde (2)

where, the terms can be defined as follows:

Vab = −Vdc(1− Sf1) (3)

Vbc = (1− Sf2)(1− Sf4)[Vdc − (Vc1 + Vc2)] + (1− Sf2)Sf2Vdc (4)

Vcd = −(1− Sf3)Sf4(Vc1 + Vc2) (5)

Vde = (1− Sf5)
(
1− S′f5

)
Sf6Vc1 + (1− Sf5)(1− Sf6)S

′f5(Vc1 + Vc2) (6)

Equations (4)–(6) and the following auxiliary DC-link equation will lead to all the
possible states presented in the diagrams of Figure 2 and in Table 1.

Vc1 + Vc2 =
Vdc

2
(7)

3. Hysteresis Control for WE Topology

Hysteresis current control technique works on the principle of regulating the current
error (ei) within the multiple bands. The number of bands is (n − 1) where n = number of
levels generated by the inverter. The type of hysteresis modulation used in WE topology
is the multiband hysteresis current control technique. This technique enjoys various
advantages such as a good dynamic response and stable operation [20]. However, this
technique is prone to noise in the current error [23]. In this technique, the current error
is closely checked within limits decided by hysteresis band ‘h’. The efficacy of hysteresis
band control is proved to be an efficient and stable control, especially for topologies having
inherited balancing capability. However, in the last few years, hysteresis control is being
applied on topologies that do not have inherent capacitor balancing by using additional
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PI controllers. These controllers’ parameters Kp and Ki are tuned to generate the current
reference from voltage error across the capacitors. However, the tuning of the PI controller
is a very hard and time-consuming task because of the complexity and nonlinearity in
control [15]. Therefore, there is always a need to find the precise Kp and Ki values. A
different nature inspired heuristic approach is taken into consideration to find the constants
of the PI controller. One widely available is the genetic algorithm in [26]. In this paper, PI
constants are found using the Ziegler–Nichols method and the genetic algorithm.

3.1. Implementation of 12-Band Hysteresis Control

In hysteresis current control, gate signals are switched to force the load current to
follow the current reference value within the predefined hysteresis bands. The multiband
hysteresis control technique uses n − 1 bands for the n level inverter to limit the current
error and generate an n-level load voltage. So, for 13-levels 12 bands are needed in this
technique. These bands are made by two parameters that are load voltage levels (multiple
of source voltage Vdc) and current error ∆i. Upper bands generate the positive cycle and
lower bands generate the negative cycle of the load voltage.

In Figure 3, complete control flow is shown. The voltages across the capacitors are
sensed and compared with the set reference value of voltage that is to be maintained across
the capacitors. To balance this link capacitor voltage and generate the reference current in
proportion to their required value of load current Kp and Ki value of the PI controller is
found. In the next stage, the output of the PI controller is then multiplied by synchronizing
vector to match the power frequency of load voltage. The output of the multiplier generates
the output signal equal to the reference current in accordance to load current. The reference
and load current are subtracted and the current error is generated, which is of the same
frequency and phase as load voltage.
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The error signal is then given to the hysteresis block. As the voltage increases, the
current has to change the direction to keep itself in the band limit. The error may reach
the next boundary if it has not changed the direction. If the error passes, the band lim-
its the inverter switches to the next voltage level. Twelve bands (0→−h) (−h→−2 h)
(−2 h→−3 h) (−3 h→−4 h) (−4 h→−5 h) (−5 h→−6 h) and (0→h) (h→2 h) (2 h→3 h)
(3 h→4 h) (4 h→ 5 h) (5 h→6 h) have the bandwidth ‘h’ of about 2% to 5% of rated load cur-
rent. For achieving the load voltage of 13 level, the capacitor voltage has to be maintained
to Vdc/4. The current error is quantified into 12 bands of bandwidth ‘h’. The variation of
error leads to transitions among the different voltage levels. Further, the switching states
are selected according to the transitions, and the gate signal is triggered.
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3.2. Heuristic Based PI Control

The PI controller generates the required current error in the hysteresis band control.
The optimal tuning of the gain constants, namely proportional and integral gains (Kp and
Ki), is difficult. This paper employs a nature based and evolution rooted genetic algorithm
(GA) to find the best possible values of these gain constants in minimum time duration.
These techniques provide the fine-tuning of weighting factors for PI controllers and acquire
the global optimum solutions [13,14]. The most striking feature of this method is that it
avoids the early settlement to the suboptimal search space and has very fast convergence
with a reduction in the inaccuracies and uncertainties in obtaining the global optimum
solution in the region of search space [15,16]. The merits of a GA-tuned PI controller over
the conventional PI controller are as follows:

• The searching of the points in a parallel manner provides a much wider region of
search space as compared to the single point search, which is carried out usually in
the PI controller.

