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Abstract: Energy piles, combined ground source heat pumps (GSHP) with the traditional pile
foundation, have the advantages of high heat transfer efficiency, less space occupation and low cost.
This paper summarizes the latest research on the heat transfer and bearing capacity of energy piles.
It is found that S-shaped tubes have the largest heat transfer area and the best heat transfer efficiency;
that energy piles need to be designed conservatively, such as adjusting the safety coefficient, number
and spacing of the piles according to the additional temperature loads; and that unbalanced surface
temperature has not been resolved, caused by uneven refrigeration/heating demand in one cycle. A
composite energy pile applied to water-rich areas is proposed to overcome the decay of bearing and
heat transfer performance. Besides, most of the heat transfer models are borehole-oriented and will fit
for energy piles effectively if the models support variable ground temperature boundary conditions.

Keywords: ground source heat pumps; energy piles; heat transfer; bearing capacity

1. Introduction

Traditional fossil fuels such as coal, oil, and natural gas account for most of the energy
share. However, these fuels produce large amounts of harmful gases, causing serious
environmental pollution. Research on clean energy technologies has received extensive
attention to solve this serious problem, and shallow geothermal energy has been advocated
as a kind of typical clean energy because of its characteristics of large reserves, wide
distribution, and non-polluting. Ground source heat pumps (GSHP) are the main way to
utilize shallow geothermal energy and have been widely used in many countries such as
South Korea [1], Japan [2], and others [3]. Vertical and horizontal layouts are the two forms
of GSHP, in which the horizontal layout requires a large construction area but the vertical
one is costly due to borehole drilling. Considering these two shortcomings, energy piles that
embed the geothermal heat exchanger in the pile foundation of the building structure offer
a new idea for the promotion of GSHP and simultaneously meet the load-bearing and heat
exchange requirements. Energy piles are gradually being used in tunnels [4], bridges [5],
and other fields [6,7]. As shown in Figure 1, GSHP consists of a main circuit buried in the
piles and a secondary circuit in the upper building, both of which are connected by a heat
pump to transfer shallow heat energy to upper buildings [8].

Many studies involved in the introduction and analysis of heat transfer for GSHP
have been documented. Noorollahi reviewed the previous research and investigations on
different ground heat exchanger parameters and their effects [9]. Abuel-Naga investigated
the knowledge on the design of energy piles in terms of the geo-structural and heat
exchanger functions by [10]. In another study, Fadejev reviewed of available scientific
literature, design standards, and guidelines on energy piles [11]. Then, Mohamad explained
the knowledge about the thermal and thermo-mechanical behaviors of energy piles [12].
Their works, however, do not address the operational mechanism and optimization of
energy piles under thermal-mechanical interactions. The research on energy piles has
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mainly focused on the heat transfer and bearing characteristics. Heat transfer accompanies
heat conduction and heat convection, varying the temperature of the piles and of their
surrounding soils. Correspondingly, temperature stresses develop and thus affect the
bearing capacity of energy piles. This study systematically summarizes the influencing
factors involved in the heat transfer process of energy piles, further presents the heat
transfer models adapted to simulate the pile’s performance; then analyzes the structure’s
response under temperature loads and proposes a kind of composite energy pile with
potential application. The limitations of current research and future research are finally
highlighted.
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Figure 1. Schematic diagram of ground source heat pumps (GSHP).

2. Factors Influencing Heat Transfer Performance
2.1. Heat Transfer between Fluid and Tubes

Heat exchange rate QH = C
.

m∆T, W, and relative heat exchange rate QR = QH/L,
W/m, are usually used to evaluate the heat transfer performance. Heat exchange rate QH
represents the amount of heat transfer between energy piles and soil around the piles over
a limited time. The relative heat exchange rate QR represents the amount of heat transfer
per length of tubes and is an index to evaluate the efficiency of heat transfer.

The principle for designing a tube shape is to maximize the area of heat transfer. As
shown in Figure 2, the tube shapes include U-shaped, 2U-shaped, 3U-shaped, W-shaped,
and S-shaped (spiral-shaped). Their heat performances are illustrated in Table 1. The
S-shaped tube has the best heat transfer efficiency because it has the largest heat transfer
area [13], shown in Table 1. Furthermore, the selection of tube shapes needs to consider the
heat exchange rate, cost, and other factors such as the number of piles, the length of the
drilling holes, and the difficulty of construction.
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Table 1. Comparison of heat transfer performance of different tube shapes.

