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Abstract: This study uses an artificial neural network (ANN) as an intelligent controller for the
management and scheduling of a number of microgrids (MGs) in virtual power plants (VPP).
Two ANN-based scheduling control approaches are presented: the ANN-based backtracking search
algorithm (ANN-BBSA) and ANN-based binary practical swarm optimization (ANN-BPSO) algo-
rithm. Both algorithms provide the optimal schedule for every distribution generation (DG) to
limit fuel consumption, reduce CO2 emission, and increase the system efficiency towards smart
and economic VPP operation as well as grid decarbonization. Different test scenarios are executed
to evaluate the controllers’ robustness and performance under changing system conditions. The
test cases are different load curves to evaluate the ANN’s performance on untrained data. The
untrained and trained load models used are real-load parameter data recorders in northern parts
of Malaysia. The test results are analyzed to investigate the performance of these controllers under
varying power system conditions. Additionally, a comparative study is performed to compare their
performances with other solutions available in the literature based on several parameters. Results
show the superiority of the ANN-based controllers in terms of cost reduction and efficiency.

Keywords: artificial neural network; virtual power plant; scheduling; energy management; multi-microgrids

1. Introduction

Over recent years, there has been a sharp growth in both energy consumption and
population, whereas the conventional energy source price is increasing and its availability
is dwindling [1]. Global warming and greenhouse emissions are the main harmful results
of fossil fuel consumption and their impact can hardly be irreversible [2,3]. Therefore,
attention is being paid to other alternative sources such as nuclear and renewable energy
sources to reduce the generation using combustible fuels [4–6]. In this regard, many
governments encourage distributed generation connections (DG) based on the distribution
level. Nowadays, DGs are the main core of microgrids (MGs), which have received great
attention and developed rapidly. Especially regarding grid-connectedness, these resources
can be integrated into the MG system for the best operation and management [7,8]. The MG
could manage, aggregate, and deploy DGs, for the most part when a grid is disconnected.
Alternative aggregator choice dependent on smart grid upgrades is the concept of a virtual
power plant (VPP) [9–11].

In this context, the integration and coordination of DGs in MGs could be undertaken
by upgrading VPP to supply power quality and add value to the power system networks.
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Normally, a single MG is very small to participate in the market of electricity. Including the
MGs in a VPP system could allow for more profitable access to electricity markets. Thus,
this merge will attempt to address these shortcomings and investigate means of integrating
MGs in a VPP concept, which can assist utilities massively in scaling up a large number
of DGs into current distribution networks. However, good mitigation and integration
control of VPP can reduce power losses and increase reliability. As a result, the scheduling
management process is required for reliability and stability due to the high installation and
integration of DGs in the system [4–6]. The main goal of the power generation scheduling
process is to maximize the benefits and also to reduce costs. However, organizing the
optimal scheduling depends on many factors, for example, regarding the type of DGs,
cost of electricity, type of fuel, and demand side. In this regard, scheduling problems
need a smart controller for the VPP system using optimization algorithms. Thus, several
optimization algorithms have been established by researchers recently, such as the genetic
algorithm [7], gravitational search algorithm [9–11], butterfly algorithm [12], herd-related
optimization approaches [13], whale optimization algorithm [14], cat swarm optimiza-
tion [15], practical swarm optimization (PSO) [16], etc. The energy management duties
are to ensure security; use a mixture of energy, generation, transmission, and distribution
resources; and minimize losses and increase profit [17–21]. However, VPP has more crucial
problems than the conventional power grid concerning inherent inertia, uncertainty, and
random penetration of distributed generation. Improving the EMS and scheduling is a
very important feature for the VPP [15,22]. Therefore, to achieve optimal scheduling man-
agement, optimization techniques are an effective solution [23]. In this work, a relatively
new heuristic optimization technique, such as BSA and PSO, are explored. Authors have
developed a binary backtracking search algorithm (BBSA) to produce an optimal schedule
controller used for different DGs in different MGs in the VPP system. In addition, an
alternative approach developed is based on binary practical swarm optimization (BPSO).
These binary algorithms are significant in producing optimum results without any human
interference [24,25].

Furthermore, these schedule controllers trained on an adaptive artificial neural net-
work (ANN) could help manage the VPP system by producing good predictions. However,
optimization techniques BSA and PSO have further enhanced the ANN to search for opti-
mal ANN parameters to boost its prediction performance to the top limit. Additionally,
the outcome was enhanced ANN-based optimization algorithms, namely the artificial
neural network-based backtracking search algorithm (ANN-BBSA) and ANN-based binary
practical swarm optimization (ANN-BPSO) [24]. ANN-based optimization algorithms are
applied to develop the scheduling controller used on the VPP system for many reasons,
such as because of powerful optimization techniques, good search exploration process,
fast convergence for solution compared with other conventional optimization techniques,
and resistance to trapping in local minima [26–29]. All those previous algorithms have
only focused on training and testing ANNs on similar loading conditions, as well as on the
feasibility of implementing these optimization techniques [30]. They lack testing in power
system conditions. It is important to validate their operation under power flow tests, in
which power system parameters are monitored and changed.

This paper tests and compares the abovementioned techniques, i.e., ANN-BBSA and
ANN-BPSO. They are utilized to study the power system conditions and schedule DG
outputs by forecasting the DGs’ best ON/OFF switches. For this, two case studies are
executed in which the same VPP system has different load curves. The results are utilized
to validate and compare the performance in each scenario. Furthermore, a comparison of
developed strategies with others available in the literature is provided in terms of power
saving, cost reduction, and emission minimization to show the developed algorithm’s
effectiveness in obtaining the best scheduling. The rest of the paper is as follows: an
overview of the MGs and VPP system, ANN algorithm training, trained loading data
results, main results and discussion, and the conclusion.
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2. Modeling of the Microgrids and VPP System

The VPP system concludes an IEEE 14-bus system with five identical MGs, as shown
in Figure 1; each MG has 5 DGs. Each MG supplies 10 MW to the chosen bus bar and
the bus capacity can cover the supplies to avoid tripping during the stand-alone mode
of operation. The grid is connected to two main generators at Bus1 and Bus8, and both
total supplies are 200 MW to the entire system through the substation transformer of 33 kV
to 11 kV at 50 Hz. The system includes 5 MGs distributed in some bus bars. The IEEE
standard system 1547 states that multiple MG systems are better than a single MG, boosting
operation characteristics and making the network both more stable and reliable [31,32].
Table 1 represents the active and reactive maximum loading power for each bus bar in MW
for the VPP system. Table 2 shows the MG details, while each MG involves the number of
DGs, numbers, and source types of DG.
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Figure 1. VPP system comprised of IEEE 14-bus test system and five microgrids.