• The direction of the search space is affected only by objective function and fitness level
and independent of the PI controller’s extra integral data.

• It employs the probabilistic transition rule rather than deterministic.

The GA based PI controllers are applied in relevant process control industries because
they handle the processes with dynamic parameters, non-linear constraints and multiple
objectives [26].

3.3. Ziegler–Nichols Method

The Ziegler–Nichols method is a heuristic method used to tune the PI controller. This
method is employed by taking the values of integral and derivative gains equal to zero.
The proportional gain (Kp) is then allowed to increase until a gain is reached where the
control loop output starts oscillating with constant amplitude. The Ziegler–Nichols method
has a limitation that it can be applied to tune the processes that run in a closed-loop only.
Determination of the definitive gain value is achieved by only finding the value of the
proportional gain that results in the indefinite oscillation of the loop at steady state. This
states that the gain obtained from the derivative and integral controller are set to zero so
that the effect of proportional gain can be determined. One more important value linked
with this proportional only method of control tuning is the ultimate period. This period
is the time required to complete a complete oscillation while the system is at steady state.
These two parameters are used to find the loop tuning constants of the PI controller.

3.4. Genetic Algorithm

Metaheuristic-based algorithms exhibited their effectiveness in solving the real-world
problems requiring optimization that are non-linear in nature and their convergence with
the traditional techniques are either tedious or do not occur at all. Evolutionary techniques
inspired by nature have evolved and are applied in a multitude of optimization applications.
In this paper, genetic algorithm (GA) [26,27] is employed to find the values of the gain
constants (Kp and Ki) of the PI controller that ultimately balances the voltage across
the capacitors, which is a condition to generate 13 levels at the output. Moreover, the
appropriate value of gain constant reflects in the minimization of the overall THD in the
output voltage. The most striking features of the GA are:

• There is a guaranteed convergence (within a certain tolerance band).
• Knowledge of the derivatives is not a requirement (as the iterations can proceed with

input-output mapping).

The various steps involved in the application of the GA are discussed in this sub-
section and is further explained with the help of a flow chart.
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3.4.1. Design Variables

The design variables of the GA are generally represented in the form of binary strings
of 0 and 1 to facilitate the digital signal processing. The initial population is selected in
a purely random manner. The weighted constants k1, k3, · · · , k49 are such defined that
k1 > k3 >· · ·> k24, with k1 = 1000. The first eight bits are allocated to first design variables,
which are obtained by linking the strings end to end, with the next eight bits to second
design variable and so on. In order to satisfy the dependent limits on design variables for
the problem, the total harmonic distortion is calculated by:

THD =

√
V22 + V32 + V4

2 + V52 . . . V49
2

V1
(8)

3.4.2. Selection

In this step, the selection of the two parents is being carried out purely on the prob-
abilistic basis. Roulette wheel criteria-based approach is being applied. The random
selection of parents ensures a thorough exploration of selection domain. This also get
reflected in the results as a sudden surge, as shown in Figure 4.
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3.4.3. Crossover

In this step, the intermixing of the genes in a particular way takes place. In this work,
the process of the formation of the child’s chromosomes takes place in such a manner that
half of the bits are taken from one parent and the other half from the spouse. The process of
intermixing repeats for all 24 bytes of the chromosomes is shown in Figure 4. There are N
numbers of the children produced, where ε is the current child as depicted in the flowchart
in Figure 5.

3.4.4. Mutation

The process of the improvement in the various traits of offspring compared to the
parent characteristics is known as mutation. This mutation process is incorporated in the
genetic algorithm by the flipping of the values in the bits. In this way, every bit of each
byte of the offspring’s chromosome is altered. Furthermore, it ensures that some of the
children inherit the same characteristics from parents and the whole children population is
not mutated. Instead, a random number λ is generated and, in case the value of λ is less
than a fixed number M, then only the mutation of offspring will take place.

The efficacy of the GA over other nature inspired techniques such as bee and bat
algorithms can be seen in Figure 6.The fitness function in terms of minimum THD is
used for checking the applicability and getting the faster response from the PI controller.
From the figure it is clearly seen that the convergence of the GA is faster than bee and bat
algorithm-based PI controllers.