Reference Tube Shape Consideration Methods Performance Comparison

Jalaluddin [14] U-shaped, 2U-shaped,
3U-shaped

Ground temperature,
wall temperature,
velocity of fluid

Thermal response
experiment

2U-shaped > 3U-shaped >
U-shaped

Florides [15,16] U-shaped, 2U-shaped
Pipe size, soil thermal

conductivity, soil
stratification, cost

Numerical Simulation 2U-shaped > U-shaped

Gao [17,18] U-shaped, 2U-shaped,
3U-shaped, W-shaped

Circulating medium
flow, inlet temperature,
the unbalanced load of
cold and heat, ground

temperature

Thermal response
experiment and

numerical simulation

High flow: 2U-shaped >
W-shaped > 3U-shaped >

U-shaped
Low flow: W-shaped >

2U-shaped > 3U-shaped >
U-shaped

Zarrella [19] 3U-shaped, S- shaped helical pitch Equivalent Circuit S-shaped > 3U-shaped

Zarrella [20] 2U-shaped, S-shaped

Axial heat conduction,
drilling length,
long-term and

short-term heat transfer
performance

Equivalent Circuit S-shaped > 2U-shaped

Yoon [13] W-shaped, S-shaped
The intermittent

operation, cost, number
of piles

Thermal response test
and numerical

simulation
S-shaped > W-shaped

Luo [21] 2U-shaped, 3U-shaped,
2W-shaped, S-shaped

The intermittent
operation, pipe size,

cost

Thermal response test
and numerical

simulation

3U-shaped > 2W-shaped,
S-shaped > 2U-shaped

For S-shaped tubes, spiral pitches, are proportional to the heat exchange area. By
conducting a thermal performance test using tubes with a pitch of 200 mm and 500 mm, it
was found that the heat exchange rate increased with the decrease of the pitch [22]. Figure 3
shows the variation of QH and QR under different pitches. The heat flow between the tubes
interacts in the case of small pitches, reducing the relative heat exchange rate [23,24]. To
subside the interaction, some scholars proposed to add an insulation layer around the fluid
outlet [25]. The length of the insulation layer is different for variable operation modes.
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Temperature (determined by atmospheric temperature) and velocity of inlet fluid are
positively related to the efficiency of heat transfer. The inlet temperature directly affects
the temperature difference between the inlet and outlet liquid. According to existing
studies [17,18], the heat exchange rate QH approximately increases linearly with the inlet
temperature within a certain temperature range. In addition, high-speed fluid maintains
turbulent state, improving the heat exchange rate effectively [26].

The improper arrangement of heat transfer tubes and pile spacing induces thermal
interference phenomenon. Furthermore, the quantitative research on their influence of
heat transfer efficiency still needs to be explored. The production factors, such as the cost,
structural safety, and others, should be considered during design.

The durability of heat exchanger tube material is a subject of concern. The tubes may
be damaged by the corrosion of the circulating medium during the cyclic heat transfer.
The heat transfer efficiency, load capacity, and durability of energy piles are reduced by
damaged tubes. To solve this problem, the maintenance and replacement technology of the
tubes must be developed.

2.2. Effects of Materials and Geometry on Heat Transfer

Geometric properties significantly affect the heat transfer performance of energy
piles, such as thermal conductivity of concrete, pile length, pile diameter, and others. The
heat transfer performance of concrete is evaluated by the thermal conductivity. Studies
have shown that the heat exchange rate increases by 42% when the thermal conductivity
increases from 1.2 to 2.5 W/(m K) [27]. The thermal conductivity of concrete can be
increased by adding admixtures such as steel fiber and graphite. Increasing the pile’s
length and diameter can also enlarge the heat transfer area, improving the heat transfer
rate [26,27]. Factors including the heat transfer, bearing characteristics, and cost of a pile
must be therefore considered in the design.

2.3. Heat Transfer Performance of Soils
2.3.1. Water Content

The pore structure of the soil around the energy piles changes after it is filled by water,
varying heat conduction and transfer performance accordingly. Generally, increasing the
water content can enlarge the heat storage and heat transfer capacity [28]. When the water
content is low, the surface of soil particles is covered with a water film, having little effect
on the thermal conductivity [29]; as the water content increases, a “water bridge” forms
between soil particles. The thermal conductivity of water is much larger than that of air,
resulting in a significant increase in the thermal conductivity of soil [28,30].

