
energies

Review

The Contribution of Bottom-Up Energy Models to Support
Policy Design of Electricity End-Use Efficiency for Residential
Buildings and the Residential Sector: A Systematic Review

Marlene Ofelia Sanchez-Escobar 1,* , Julieta Noguez 1 , Jose Martin Molina-Espinosa 1 ,
Rafael Lozano-Espinosa 1 and Genoveva Vargas-Solar 2

����������
�������

Citation: Sanchez-Escobar, M.O.;

Noguez, J.; Molina-Espinosa, J.M.;

Lozano-Espinosa R.; Vargas-Solar, G.

The Contribution of Bottom-Up

Energy Models to Support Policy

Design of Electricity End-Use

Efficiency for Residential Buildings

and the Residential Sector: A

Systematic Review. Energies 2021, 14,

6466. https://doi.org/10.3390/

en14206466

Academic Editors: Carlos Henggeler

Antunes and Javier Reneses

Received: 16 June 2021

Accepted: 24 August 2021

Published: 10 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Tecnologico de Monterrey, School of Engineering and Science, Ave. Eugenio Garza Sada 2501,
Monterrey 64849, NL, Mexico; jnoguez@tec.mx (J.N.); jose.molina@tec.mx (J.M.M.-E.);
razolano@tec.mx (R.L.-E.)

2 LIRIS UMR5205, CNRS, 69621 Villeurbanne, France; genoveva.vargas-solar@liris.cnrs.fr
* Correspondence: A00704709@itesm.mx; Tel.: +521-5544995733

Abstract: Bottom-up energy models are considered essential tools to support policy design of
electricity end-use efficiency. However, in the literature, no study analyzes their contribution to
support policy design of electricity end-use efficiency, the modeling techniques used to build them,
and the policy instruments supported by them. This systematic review fills that gap by identifying
the current capability of bottom-up energy models to support specific policy instruments. In the
research, we review 192 publications from January 2015 to June 2020 to finally select 20 for further
examination. The articles are analyzed quantitatively in terms of techniques, model characteristics,
and applied policies. The findings of the study reveal that: (1) bottom-up energy models contribute
to the support of policy design of electricity end-use efficiency with the application of specific
best practices (2) bottom-up energy models do not provide a portfolio of analytical methods which
constraint their capability to support policy design (3) bottom-up energy models for residential
buildings have limited policy support and (4) bottom-up energy models’ design reveals a lack of
inclusion of key energy efficiency metrics to support decision-making. This study’s findings can
help researchers and energy modelers address these limitations and create new models following
best practices.

Keywords: energy modelling; electricity efficiency; energy policy; residential buildings; households;
data-driven approach

1. Introduction

The 2019 world energy outlook anticipates that the building sector (including house-
holds and services) will continue being the main contributor to global electricity demand
by 2040 [1]. Alone households expect a 60% increase in electricity consumption in develop-
ing economies. The outlook associates the possible increment in the buildings’ electricity
demand by utilizing more air conditioners, household appliances, and electric vehicles.
On the other hand, since the increase in energy use is related to the increment of carbon
dioxide (e.g., CO2) emissions, it is advised in the literature to enhance the efficiency of
electricity use [2]. Thus, it is possible to reduce emissions without compromising the
development of electricity services. To this end, governments design policies that promote
electricity end-use efficiency [2] with the support of bottom-up energy models [3].

Policy design refers to the selection of policy tools to achieve energy efficiency ob-
jectives [4], eliminate barriers toward efficiency, and gain energy efficiency benefits [5].
The design of policies for electricity end-use efficiency focus on the factors that distort
market and restrict the adoption of efficient technologies [2]. For instance, expected short
payback period on investments, uncertainty about actual savings, the lack of trained peo-
ple to invest in energy efficiency, physical barriers of the technology, attributes that affect
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performance, and unfavorable investment due to lower average usage of the product [2].
Besides, the creation of policies is a process that includes two steps [6]: (1) policy definition
and (2) policy instruments development. The first involves the definition of objectives,
strategies to be used for distinct groups, and the legal and regulatory frameworks; in
contrast, the second includes the creation of incentives, penalties, standards, as well as
technical and financial support. A complete description of policy instruments is available
in [7] and summarized in Table 1.