Table 1. Active and reactive maximum loading power for each bus bar in MW for the VPP system.

Bus 1 2 3 4 5 6 7 8 9 10 11 12 13 14
P (MW) 0 15.3 68.0 35.1 5.6 7.9 0 0 20.8 6.3 2.5 4.4 9.6 10.8
Q (MVAr) 0 10.3 18.2 −0.7 1.5 5.9 0 0 13.5 4.7 1.5 1.4 4.9 4.3

Table 2. Microgrid units in the distribution system.

MG Capacity DG DG Type Distributed Generator Fuel

MG1 4 MW DG1-DG5 Diesel generator DG1, DG6, DG11, DG16, DG21 Diesel
MG2 2 MW DG6-DG10 Photovoltaic DG2, DG7, DG12, DG17, DG22 Solar Irradiance
MG3 2 MW DG11-DG15 Wind turbine DG3, DG8, DG13, DG18, DG23 Wind speed
MG4 1 MW DG16-DG20 Solid oxide fuel cell DG4, DG9, DG14, DG19, DG24 Molecular hydrogen (H2)
MG5 1 MW DG21-DG25 Storage System DG5, DG10, DG15, DG20, DG25 Charging
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The modeled system was tested for 24 h in hourly intervals on real loading data
curves for the two intelligent schedule controllers. Each hour shift change, the schedule
controllers attempted to cover the loading demand by considering all the inputs variables
at that specific hour to select the best binary output, with the necessary DGs and neglecting
the others. The controller’s accuracy and wise decision through the optimization process
are comprised of 11 loads placed at buses 2, 3, 4, 5, 6, 9 10, 11, 12, 13, and 14. In contrast,
all loads in this system are based on a scaled load’s curves, as shown in Figure 2. For
the optimization process, refer to [24]. The adaptive ANN-based BBSA and ANN-based
BPSO are designed for optimal energy scheduling by utilizing BSA and PSO optimization
algorithms to find the optimal parameters for ANN individually based on reducing the
mean absolute error (MAE). The optimal net obtained from both algorithms was tested on
the same load curves in Figure 2; refer to [33,34].
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Figure 2. Load curve in MW for each load in the IEEE 14-bus test system.

In conclusion, all 25 DG sources in the VPP system received the optimal scheduling
by switching ON or OFF based on the optimization in the first place and then on ANN
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prediction techniques. The outcomes must demonstrate the effectiveness of the methods
by obtaining the optimal scheduling that minimizes the power to decrease consumption
emissions and maximize profits.

3. ANN Algorithm Training

The adopted ANN algorithm is based on the feed-forward neural network type and
the Levenberg–Marquardt training algorithm. The training was done in the Matlab toolbox.
The hidden layers of sigmoid nodes ended with an output layer. The multiple layers of nods
with non-linear transfer functions allowed the network to learn non-linear relationships
between input and output vectors. The sigmoid activation function was used for hidden
layers and output nodes considering the probability of anything exists only between the
range of 0 and 1. In this study, the ANN architecture included two hidden layers, each with
the number of nodes selected by optimization algorithms as well as by the learning rate
optimum value (refer to [33,34]), and the input and output layers were six and twenty-five,
respectively. Table 3 represents ANN setup parameters for ANN-BBSA and ANN-BPSO
algorithms. The ANN training strategy is based on the BBSA best schedule controller;
refer to [24].

Table 3. ANN setup parameters for ANN-BBSA and ANN-BPSO algorithms.

Algorithm Learning Rate Number of Nodes at
Layer1 (N1)

Number of Nodes at
Layer2 (N2)

ANN-BSA 0.5691 13 26
ANN-PSO 0.0144 26 29

The ANN training executed on the ANN setup parameters obtained was used for
ANN-BSA and ANN-PSO separately. The run was done for 4000 epochs and Figure 3 shows
the ANN training flow charts. The training process counted one hundred percentages of
the input and output data on the loading conditions, as depicted in Figure 2. The function
is to create the final intelligent masterpiece, specifically ANN Net, once for BBSA and BPSO
individually [35]. The outcomes of this training are an ANN intelligent controller net that
can make the best decisions for energy management regarding power demand and supply
for the VPP system. The ANN-based controllers rely on the BBSA schedule controller [24].

Input =



solar irradiances (R)
wind speed (W)
energy price (E)

battery status (B)
gird status (G)
diesel f uel status (D)

 (1)

Output =

 DG(1,1) · · · DG(1,25)
...

. . .
...

DG(24,1) · · · DG(24,25)

 (2)

The controller input parameters are represented in Table 4; the parameters represent
the ANN inputs. The limitations that govern the search space were inherently given by the
BBSA optimization algorithm, which produces the BBSA schedule controller. Additionally,
the output parameters are represented in Table 5, including a binary schedule in which
the X-axis represents the time per hour, e.g., h = 1,2,3 . . . . . . ,24, and the Y-axis represents
DG’s switch status, e.g., S = 1,2,3 . . . . . . ,25, which is represented in the abovementioned
Equations (1) and (2).