2.3.2. Mineral Composition and Dry Density

The thermal conductivity of soil particles can be analyzed through composition and
dry density [31]. For different soil minerals, the thermal conductivity is significantly
different. The thermal conductivity of quartz is about 7~9 W/(m K), while the thermal
conductivity of mica, kaolinite, and feldspar is about 2~3 W/(m K). To quantify the thermal
conductivity of soil composed of various mineral components, past studies suggested
that the minerals can be divided into quartz and others, then the thermal conductivity of
mixed soils can be determined by the quartz content (20% volume fraction as the limit) [32].
However, the calculated thermal conductivity of the same mineral may be different because
the impure texture, dry density, and measurement methods are different.

Gases exist in the pores mainly in a free state, while a small part of gases are ad-
sorbed/dissolved on the surface of soil particles. Factors such as shape, structure, and
arrangement of soil particles determine the porosity, size, and distribution of soil pores, af-
fecting the thermal conductivity [33,34]. As shown in Figure 4, there is a positive correlation
between dry density and thermal conductivity of the soils because the contact area of soil
particles increases with the increase of dry density, and the thermal conductivity of mixed
soils is closer to the particles [35,36]. The microstructure of soils will also have an influence
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on the thermal conductivity, and perfect grading has greater thermal conductivity [33,37].
Additionally, previous works showed that the disturbance of the soils have little influence
on the thermal conductivity, therefore field tests can be used instead of indoor ones [38].
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2.4. Long-Term Service

Within about 10 m under the ground surface, the temperature periodically fluctuates
daily and seasonally. Below 10 m depth, the temperature remains relatively constant, which
is conducive to continuous heat exchange [39]. In summer, the average temperature of the
shallow ground surface is lower than the air temperature and thus the surface buildings
can be cooled down. In contrast, the ground temperature in winter is higher than the
air temperature, and heat stored underground in summer can be harvested for building
heating. However, cooling/heating demand varies seasonally. The heat around energy
piles can be correspondingly accumulated or dissipated, leading to the imbalance of soil
temperature and further affecting the subsequent periodic thermal cycle [40]. Such an
imbalance can be alleviated by integrating solar collectors/cooling equipment to GSHP to
compensate for the ground temperature [41] but the costs and long-term performance of
this integral have yet to be proven.

Energy piles are mainly adapted in lower buildings and are mostly designed for
5~30 m in length. Heat transfer is concentrated in a certain depth, so the heat transfer
range is limited. In most of cold regions, such as Europe and North America, GHSP is
successfully used because the temperature where the energy piles are located differs greatly
from the atmospheric temperature. The cost of energy piles in warm zones needs to be
studied further.

Duration of long-term heat transfer is an urgent issue for energy piles. Seasonal load
(unbalanced ground temperature) is the main factor affecting the long-term heat transfer
performance of energy piles. In areas where groundwater is rich, the groundwater flow can
significantly alleviate the unbalanced ground temperature, while in groundwater-free areas,
heat compensation to the soil layer is required but effective forms of the compensation
have yet to be designed and improved.

3. Numerical Simulations of GSHP Heat Transfer

In the linear heat source model, the heat transfer process is simplified to a linear and
radiating heat flow, and the following assumptions are made [42]: (1) Initial geotechnical
temperature is uniform; (2) heat flow is considered to transfer radially and to be constant;
(3) geotechnical material is homogeneous and isotropic. The linear heat source model can
be categorized into an infinite line heat source model and a finite line heat source model [43].
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The solution of an infinite line heat source model is not accurate under long-term conditions,
so a finite line heat source model was proposed. The detailed mathematical expressions of
each model based on various shapes can be found in Appendix A.

Hollow and solid shapes are two types of cylindrical heat sources [44,45]. The solid
cylindrical heat source model is used in S-shaped piles with large diameter and shallow
drilling depth. Based on the classical heat source method, Man [44] proposed 1-D and 2-D
heat sources for solid cylinders to consider the effect of the geometry of piles. The 1-D
method does not consider the heat transfer in the axial direction. For the 2-D method, the
finite heat source and surface boundary temperature are considered.

Groundwater is beneficial to enhance the heat transfer efficiency of the energy piles.
Water under the groundwater table moves between the particles of the soil layers, creating
horizontal flow that alleviates the heat accumulation. Traditional numerical methods based
on steady-state are not appropriate to evaluate the transient process with groundwater.
While some models for energy piles combined groundwater have been reported, the
accurate evaluation of the heat transfer conditions remains unsolved [46–53].