3.5. Application of Genetic Algorithm

Output THD depends on the value of the fundamental component and magnitude
of harmonics.

THD =

√
V2

2+V3
2+V4

2+V5
2 ...V49

2

V1

THD = (THD)min
(9)
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This equation is being treated as the objective function for the application of nature
inspired technique based genetic algorithm (GA). The AC load voltage reference can be
generated by the below mentioned equation:

Van = Kpl il + Kil

∫
ildt (10)

il = il
∗ − il (11)

where il∗ is load current reference.
As the RMS value of the output voltage is the function of the voltage across the

capacitors and it is required to maintain 0.25 Vin (i.e., one fourth of the applied DC voltage)
and output current is a function of gain constants. The voltage across the capacitors is
controlled by employing the PI controller such that

i2∗ = f
(
Kp2, Ki2, Kp3, Ki3

)
(12)

il
∗ =

(
Kp2V2 + Ki2

∫
V2dt) + (Kp3V3 + Ki3

∫
V3dt

)
(13)

V2 = Vc1
∗ −Vc1= Vc2

∗ −Vc2, Vc2
∗ and Vc1

∗ are capacitor voltage references.
Constrained involved (when 100 V DC source voltage is applied):

48 ≤ V1 −V2(e) ≤ 50 (14)

Equation (4) is considered as the fitness function. The PI controller starts with the ran-
domly selected values from the initial population, capacitor voltage takes place according
to these selected values of gain constants. The values of the gain constants obtained by
following genetic algorithm influences the voltage balancing across the capacitors. This
ultimately influences the total harmonic distortion (THD) of the output voltage, the steps
involved in the application of the GA for searching the most appropriate values for the PI
controller to obtain the voltage balancing across the capacitors and for minimum value of
the THD, which are depicted by a flow chart in Figure.

4. Simulation Results and Analysis

Simulations were performed on MATLAB Simulink for testing the proposed control.
Figure 7a exhibits the output voltage and current waveforms of the 13-level WE topology.
These results are obtained at h = 0.03 and the PI constants value is found by the GA based
controller. The parameters of simulation are shown in Table 2. The PI constants values
calculated are 0.01 and 0.0299, respectively. It is observed that the voltage and current
waveforms are found to be in phase with each other and the power factor is approximately
unity. The inverter’s output voltage gets boosted to 1.5 times the DC source voltage at the
input side.

Figure 7b,c presents the harmonic analysis of the output current and voltage waveform.
It is observed that the harmonic components appearing in the lower frequency range are
less compared to higher order harmonic, which can be easily filtered out. The THD of
the output voltage and output current at h = 0.03 is 4.76% and 0.83%, respectively. A
performance comparison of the above results with the conventional ZN method and GA
based control is shown in Figure 8; for low h values the response with ZN is slower and
oscillatory than for GA. For h = 0.002 and h = −0.03, the DC link voltage has been stabilized
much earlier and faster at PI constants values calculated from ZN. Overall, it can be seen
that the genetic algorithm-based control has given values of Kp and Ki much more precise
and exact, which stabilizes the DC link voltage much earlier than values calculated from
ZN. The variation in the average switching frequency and THD of the load current with the
hysteresis band control and its evolution is shown in Figure 9a.The main issue faced with
the application of hysteresis control is the irregularity in the switching frequency of the
inverter. Nonetheless, on increasing the hysteresis bandwidth (h), this anomalous behavior
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can be limited, which deteriorates the current THD. The secondary DC bus remains well
regulated. The regulator gains obtained by applying the nature inspired GA algorithm are
0.01 and 0.0299 for proportional and integral action, respectively. In some applications, the
hysteresis band is limited to some small values and should not exceed a limit, and it is not
possible to limit the switching frequency and the THD of the load current after applying
hysteresis band control, as shown in Figure 9a. Several solutions were also proposed
in literature, such as the use of constant switching frequency described in [29,30]. In
Figure 9b, the THD of the output voltage decreases sharply when the hysteresis bandwidth
(h) decreases from 0.01 to 0.03, reaches a minimum value of 4.64% at h = 0.03 and, again
with the increase in h, the THD value increases slightly. Similarly, the value of current THD
also experienced a sharp decrease in the THD level initially and then a slight increase with
the increasing h is noticed.
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Table 2. Simulation parameters.