Energies 2021, 14, 6507 6 of 19Energies 2021, 14, x FOR PEER REVIEW 8 of 22 
 

 

START

END

Initialization
Controller input  and output data

ANN  parameters setup

Feed-forward neural network and levenberg-

Marquardt Equ (3)

Train the Net1 Equ. (4)

Epochs = 4000

or 

MSE < goal

B
a
ck

-P
ro

p
a
g
a
ti

o
n

U
p
d
a
te

 w
ei

g
h

ts

F
ee

d
-F

o
rw

a
rd

A
p
p
ly

 n
ew

 w
ei

g
h

ts

Create ANN Net block 

Equ.(5) 

 

 

Figure 3. Flow chart of the artificial neural network net training. 

ON

OFF

Solar Irradiances

Wind Speed

Energy price

Battery status

Grid status

Diesel fuel status

Neural Network 
Net

Neural Network 
Net

B
in

ar
y 

 o
u

tp
u

ts

V
ar

ia
b

le
s 

in
p

u
ts

25

2
1

 

Figure 4. Block diagram of neural network net schedule controller. 

4. Trained loading data results 

The algorithm was tested several times by changing the number of epochs every time. 

Both algorithms tried the same conditions on the input and output data obtained from the 

optimization (optimal schedule controller) [24]. Table 6 represents a comparison between 

both algorithms with change epochs by one thousand every time up to 4000 epochs. The 

comparison was in terms of regression, MES performance, gradent, Mu, and training ex-

ecution time. As noted, the results from ANN-BBSA are better in all the training sessions. 

Yet, the ANN-BPSO also showed the optimal solution but with less performance and more 

time. This can prove that optimizing the ANN parameters before training is very effective 

in saving time and effort. 

  

Figure 3. Flow chart of the artificial neural network net training.

Table 4. Input parameters (solar data, wind data, energy price, battery SoC, grid power, and fuel level) for 24 h.

Time (h) Solar Data (W/m2)
Wind
(m/s)

Energy Price
(KWh/RM) SoC (%) Grid Power

(MW)
Fuel
(%)

1 0 1.2 0.218 100% 22.438 100%
2 0 1.4 0.218 100% 20.016 100%
3 0 0.9 0.218 75% 22.217 100%
4 0 0.5 0.218 75% 22.857 100%
5 0 0.6 0.218 70% 22.655 100%
6 0 0.6 0.218 50% 22.233 100%
7 0 0.7 0.218 50% 21.817 100%
8 0 0.6 0.218 25% 23.282 100%
9 128 1.3 0.516 25% 21.484 100%
10 311 1.5 0.516 50% 23.505 100%
11 430 1.6 0.516 50% 24.879 100%
12 486 1.6 0.334 25% 25.246 100%
13 610 1.6 0.334 25% 24.936 100%
14 486 1.5 0.516 50% 24.150 100%
15 345 1.6 0.516 50% 25.579 100%
16 112 1.3 0.516 25% 25.893 100%
17 99 1.4 0.516 25% 29.137 100%
18 65 1.4 0.516 25% 27.767 100%
19 35 1.4 0.334 25% 25.282 100%
20 0 1.6 0.334 50% 25.514 100%
21 0 1.9 0.334 50% 24.833 100%
22 0 2 0.218 50% 25.506 100%
23 0 2.2 0.218 75% 24.783 100%
24 0 1.7 0.218 100% 23.874 100%



Energies 2021, 14, 6507 7 of 19

Table 5. The optimal schedule obtained from the BBSA optimization algorithm.

D
G

Sw
it

ch
(S

ta
tu

s)
0

=
O

FF
/1

=
O

N

Time (Hours)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1

2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

3 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 0 0 1 1 0 1 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0

5 0 1 0 0 1 1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 1 1

6 1 1 1 0 0 0 1 1 0 1 1 1 0 1 1 1 1 0 1 0 0 1 0 0

7 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

8 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9 0 1 1 1 0 1 1 1 1 0 0 1 0 0 0 1 0 0 1 0 1 1 1 1

10 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 1 1

11 0 1 0 1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0

12 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

13 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

14 1 0 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1

15 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 0

16 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1

17 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

18 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

19 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0

20 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 0 1

21 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 1 0 1 1

22 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

23 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

24 1 1 1 0 0 0 1 0 1 0 1 1 1 1 0 1 0 1 0 0 0 1 0 0

25 1 0 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0

Regarding the optimal enhanced ANN net called ANN-BBSA or ANN-BPSO, the
MATLAB Simulink block diagram of the neural network net schedule controller is shown
in Figure 4. It involved six inputs and 25 binary outputs on an hourly basis to manage
the distributed generations throughout the virtual power plant system. The net block is
generated after the training is completed using Equations (3) and (4). The controller input
based on the BBSA best schedule (t) and the controller output based on the BBSA best
schedule (P) using the feed-forward neural network (new f f ) and Levenberg–Marquardt
algorithm (trainlm) were used [36,37].

net = new f f (minmax(p), [N1, N2, 25],
{′tansig′,′ tansig′,′ purelin′

}
,′ trainlm′) (3)

net1 = train(net,p,t) (4)

gensim(Net1,−1) (5)
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4. Trained loading data results

The algorithm was tested several times by changing the number of epochs every time.
Both algorithms tried the same conditions on the input and output data obtained from the
optimization (optimal schedule controller) [24]. Table 6 represents a comparison between
both algorithms with change epochs by one thousand every time up to 4000 epochs. The
comparison was in terms of regression, MES performance, gradent, Mu, and training
execution time. As noted, the results from ANN-BBSA are better in all the training sessions.
Yet, the ANN-BPSO also showed the optimal solution but with less performance and more
time. This can prove that optimizing the ANN parameters before training is very effective
in saving time and effort.

Table 6. Representing a comparison between both ANN algorithms’ training with changes in epochs.