Compared to vertical GSHP, in the line heat source model and cylindrical heat source
model, the characteristics of the energy piles are as follows: (1) The buried depth is small,
so the ground temperature boundary cannot be ignored; (2) heat transfer of concrete is
significant because of the large pile diameter; (3) for a large range of heat transfer, the
thermal properties of soils are time dependent. To simplify analysis, these differences are
often ignored. The applicable conditions of the above three models are noted in Table 2; it
is known that they do not have high adaptability as many parameters are inconsistent in
complex environments. In order to get accurate results in a simple way, the models need
to be selected regarding the specific application included for the geometric characteristics
of the energy piles and the difference in thermal properties of concrete and soil. In the
water-rich rock layer, due to groundwater flow thermal convection can mitigate heat
accumulation induced by energy piles. However, such a situation is still too complicated
to be simulated because of the complex transient coupling for groundwater. Another
challenge is that accurate hydrogeological information cannot be obtained due to the high
cost and operational difficulties.

Table 2. Applicability evaluation of main heat transfer models of energy piles.

Model Consideration Inconsideration Condition

line heat source
model Radial heat transfer

Geometry, internal
heat transfer, tube

shape

Constant heat flow,
steady state

Hollow cylindrical
heat source model

Geometry, thermal
resistance

Geometry, thermal
interference between

tubes

Small diameter of
piles, steady state

Solid cylindrical heat
source model

The transient heat
transfer

Thermal properties of
concrete and soils S-shaped tubes

4. Response under Thermo-Mechanical Coupling
4.1. Pile-Soil Interaction Mechanism

Different from conventional pile foundations, energy piles bear additional temperature
loads induced by the continuous heat exchange. The heat transfer changes the temperature
distribution, leading to the expansion/contraction of energy piles. Due to the geotechnical
constraints, the piles are not free to deform, leading to additional temperature stresses on
the piles. Energy piles are commonly frictional piles that are subject to lateral frictional
resistance and tip resistance balanced with external forces. To simplify the model, an energy
pile is usually assumed to be a rod that deforms thermally [54]. As shown in Figure 5,
energy piles are subjected to thermal and mechanical stresses simultaneously. The pile
stress is closely related to the temperature. For column piles, the stresses and displacements
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under temperature loading exhibit thermos-elasticity, indicating that temperature has little
effect on mechanical properties [55–57].
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Existing works show that in case of the small mechanical load, the pile axial stress
gradually decreases to zero as the lateral frictional resistance accumulates. The stresses
below the zero point are mainly influenced by temperature [57–59]. Loading tests found
that in the lower and middle parts of the pile, the effect of temperature on the axial force is
more significant than the mechanical load [58]. The possibility of tensile stresses the lower
and middle parts of the pile during cooling, even under mechanical loads [57].