Table 1. Energy Efficiency Policy Instruments.

Type of Instrument Instrument Description

Market-based Energy Taxes Impact the price of goods and
services that generate high green-
house emissions or the price of
the emission itself [8].

Tradable emissions permits Limited emission permits are di-
vided among companies that pol-
lute to control the amount of
emissions agreed by regulatory
agencies [9].

White certificates schemes Energy suppliers commit to (1)
Promote energy efficiency in fi-
nal uses and (2) implement inter-
ventions to save a percentage of
their distributed or supplied en-
ergy [10].

Financial
incentives

Subsidies Direct payments or tax rebates
are used to motivate expenditure
on energy efficiency [7].

Access to capital measures Grants and loans are provided to
drive specific energy efficiency
expenditures [7].

Regulatory Measures Codes and Standards Building codes and energy per-
formance standards [7] are used
to impose the compliance of min-
imum energy efficiency levels to
products or services (e.g., build-
ing design or construction [11]).

Information
and
Feedback

Information Certificates, labels, or audits are
used to avoid suboptimal energy
efficiency investments [7].

Feedback Consumption and energy infor-
mation is given to consumers
to promote energy conserva-
tion [12].

Non-regulatory measures Voluntary Agreements Adjustable agreements among
firms and public authorities used
to increase energy efficiency
and diminish greenhouse emis-
sions [13].

In this context, policy-makers rely on energy models to estimate the impact of pol-
icy [14] and technology choices [15], to control energy consumption [16], and to enhance
energy efficiency levels [17]. The literature classifies energy models by their analytical
approach as top-down or bottom-up [15,18–20]. Top-down models use aggregated data
to analyze synergies among sectors (e.g., energy sector versus demand sector). While
bottom-up models only focus on describing energy end-uses and technological choices
using disaggregated data [20]. In the research, we examine bottom-up models since we
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are interested in the modeling of end-use energy efficiency that support policy design.
Therefore, we present a taxonomy [18–22] of bottom-up energy models to identify their
main characteristics and how these features relate with the support to policy design.

The classification describes bottom-up energy models with the following
attributes [20,21]: (1) sector coverage, which specifies how many sectors the model in-
cludes (e.g., multi-sector or single-sector) [20]. The first are concerned with the impacts
of diverse factors (e.g., policies, technologies, or others) in different sectors [23]. While,
the second focus on the effects in only one of them. The following sectors can be included in
models [23]: economic sector, which includes energy and production sectors, and demand
sector (i.e., energy consumption sector) that include: households, buildings, industries,
and transport sectors [24]; (2) geographical coverage, which defines the geographic level rep-
resented by the model (e.g., global, regional, national, local or project) [20]); (3) time horizon
which determines the time-frame where the model is applied [21]. For instance, models
can represent the evolution or configuration of energy systems in the short, medium,
or long term [20]; (4) the methodology which indicates the modeling approach used for
the model’s design (e.g., economic, optimization, simulation, spreadsheet, back-casting,
and multi-criteria) [20]; (5) the programming technique which specifies the mathematical
or non-mathematical approach used to create the model (e.g., linear, dynamic, heuristic,
or other); (6) the end-use energy modeling technique which determine the technique(s) used to
represent end-uses in models (e.g., engineering and/or data-driven) [18,19]; (7) the data
time split which represents the model’s time resolution of the input data (e.g., hourly or
minute, weekly, monthly, and yearly) [22]; (8) the presence of metrics and tools that ease
energy-efficiency policy design (e.g., cost, CO2 emissions and scenarios) [25–27]; and finally
(9) the residential electricity end-uses implemented by the model (e.g., Appliances (A),
Space Heating(SH), Space Cooling (SC), Lighting (L), Water Heating (WH), and Cooking
(C)). The complete taxonomy with more detail is available on Table 2.