Algorithm ANN Parameters Epoch Iterations 1000 2000 3000 4000

A
N

N
-B

B
SA N1 = 13

N2 = 26
LR = 0.5691

Regression 0.99999 1 0.99995 1
Performance (MES) 7.3214 × 10−6 2.714 × 10−8 2.4866 × 10−5 7.5956 × 10−11

Execution time 2:15:14 4:33:01 6:57:27 2:42:38
Gradient 0.000220 0.000361 0.000618 0.0001865
Mu 1 × 10−8 1 × 10−11 1 × 10−07 1 × 10−11

Done epochs full full full 2981

A
N

N
-B

PS
O

N1 = 26
N2 = 29
LR = 0.0144

Regression 0.99927 0.99937 0.99998 1
Performance (MES) 0.3599 × 10−3 3.3714 × 10−4 8.521 × 10−6 7.3295 × 10−7

Execution time 1:19:34 2:52:13 11:00:39 8:57:12
Gradient 0.000145 0.0004526 0.0017347 7.97 × 10−5

Mu 1 × 10−6 1 × 10−7 1 × 10−9 1 × 10−10

Done epochs full full full full

4.1. Artificial Neural Network-Based BBSA Results

ANN executes the BSA optimization technique to create a trial population that in-
cludes two crossovers and mutation operatives. BSA rules search for the best value of the
populations in the search space. Therefore, it is proven that BSA is one of the most powerful
optimization algorithms. The binary BSA algorithm has done a good job of optimizing the
VPP system to optimize energy management demand and supplies to reduce the cost and
emission based on the power saving. The BSA takes a further step in enhancing the ANN
by searching optimal parameters of the algorithm towards the best values for the learning
rate and neurons numbers in hidden layers to boost the performance of ANN by predicting
the best status regarding ON/OFF of the 25 DGs. This enhancement allows the BSA to
select the number of trial populations to minimize error and time wasted. Consequently, a
lesser objective function value is accomplished by choosing the optimal population sizes to
enhance the performance of ANN for the duration of the training and testing.

ANN was trained and has learned 100% of the VPP system data of the BBSA best
schedule as input data, while the testing data was conducted on another loading data
condition. These testing data are in similar ranges to the training data in terms of the peak
power and time, as well as every bus limitation in the VPP system data. ANN testing on
untrained data will be further discussed in the next sections. Figure 5 shows regression
coefficient R of the ANN-BBSA after training and testing on VPP system data loading
conditions. Furthermore, the training performance of the ANN-BBSA is shown in Figure 6
and represents the optimization results of ANN-based optimization algorithms for the
ANN-BSA, as well as represents the ANN-PSO to tune the optimal values of the ANN. The
regression coefficient is related to the prediction performance of the ANN-BBSA.

It is noted that the value of the regression coefficient represents unity for ANN after
4000 epochs have been applied. The best training performance of the mean square error
(MSE) was 7.5956 × 10−11, which is excellent for the optimal prediction of the ANN-BBSA
performance. Overall, the regression coefficient results and performance validate the
accuracy of the ANN-BBSA. Table 7 shows the active power in MW for all buses in the



Energies 2021, 14, 6507 9 of 19

14-bus VPP system when using ANN-BBSA. Table 8 shows the total power generated in
MW for each MGs when using the ANN-BBSA schedule controller for 24 h.
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Figure 5. Regression of the ANN-BBSA optimization.
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Figure 6. Performance of the ANN-BBSA optimization.

Table 7. Power in MW for all buses in the 14-bus VPP system in the case of using ANN-BBSA.

Time Bus1 Bus2 Bus3 Bus4 Bus5 Bus6 Bus7 Bus8 Bus9 Bus10 Bus11 Bus12 Bus13 Bus14
1 13.46 3.49 14.59 8.62 −3.78 −0.40 0.15 8.98 5.51 −3.79 −3.03 1.25 −3.83 3.09
2 12.01 3.32 13.96 8.24 −4.41 −1.22 −0.27 8.01 2.98 −3.02 −2.52 1.33 −2.26 3.04
3 13.33 3.15 13.26 7.79 −2.24 −0.95 0.31 8.89 2.58 −0.88 −2.32 1.27 −3.02 2.96
4 13.71 3.15 12.86 7.70 −0.85 −0.55 −0.08 9.14 2.47 −2.30 −3.51 1.13 −0.35 2.49
5 13.59 3.05 12.66 7.66 −2.35 0.88 0.35 9.06 1.95 −0.76 −4.02 1.00 −0.41 2.40
6 13.34 3.01 12.56 7.77 −2.38 −0.87 0.39 8.89 1.96 −0.56 −2.66 0.87 −0.24 2.21
7 13.09 3.09 12.99 8.04 −2.18 −1.44 0.13 8.73 2.38 −0.35 −2.33 0.88 −1.36 1.54
8 13.97 3.36 14.09 8.91 −0.48 −0.75 −0.92 9.31 2.43 −2.61 −2.96 0.85 −1.07 0.89
9 12.89 3.70 15.49 9.92 −3.91 −0.89 −1.25 8.59 2.52 −2.67 −3.18 0.80 −1.87 0.93

10 14.10 4.01 16.72 10.38 −2.94 −2.19 −1.58 9.40 2.36 −3.70 −2.04 0.62 −1.36 0.91
11 14.93 4.30 17.84 10.54 −3.02 −1.52 −1.58 9.95 2.54 −2.98 −2.93 0.62 −2.21 0.86
12 15.15 4.47 18.49 10.62 −3.09 −3.17 −1.76 10.10 2.59 −3.85 −2.72 0.62 −0.51 0.93
13 14.96 4.60 18.99 10.51 −4.75 −1.39 −1.68 9.97 2.42 −3.84 −2.93 0.55 −0.94 0.82
14 14.49 4.71 19.45 10.52 −5.94 −2.86 −1.54 9.66 2.57 −2.72 −3.21 0.56 −0.59 0.78
15 15.35 4.69 19.34 10.38 −5.21 −1.77 −1.33 10.23 2.53 −2.34 −4.16 0.82 −0.34 0.71
16 15.54 4.71 19.44 10.38 −3.71 −3.25 −1.64 10.36 2.49 −3.28 −2.34 0.86 −1.10 0.76
17 17.48 4.64 19.08 10.33 −0.72 −1.09 −1.75 11.65 2.37 −4.25 −4.19 0.80 0.38 0.75
18 16.66 4.61 18.95 10.29 −4.20 0.28 −0.85 11.11 2.49 −2.15 −2.49 0.80 −2.62 0.82
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Table 7. Cont.