The main factors affecting the stress and displacement of energy piles include the pile
tip restraint and the shape of pipes. As the pile tip restraint increases, the zero point moves
downwards [60]. Different tube shapes are subjected to different thermal stresses. The
studies show that under the same power of the pump, for different types of heat exchangers
the strain and settlement of pile top of the W-shaped and S-shaped piles are more significant
than that of the single U-shaped pile [59].Considering the influence of soil, the main factors
affecting the bearing capacity of piles include thermal hardening, thermally induced water
flow, excess pore water pressure, and volume changes after thermal consolidation [61–68].
For normally consolidated soils, plastic hardening under heating is offset by softening
under isostatic drainage conditions. Plastic hardening results in soil compression because
compression is much larger than the thermos-elastic expansion of the skeleton (Figure 6).
Additionally, the shear strength of the soil increases as the contact between particles
becomes tighter after thermal consolidation [67]. For the over-consolidated soils, plastic
compression deformation is large enough to offset thermal expansion (Figure 6). The
excess pore water pressure caused by temperature rise cannot be dissipated, leading to the
decrease of shear strength [69,70].
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The thermal properties of the soils around energy piles are changed during the heat
transfer process [71–73]. By conducting model tests on saturated, normally consolidated
clay, Yazdani studied the pore water pressure (PWP) and ultimate bearing capacity of an
energy pile under cyclic temperature [74]. The temperature and PWP changed periodically,
and the periods were basically the same (Figure 7). The change of pore water pressure is
mainly determined by the rate of heating and cooling, permeability, and compressibility
of clay [75]. Except for the initial stage, the PWP is basically at a negative value because
under the action of the temperature gradient, directional migration of water generates the
suction between the soil particles and the pore water. The suction reduces average pore
pressure to increase soil skeleton stress and binds the particle surface.
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For unconsolidated sand, temperature-induced volumetric expansion/contraction
is slight [76]. However, a warning is needed about the stress redistribution induced by
thermal expansion/contraction of the energy piles and the differential deformation of the
pile-soil interface. Test results showed that the fluctuation of the bearing capacity was
small. After one cycle of heating and cooling, the displacement of the pile tip largely
recovered, showing thermos-elastic properties [77–79]. The bearing capacity of energy piles
mainly depends on the amount of settlement when the piles are undamaged. The results
of centrifugal tests, as shown in Figure 8, show that the higher the temperature, the smaller
the settlement [80]. By monitoring the long-term operating condition of the energy piles, a
slight irreversible residual strain was observed under the combined effect of mechanical
and temperature loads. Pile-soil calculation methods considering the temperature was
subsequently proposed. Additionally, the W-shaped buried tube settlement was 1.8 times
that of the single U-shape and 1.6 times that of the S-shaped during heating. During
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cooling, the displacement of the W-shaped buried tube was mostly significant, which was
1.7 times that of the single U-shaped [59].
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The thermal response of clay affects the bearing capacity of pile foundations. Tem-
perature variation can cause periodic expansion/contraction deformation of the energy
piles, which changes the pile-soil contact state. The temperature load applied to the soil
around the piles can be approximated as a cyclic shear load, which may gradually decay the
pile-soil contact stress. The expansion/contraction of clay caused by temperature load can
induce the rigid displacement of the energy piles. The directional migration of pore water is
the main cause of the expansion/contraction of the clay. As the temperature increases, the
clay causes elastic and plastic deformation, while only elastic deformation occurs during
cooling. The microstructure of the clay changes. During the early temperature cycle, the
expansion/contraction characteristics of clay are sensitive due to the weakened connection
between soil particles. After reaching a certain equilibrium state, the expansion/contraction
characteristics of the clay tend to stabilize but the expansion/contraction process is not
fully reversible for the plastic deformation. Similar to the heat transfer simulations, the
errors may be unacceptable in simulating the stress and strain of pile foundations under
thermal-mechanical loading. The thermal-stress coupled effect on the pile-soil interface is a
long-term and complex process, and thus it is a wise strategy to design energy piles using
a conservative approach. There is currently no report of energy pile damage in completed
projects. Existing reports showed that compared to conventional piles, the ultimate bearing
capacities of energy piles are reduced by 15% [79]. The loss of load-bearing capacity by
heat exchange is acceptable and can be solved by improving the safety coefficient.

4.2. Bearing Characteristics of Energy Pile Groups

For energy pile groups, internal force redistribution caused by temperature change
cannot be ignored [81]. The lateral friction and tip resistance of piles degrade with the
accumulation of additional settlement induced by temperature change, resulting in the
increase of force or even failure of non-exchange piles [82,83]. Uncoordinated deformation
between energy piles and non-exchange piles is the cause of stress redistribution [84]. At
the early stage of heat exchange, the difference in stress is the greatest, and then gradually
decreases to reach a steady state [82,84]. The main strategy to prevent the negative effect of
group piles is to optimize the layout of energy piles and non-exchange piles [85–87]. Energy
piles showed smaller irreversible pile head displacement in the presence of the adjacent pile
than in its absence. Pile cap also restrained the movement of the energy pile [88]. Although



Energies 2021, 14, 6483 10 of 15

group piles are always selected in civil construction for the design of foundations, group
piles are rarely studied because of the difficulty in testing and determining the number of
pile groups [89].

4.3. Simulations

The finite element method is a good supplement to the experiment. By conducting a
thermal-hydraulic-mechanical finite element coupling analysis, Loria [90] proposed the
concept of zero temperature displacement, which is also the critical point of additional ther-
mal stress and is consistent with the conclusion by Bourne-Webb [54]. Past studies [91–93]
simulated the mechanical behavior of the pile-soil interface based on the elastic-plastic
principle. The results indicated that the influence degree of the thermal loads on the axial
stress and strain is related to the number of energy piles and the relative thermal expansion
coefficient of the piles and soils.