SNo. Parameter Simulation Value Quantity

1. DC Source Voltage 100 V 1
2. Peak to Peak Voltage 150 V -
3. Frequency 50 Hz -
4. Switching Frequency 5000 Hz -
5. Capacitors 4700 µF, 50 V 2
6. Resistive Load 30 Ω, 60 Ω, 120 Ω 2
7. Inductive Load 40 mH 1

Total harmonic distortion percentage of voltage and current with varying load have
been shown in Figure 10a at hysteresis bandwidth of 0.03. THD percentage values are
lower for low load values and increasing as the load is increased in both load voltage and
load current. In Figure 10b, DC link capacitor voltage has been shown for four different
hysteresis band values, that is h = 0.01, h = 0.03, h = 0.02 and h = 0.04. The response has
been shown when the Kp and Ki values are calculated from both genetic algorithm and
Ziegler–Nichols method. One of the parameters that is also important for proper generation
of voltage levels is DC link voltage which is maintained by balancing capacitor voltage to
25 volts each. In addition, for this it is necessary to analyze the effect of load voltage and
hysteresis bandwidth variation. For high load value, the capacitor ripple percentage is also
high and among the maximum at h = 0.01. For medium load at 50 ohm, 40 mH, there is an
overall dip in the ripple percentage, especially at h = 0.04. In the case of load value, the
capacitor ripple is less and minimum at h = 0.03.
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5. Experimental Results

A 200 V-600 W experimental prototype has been designed to check the operability and
confirm the simulation results for WE-type thirteen-level inverter controlled by 12-band
hysteresis control using a GA based PI controller. The output frequency and switching
frequencies selected are 50 Hz and 5000 Hz, respectively. The maximum input voltage is
100 Volts. Experimental setup has been shown in Figure 11. The gate pulses are generated
by Texas DSP TMS320F28379D, and the dead time was taken as 5 microseconds. Further,
a real-time validation is also performed using a Typhoon HIL emulator. In Figure 12,
thirteen-level output voltage with load current and DC link voltage is shown, which clearly
confirms the voltage boosting capability. The input voltage taken is 100 Volts and output
peak voltage is 150 Volts. The efficiency of the inverter is around 94% at rated power
output on AC load. Frequency spectrums for load voltage and current at h = 0.03 have
been shown in Figure 13, which are very close to the simulated results. Output voltage
and current for three different hysteresis bandwidths (h) are shown in Figure 14. The load
taken is 120 Ω and 40 mH. To show the satisfactory operation of WE-type topology using
12-band hysteresis control, two different types of conditions are created and response of
prototype is observed. In Figure 15a, load voltage and current with voltage across C1 is
shown when the load impedance is varied in three stages. The waveforms clearly show
that while varying the load impedance, the load voltage waveforms are not affected and
voltage balancing across the DC link is done by varying the proportional constants (Kp
and Ki) using a real-time GA based PI controller. Operation of inverter under variable DC
source voltage has been shown in Figure 15b. Three different DC source voltages, 70 volts,
100 Volts and 20 Volts, are taken and constant load of 130 Ω and 40 mH is applied. The
DC link is well regulated and output load voltage and current are clearly defined. Power
loss analysis has been done by PLECS Simulation software and also verified on actual
hardware. Loss breakup across the switches is shown in Figure 16. Experimental prototype
of 200 V-300 W is used to validate the loss calculations. Total loss calculated by PLECS is
~9 W and on hardware is ~10 W.
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6. Conclusions

A twelve-band hysteresis control technique for the proposed thirteen-level WE inverter
topology is presented in this paper. The applied controller gives approximately sinusoidal
current with unity power factor. The best results were obtained at h = 0.03. The DC link
voltage is well maintained at Vdc/2 using a genetic algorithm (GA) based PI controller. The
convergence rate of the GA for finding the most appropriate values for gain constants is very
high and therefore results in the tuning of the controller in a short duration compared to the
conventionally used Ziegler–Nichols method. The value of the proportional and integral
gain constants calculated after the application of the GA gave additional advantages such
as early settling of DC link voltages. Load voltage and current THDs reduced to 5.2% and
1.2%, respectively. Ripple across the capacitors at h = 0.03 is minimum, which reduces the
size and rating of capacitors. After applying twelve-band hysteresis control, the analysis of
the results is performed and verified by hardware/real-time implementation using DSP
TMS320F28379D and Typhoon HIL real-time emulator.
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