Time Bus1 Bus2 Bus3 Bus4 Bus5 Bus6 Bus7 Bus8 Bus9 Bus10 Bus11 Bus12 Bus13 Bus14
19 15.17 4.55 18.79 10.35 −3.44 −2.77 −1.65 10.11 2.79 −3.51 −2.89 0.83 −1.10 0.79
20 15.31 4.58 18.90 10.44 −4.97 −1.63 −1.25 10.21 3.96 −4.18 −3.37 0.79 −0.62 0.69
21 14.90 4.47 18.45 10.15 −5.34 −1.54 −0.88 9.93 5.37 −4.37 −3.32 0.79 −1.48 0.77
22 15.30 4.27 17.66 10.00 −4.12 −2.98 −0.50 10.20 5.47 −3.89 −1.91 0.89 −1.80 1.03
23 14.87 3.89 16.15 9.32 −4.05 −3.47 0.13 9.91 6.03 −4.45 −0.95 1.24 −1.60 1.86
24 14.32 3.66 15.26 9.17 −4.03 −2.57 0.34 9.55 5.69 −2.80 −3.37 1.24 −1.67 2.51

Table 8. Total power generated in MW for each MG using the ANN-BBSA schedule controller for 24 h.

Time MG1 MG2 MG3 MG4 MG5

1 4.5 2.7 4.7 3.6 5.2
2 5.2 3.6 3.9 3.1 3.8
3 3.1 3.0 1.8 2.9 4.5
4 1.6 1.7 3.3 4.1 1.8
5 3.2 1.4 1.8 4.5 2.0
6 3.1 1.7 1.9 3.1 1.9
7 3.0 2.9 1.8 2.8 3.0
8 1.6 2.8 4.2 3.5 2.9
9 5.5 3.1 4.4 4.0 4.0

10 4.5 4.3 5.6 2.8 4.3
11 4.8 3.3 4.9 3.7 5.2
12 4.8 4.1 5.7 3.4 3.4
13 6.2 2.3 5.7 3.6 3.6
14 7.3 3.8 4.6 3.8 3.1
15 6.4 3.8 4.1 4.8 2.7
16 4.9 5.4 5.0 2.9 3.5
17 1.9 3.3 5.8 4.8 1.8
18 5.4 1.7 3.6 3.1 4.8
19 4.8 4.2 4.7 3.5 3.3
20 6.4 2.5 5.1 4.0 2.7
21 6.2 2.4 5.3 4.0 3.7
22 5.0 3.8 4.7 2.5 3.9
23 4.9 4.4 5.2 1.5 3.1
24 4.8 4.3 3.5 3.9 3.1

4.2. Artificial Neural Network-Based BPSO Results

The PSO used a velocity vector to update each particle’s current swarm position.
Based on a population of individuals’ social behavior, each particle’s position updated and
adapted to its location. The PSO algorithm enriched the ANN to search for the optimal
values of the “learning rate” and “number of neurons in hidden layers” to boost the ANN
predicting performance [38]. The ANN-based PSO was executed to try many random
searches in the search space to minimize the error. Then, the lowest objective function
values were accomplished by choosing the population’s optimal values to satisfy the tuned
parameters to improve the ANN’s performance during training and testing on the VPP
system data using the best schedule as the output data. The entire VPP system data
obtained from the best schedule (input and output) data for the training process counted
in one hundred percentages of the inputs and outputs data on the same loading conditions.
In comparison, the testing data considered used different load conditions, which will
be further discussed in the next section. Figure 7 shows a regression for ANN-BPSO in
training and testing. The performance for ANN-BPSO is shown in Figure 8.
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Figure 7. Regression of the ANN-BPSO optimization.
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Figure 8. Performance of the ANN- BPSO optimization.

The ANN-BPSO regression coefficient represents unity and predicts the performance
of the best training performance mean square error, which was 7.3295 × 10−7, to obtain
the optimal prediction of the ANN-BPSO performance. It is noted that the value of the
regression coefficient was 1 for the ANN. However, ANN-BBSA was still better in the
training performance and with the training time of (2:24:52), with 2981 epochs, which is
67.15% better in terms of time-saving and higher performance than ANN-BPSO, which
had a time of (7:21:36) with 4000 epochs. Table 9 shows the active power in MW for all
buses in the 14-bus VPP system when using ANN-BPSO. Table 10 shows the total power
generated in MW for each MGs when using the ANN-BPSO schedule controller for 24 h.

Table 9. Power in MW for all buses in the 14-bus VPP system in the case of using ANN-BPSO.

Time Bus1 Bus2 Bus3 Bus4 Bus5 Bus6 Bus7 Bus8 Bus9 Bus10 Bus11 Bus12 Bus13 Bus14
1 14.25 3.47 14.47 8.52 −4.16 −1.12 0.74 9.50 5.41 −2.99 −2.62 1.22 −2.21 3.01
2 12.29 3.31 13.92 8.21 −4.60 −0.38 −0.13 8.19 2.96 −3.33 −1.88 1.32 −2.64 3.02
3 12.67 3.16 13.30 7.83 −3.49 −1.09 −0.03 8.45 2.60 −3.53 −2.14 1.26 −0.32 2.95
4 14.26 3.15 12.84 7.69 0.75 −0.58 −0.33 9.50 2.47 −3.86 −1.00 1.13 −1.94 2.50
5 12.84 3.07 12.74 7.72 −2.11 −0.58 0.07 8.56 1.97 −0.57 −3.33 1.01 −1.49 2.44
6 12.01 3.04 12.71 7.89 −1.96 −1.44 −0.39 8.01 2.00 −1.39 −2.62 0.90 −1.87 2.27
7 14.96 3.06 12.83 7.91 −0.97 1.44 0.54 9.97 2.34 −0.79 −1.53 0.85 −2.37 1.51
8 14.23 3.34 14.01 8.84 −2.16 0.38 −0.13 9.48 2.39 −0.23 −3.73 0.84 −1.51 0.88
9 13.12 3.70 15.51 9.93 −2.65 −1.55 −1.50 8.75 2.53 −3.36 −2.35 0.80 −2.27 0.94
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Table 9. Cont.