5. Applicability of Composite Energy Piles in Water-Rich Areas

Energy piles have broad prospects in coastal zones with deep soft soil and shallow
groundwater. The soft soils are able to be penetrated by groundwater. Piles with large
lengths are the main way to solve local geological problems. Energy piles penetrating the
groundwater layer have a high heat transfer rate because of the scouring process, but it
is uneconomical to use a large amount of concrete to construct reinforced concrete piles
in soft ground. Here, a new composite energy pile is proposed, consisting of cement and
reinforced concrete piles (Figure 9).
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Figure 9. Structure diagram of composite energy pile.

As illustrated in Figure 9, a reinforced concrete core pile encased in cement soil extends
to the water-rich layer. With the mixing and rotary spraying equipment, prefabricated
cement slurry is injected to first form cement soil. The prefabricated energy piles of
reinforced concrete are then placed into the hole and filled with cement paste by lifting
equipment. The foundation formed by cement soil and core energy piles will synergistically
cause deformation [94].

The advantages of this composite energy pile are significant in terms of load carrying
and heat transfer capacity. Soils around energy piles is compacted during the formation
of cement soil, and such behavior can enhance the lateral friction resistance of the pile-
soil interface [95]. After hydration of cement, cement soil becomes a kind of dense and
composite material with higher thermal conductivity than loose soil [96–98]. In the soil
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layers containing abundant pore water, temperature-triggered directional flow is active
and will improve the heat transfer efficiency of the energy piles. In addition, cement soil
plays a role in preventing the pore water and protecting the core concrete from corrosion.

S-shaped energy piles can be adapted to different soil layers by adjusting the pitch
in the water-rich areas. Water content in the strata is unevenly distributed with depth
(Figure 9). Below the ground surface, the water content of shallow soft soils depends on
climate and rainfall. Rainwater infiltrates to a certain depth and then gathers to form
stable water-rich layers, where the water, called pore water, is mainly stored in the pore
space between the loose sediment particles. Under the flushing of pore water, the thermal
interference between the tubes in energy piles is slight. Therefore, a smaller pitch can be
arranged to strengthen the heat transfer performance.

6. Conclusions and Prospects

From the perspective of heat transfer-influencing factors, the current research mainly
focuses on macroscopic factors, like tube shape, fluid temperature and velocity, and the
thermal conductivity of energy piles and soil. Subsequent studies should consider more
microscopic factors, such as the contact state between liquid-pile soil and the thermal
properties of concrete. The theoretical and experimental analysis must be carried out to
fundamentally understand the influence of factors on the heat transfer performance of
energy piles. To describe the complex heat transfer process, simulation methods need to be
further optimized. Transient hourly time-step simulation for analysis of energy piles can
be performed by applying numerical models in dedicated simulation environments, but
these methods are complicated for common engineering. The number of heat exchanger
pipes, the mass flow rate, the thermal conductivity of grouting material, and the inlet
fluid temperature are the most common decision variables reviewed in previous studies.
However, a wide-ranging study on structural parameters is also suggested. In reviewed
models, modelling of heat transfer in two regions of energy piles surface boundary in the
floor of the building and soil is not realized.

As for the structural response, past studies have shown that the pile bearing capacity
will be decayed under temperature loading, but the specific mechanism is unclear. The
impact of heat exchange on the bearing capacity should be comprehensively evaluated by
considering the nature of pile-soil heat transfer, the pile-soil contact mechanism, and the
natural historical conditions of the soil. More evidence is required to confirm the effect
of variable temperature for the behavior of energy piles. Another important target that
should be investigated is finding the best positions and number of energy piles.
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Appendix A

The simulation methods of heat transfer process of energy piles are listed in Table A1,
and the meanings of each symbol are listed in Table A2.
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Table A1. Mathematical expressions for different simulation methods.

Models Mathematical Expression

Infinite line heat source [43] ∆Tf =
q

4πk Int + q
[
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Table A2. Nomenclature of each mathematical expression.

Nomenclature

C heat capacity,
J/(kg·K)

.
m flow rate, kg/s

L length of the tubes, m Rb thermal resistance, (m·K)/W

∆T different of fluid
temperature, ◦C γ Euler’s constant

q power per unit
length, W/m H depth, m

k thermal conductivity,
W/(m·K) z dimensionless axial coordinate

rb diameter, m r radial coordinate (m)

t Time, s r0 cylinder radius (m)

a thermal diffusivity,
m/s2 ω1, ω2

ω1 =

√(
R2 + r2

0 − 2Rr0c cos β + (h− z)2
)

ω2 =

√(
R2 + r2

0 − 2Rr0c cos β + (h + z)2
)

R R = r/r0
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