Time Bus1 Bus2 Bus3 Bus4 Bus5 Bus6 Bus7 Bus8 Bus9 Bus10 Bus11 Bus12 Bus13 Bus14
10 14.03 4.00 16.67 10.35 −4.41 −1.57 −1.10 9.35 2.34 −2.14 −3.24 0.62 −0.87 0.90
11 13.96 4.31 17.91 10.59 −5.43 −2.26 −1.38 9.31 2.55 −2.77 −2.72 0.62 −1.20 0.86
12 15.25 4.46 18.47 10.60 −3.14 −3.19 −1.59 10.17 2.58 −3.21 −2.18 0.62 −1.40 0.93
13 14.96 4.60 18.99 10.51 −4.74 −2.34 −1.55 9.97 2.42 −3.02 −2.93 0.55 −0.81 0.82
14 15.50 4.70 19.37 10.46 −3.51 −3.10 −1.65 10.33 2.55 −3.22 −1.41 0.56 −2.27 0.77
15 15.16 4.70 19.37 10.40 −5.08 −2.40 −1.35 10.11 2.54 −2.32 −2.45 0.83 −1.94 0.71
16 14.60 4.73 19.50 10.43 −6.23 −2.13 −1.48 9.73 2.50 −3.00 −2.95 0.86 −1.04 0.77
17 15.68 4.66 19.19 10.40 −5.40 −0.76 −1.19 10.45 2.37 −2.92 −3.07 0.81 −0.86 0.76
18 16.91 4.60 18.90 10.26 −4.33 0.16 −0.67 11.28 2.47 −2.40 −1.20 0.79 −2.89 0.82
19 15.00 4.54 18.76 10.32 −4.93 −2.08 −1.24 10.00 2.77 −2.92 −1.67 0.83 −2.26 0.78
20 17.27 4.55 18.75 10.33 −0.47 −3.20 −1.34 11.51 3.91 −3.70 −3.02 0.78 −0.85 0.68
21 15.09 4.46 18.41 10.11 −5.44 −3.66 −0.40 10.06 5.31 −2.31 −2.78 0.79 −1.42 0.77
22 16.30 4.25 17.55 9.92 −2.79 −2.28 −0.47 10.87 5.42 −4.30 −2.28 0.87 −1.15 1.02
23 15.11 3.89 16.17 9.34 −2.48 −1.96 −0.39 10.07 6.08 −5.24 −3.06 1.24 −1.51 1.87
24 13.59 3.67 15.33 9.23 −5.17 −0.99 0.14 9.06 5.75 −4.00 −2.03 1.25 −3.67 2.54

Table 10. Total power generated in MW for each MG using the ANN-BPSO schedule controller for 24 h.

Time MG1 MG2 MG3 MG4 MG5

1 4.88 3.42 5.48 3.21 3.54
2 4.05 2.77 5.44 2.48 4.12
3 4.47 3.08 2.98 2.74 1.76
4 1.18 3.31 3.22 1.59 3.41
5 1.47 3.13 1.28 3.85 3.07
6 2.50 2.51 2.39 3.10 3.55
7 0 0 2.16 1.99 3.99
8 1.63 3.47 1.42 4.25 3.28
9 4.21 4.79 4.11 3.14 4.41

10 4.49 3.63 5.02 3.99 3.79
11 6.75 4.20 3.54 3.45 4.19
12 5.88 4.38 3.77 2.90 4.32
13 4.65 3.28 4.89 3.64 3.48
14 3.24 5.28 3.80 2.04 4.81
15 5.81 3.32 5.10 3.07 4.37
16 7.00 3.24 5.66 3.55 3.40
17 4.97 4.45 4.17 3.68 3.05
18 5.56 1.81 3.80 1.76 5.03
19 5.86 2.33 5.22 2.26 4.48
20 1.91 4.10 5.86 3.63 2.91
21 5.89 3.40 4.38 3.41 3.65
22 3.62 4.82 4.88 2.90 3.25
23 3.38 4.36 4.52 3.65 3.03
24 4.45 2.70 4.75 2.60 5.12

Overall, the regression coefficient results and performance validate the ANN-BBSA
and ANN-BPSO, and predict both algorithms’ optimal ON/OFF status for the VPP compo-
nents and resources. The total power saved in one day was 1.84115 MW and the ANN-BBSA
to ANN-BPSO are compared based on loads curves, as shown in Figure 2. One MG and one
bus are chosen for this discussion; although all the MGs are identical, each MG operates
based on the controller decision, availability, and demand. The MG1 at Bus5 is taken as
an example to show the performance of both algorithms. Each DG represents renewable
or non-renewable micro-sources that are numbered as in Table 2. All DGs operated better
based on their availability and capacity. For example, DG2 represents solar power, which
functions during the daytime and is off during the night. The MG1 is the total of the five
DGs and its total power generated was 109.1 MW in ANN-BBSA and 97.85 MW in the
case of ANN-BPSO. However, the total load demand at bus5 was 24.94 MW, which can
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explain the support of the MG1 in supplying and sharing more available power to the
local loads and to the system to reduce the grid power. Figure 9 shows MG1 at bus 5
using the ANN-BBSA and ANN-BPSO. The obtained neural net is used for solving energy
management problems in the virtual power plant system based on ANN setting data.
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Figure 9. Training data results using the ANN-BBSA and ANN-BPSO tested in the microgrid at bus 5.

5. Main Results and Discussion

ANNs are computational algorithms loosely based on the human biological nervous
system, which model statistical data. An ANN contains a set of processing elements called
neurons that are interrelated components. These neuron structures act as a harmonious
rhythm to solve certain complex problems. ANNs can be used in places where detecting
trends and extracting patterns are excessively difficult to determine by humans or other
computer-related programs. The current cutting-edge technology in deep-learning and
ANNs focuses highly on their ability to model and interpret complex data, as well as to
scale through optimization and parallelization.

Optimization problems often require good optimization methods to minimize or
maximize certain objective functions. Sometimes, problems need to be optimized non-
linearly or polynomially, which cannot be surely resolved and needs an approximation. In
that situation, heuristics must be used, which can resolve these problem types. This study
implements an ANN for objective function approximation [39]. The objective function is
approximated by a non-linear regression used to determine an optimization problem [39].
The new objective functions derived should be polynomial to calculate the optimization
problem’s solution, training performance, and regressions for the ANN. This case study
discusses a fair compression based on different optimization techniques to find the best
parameters to serve the system in the best way. These techniques may exclude huge trial
and error time in the training and may find the best parameters required without using
smaller Nets to save valuable time during the training and testing. Any of the optimization
algorithms used could provide better results than manual parameter-tuning. Yet, some
techniques could find the best fitness faster and more efficiently compared to each other.
However, after testing the hybrid intelligent ANN net’s controller on 100% of the original
trained data and observing that both the scheduling controller and artificial intelligent
controller are identical, testing the controller on untrained data is essential [25,34]. The
test has been done for validation and to test the controller’s robustness. However, in this
test, the entire loads were replaced in both case scenarios. Each case had different loading
conditions in each bus bar in the VPP system. The system ran twice in each scenario,
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first for ANN-BBSA and the second for ANN-BBSA, and a comparison in MG1 at bus 5
was conducted.

A fair comparison of MG1 in bus 5 of the 14-bus IEEE test for virtual power plants
utilizing the optimized ANN net based on hourly binary patterns for managing each DG
in the VPP system was conducted. The binary (ANN-BPSO) and binary (ANN-BBSA)
controller had a binary output of 0 or 1 to switch each DG ON or OFF based on the inputs.
The results show that the algorithms could save a huge amount of power. Yet, all energy
saving was done by sharing new distributed resources to inject power into the loads
instead of supplying power from the utility grid. Both optimized nets operated excellently.
However, The ANN-BBSA net was better than the ANN-BPSO based on their objectives,
as the total power for the 24 h of the ANN-BBSA net was 1182.5 MW in comparison to
1184.3 MW for ANN-BPSO. The entire load modeling for the testing and training data
involved was a real-load parameter data recorder located in northern parts of Malaysia.
The test case scenarios for the untrained loading data results are divided into two scenarios.

5.1. Case Scenario: Test 1

This scenario used the hybrid ANN net controller on another day’s load curve for
24 h. This test aimed to check the controller’s ability and behavior to address changing
loading conditions or untrained load curves. This test included new loads for each bus bar
in eleven buses in the VPP system, as depicted in Figure 10.
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Figure 10. Case 1: testing loads for VPP system, including the IEEE 14-bus test system.
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Both proposed net controllers of ANN-BBSA and ANN-BPSO were applied to this test
scenario load case individually. The load curves were real loads used as replacements for
the originally trained loads. Figure 11 shows test scenario Test-1 of ANN-BBSA and ANN-
BPSO for DGs to predict the best binary pattern to provide the necessary power for MG1 at
bus bar 5. Figure 11 shows ANN-BBSA presented in red, while ANN-BPSO is presented in
blue. However, ANN-BBSA acted slightly well and could inject more power to supply to
the loads than ANN-BPSO. As noted, in this scenario, the diesel generator worked almost
all day in both controllers, apart from a few minutes at 1 AM, while PV had the perfect
cut-off time based on the availability of the real solar irradiance reading. The wind turbine
started supplying power in the morning in both controllers and in the OFF/ON switch
based on the ANN controller decision and real-wind speed. SOFC supplied power to
the grid continually in ANN-BBSA and ANN-BBSA, and the storage system supplied to
the grid after 8 AM for ANN-BBSA, while maintaining charge and in the standby mode
ANN-BPSO algorithm.
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Figure 11. Test 1 testing data results using ANN-BBSA and ANN-BPSO in the microgrid at bus 5.

MG1 is the total MG power supplied to the VPP system with an average of 4.62 MW.
Generally, the ANN-based controllers acted somehow similar to a regular schedule con-
troller, with some differences noted. For example, some DGs continually supplied power
while others did not supply power during the 24 h. We also noticed a transition time and
normally, in all cases, power was supplied or discontinued on an hourly basis. However,
the ANN transitions were sometimes not hourly, which is surprisingly a very strong exam-
ple of negligence regarding the transition time. Considering the ANN transitions could
save more power when some renewable source became available, it could connect directly
at any time. The obtained results prove that the ANN controller works perfectly and could
act seriously with any load within the same range and set-up limitations.

5.2. Case Scenario: Test 2

In this case scenario, new load curve conditions were applied for 24 h to test the
ANN controller behavior for ANN-BBSA and ANN-BBSA. In this scenario, the load curve
variations of each bus were limited in the range of power demand as stated in the training
loads, as in Figure 2. This test aimed to check the controller’s ability and success in
addressing other load variations. Each bus bar load was updated with active and reactive
load demand as included for the VPP system, as depicted in Figure 12 showing the scenario
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Test-2 for ANN-BBSA and ANN-BPSO. Figure 13 shows ANN-BBSA presented in red,
while ANN-BPSO is presented in blue. In this case, ANN-BBSA also acted slightly better
and saved more power compared to ANN-BPSO. However, the diesel generator continually
supplied power in both controller cases compared to the training data. The PV system and
wind turbine supplied enough management power based on the ANN controller decision
as well as on the availability of solar irradiance and real-wind speed. SOFC supplied power
for ANN-BPSO more than ANN-BBSA. In ANN-BBSA and ANN-BPSO, the storage system
supply scattered for ANN-BBSA. MG1 represents the total MG power supplied to the VPP
system, with an average of 3.79 MW.
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Figure 12. Case 2: testing loads for the VPP system, including the IEEE 14-bus test system.



Energies 2021, 14, 6507 17 of 19
Energies 2021, 14, x FOR PEER REVIEW 19 of 22 
 

 

 

Figure 13. Test 2 testing data results using ANN-BBSA and ANN-BPSO in the microgrid at bus 5. 

All the power saved was considered by sharing new distributed resources to inject 

power into the loads as an alternative to supplying power from the utility grid. However, 

the optimized ANN nets operated excellently. Yet, some trained nets could be better than 

the others based on their objectives. The total power for the 24 h of the ANN-BBSA net 

was 1182.5 MW compared to the next optimized net of 1211.3 MW. The improved ANN 

nets were tested on their ability to manage distributed energy resources; the results show 

that the VPPs saved a reasonable amount of supplied power in the case study for the two 

test scenarios. Several important and targeted recommendations are addressed for power-

saving, emission reduction, and cost-saving. The developed ANN-based optimization 

method shows good results in the general comparison. However, from a deeper perspec-

tive, apart from the net complexity represented in the proposed algorithms, the large 

number of inputs and outputs show the robustness of these optimizers and the enormous 

benefits of time-saving. The proposed algorithms have been compared with other tech-

niques of saving MWs of power, of reducing the emission of greenhouse effects, and of 

saving more cost-effective capital. The developed methods triumph over the compared 

other approaches. Table 11 presents an analysis of the developed algorithms and com-

pares them to other methods. 

Table 11. Comparative analysis of the developed algorithms with other methods. 

Algorithm 
Power-sav-

ing 

Emission Reduc-

tion 

Cost-sav-

ing 

Refer-

ence 

Modified HSA - 30.02% 18.92%, [28]  

Stackelberg game 

model 
36.24% - 40.63% [29]  

Linear programing 

model 
32.73% 15.17% 12.43% [30]  

Immune algorithm - 4.48% 11.52% [31]  

Genetic algorithm 35.13% - - [32]  

0
1
2

x 10
6

 

 

0
1
2

x 10
6

0
1
2

x 10
6

0
1
2

x 10
6

0
1
2

x 10
6

0 4 8 12 16 20 24
0

5

x 10
6

Time (h)

P
o

w
er

 (
W

)

 

 

ANN-BBSA ANN-BPSO

DG1

DG2

DG3

DG4

DG5

MG1

Figure 13. Test 2 testing data results using ANN-BBSA and ANN-BPSO in the microgrid at bus 5.

All the power saved was considered by sharing new distributed resources to inject
power into the loads as an alternative to supplying power from the utility grid. However,
the optimized ANN nets operated excellently. Yet, some trained nets could be better than
the others based on their objectives. The total power for the 24 h of the ANN-BBSA net
was 1182.5 MW compared to the next optimized net of 1211.3 MW. The improved ANN
nets were tested on their ability to manage distributed energy resources; the results show
that the VPPs saved a reasonable amount of supplied power in the case study for the two
test scenarios. Several important and targeted recommendations are addressed for power-
saving, emission reduction, and cost-saving. The developed ANN-based optimization
method shows good results in the general comparison. However, from a deeper perspective,
apart from the net complexity represented in the proposed algorithms, the large number of
inputs and outputs show the robustness of these optimizers and the enormous benefits
of time-saving. The proposed algorithms have been compared with other techniques
of saving MWs of power, of reducing the emission of greenhouse effects, and of saving
more cost-effective capital. The developed methods triumph over the compared other
approaches. Table 11 presents an analysis of the developed algorithms and compares them
to other methods.

Table 11. Comparative analysis of the developed algorithms with other methods.

Algorithm Power-Saving Emission Reduction Cost-Saving Reference

Modified HSA - 30.02% 18.92%, [28]
Stackelberg game model 36.24% - 40.63% [29]
Linear programing model 32.73% 15.17% 12.43% [30]
Immune algorithm - 4.48% 11.52% [31]
Genetic algorithm 35.13% - - [32]
ANN-BBSA 40.46% 39.97% 40.09% [24]
ANN-BPSO 40% 35.03% 39.9% [25]

6. Conclusions

The developed controllers reduce the shortcomings of current controllers in integrat-
ing DGs in a VPP system. The binary outputs of the optimization techniques are used to
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predict the DGs’ optimal ON/OFF status. The data sets for training and testing the ANN
have been described. The ANN-based optimal scheduling controller’s main contribution
is controlling and coordinating the power supply and demand for all MGs. In the ANN
training algorithm, the regression coefficient values for both ANN-based training repre-
sented unity. The ANN-BBSA scores better in performance than ANN-BPSO in training
and saves a great amount of time. The results showed that the ANN-based net schedule
controllers decrease the utility power consumption by saving more power. The ANN-BBSA
schedule controller has an energy-saving of 40.46% compared to the 40% of ANN-BPSO.
The developed ANN-based controllers effectively reduce cost and emission through sav-
ing power compared to other studies available in the literature. The cost and emission
reduction for the ANN-BBSA achieved 40.9% and 39.97%, and ANN-BPSO reached 39.9%
and 35.03%, respectively. Furthermore, comparing the trained and untrained test scenarios
demonstrates that the ANN-BBSA provides a competitive, intelligent schedule controller
that performs faster and more accurately than the ANN–BPSO in scheduling, management,
and power-saving. Both algorithms provide an optimal schedule for every DG to limit fuel
consumption, reduce CO2 emission, and increase the system efficiency towards smart and
economic VPP operations as well as grid decarbonization.
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