Nevertheless, scholars question the support towards the design of energy efficiency
policies that these models provide; especially, for residential buildings [3]. Likewise,
the literature reveals the following limitations of these kinds of models [3,30]: (1) the
implementation of energy efficiency is not straightforward, (2) the models do not provide a
portfolio of analytical methods, (3) they do not transform modeling results into concrete
policy recommendations, (4) they oversimplify policy instruments, and (5) they do not
capture the market and behavioral failures. Finally, research has not uncover a study that
analyzes quantitatively these kinds of models.

The following review fills the gap by performing a quantitative analysis of bottom-up
energy models. The study aims to reveal the contribution of bottom-up energy models
towards policy design of electricity end-use efficiency. We examine the case of residential
buildings (including households), given their importance in the energy consumption
sector. In this study the term households and residential sector is used interchangeably.
The following research questions determine what is studied in detail:

1. RQ1: What kind of bottom-up energy models aim to support policy design of electric-
ity end-use efficiency for residential buildings and the residential sector, and how do
they relate to specific policy instruments ?

2. RQ2: Which types of analytical methods are used in bottom-up energy models that
aim to support policy design of electricity end-use efficiency in residential buildings
and the residential sector?

3. RQ3: Which types of energy policies are supported by bottom-up energy models that
aim to support policy design of electricity end-use efficiency in residential buildings
and the residential sector?

The rest of the paper is organized as follows: Section 2 presents a brief literature
review. Section 3 outlines the methodology to perform the review. Section 4 presents the
results and discussion. Section 5 includes a comparison with other studies and findings;
and finally, Section 6 presents conclusions and future work.



Energies 2021, 14, 6466 4 of 28

Table 2. Taxonomy of Bottom-up Energy models.

Category Subcategory Model Focus

Sector Coverage [20] Single-Sector Just one sector
Multi-Sector Interaction between sectors

Geographical
Coverage [20]

Global World economy/situation
Regional International regions
National All sector within a country
Local Regions within a country
Project Specific energy project

Time Horizon [20] Short Less than 5 years model
Medium 5 to 15 years model
Long-Term Greater than 16 years model

Methodology [20] Economic Representation of economic and technical effects of alter-
native economic strategies

Optimization Optimization of choices on energy investment
Simulation Replication of a system operation in a simplified form
Spreadsheet Utilization of a flexible tool to generate customized energy

models
Back-casting Creation of views of a desired future and identification of

trends to be broken to achieve the future
Multi-criteria Inclusion of additional criteria to the model beyond eco-

nomic efficiency
Other Other methodology

End-use Energy
Modeling
Technique [18,19]

Engineering Calculation of energy consumption based on thermody-
namics and heat transfer of all end-uses

Data-driven statistical Correlation of end-use features with its energy use using
statistical techniques

Data-driven AI-based Correlation of end-use features with its energy use using
artificial intelligence techniques

Programming
Technique [21]

Linear Programming (LP) Discover arrangement of activities to minimize or maxi-
mize a defined criterion

Mixed Integer LP Extension to LP programming which include detailed for-
mulation of technical properties and relations in modeling
of energy systems

Dynamic Discover optimal growth path through division of an orig-
inal problem and optimization of sub-problems

Heuristic Manage high dimension optimization problems [28]
Other Other type of programming technique

Data Time Split [22] Hourly/Minute Hourly/Minute data resolution
Daily Daily data resolution
Monthly Monthly data resolution
Yearly Yearly data resolution

Metrics and
Tools [20]

Metrics CO2 emissions and cost as outputs in the model
Tools Scenario utilization to show model’s results

Residential Electricity end-uses [29] A, SH, SC, L, WH, C Detailed identification of electricity consumption, energy
use and energy savings by end-use.

Note: Electricity end-uses: AL = Appliances and Lighting, SC = Space Cooling, SH = Space Heating, WH = Water Heating, A = Appliances,
L = Lighting, C = Cooking.

1.1. Classification of Energy Models

Energy models are useful for prospecting future energy demand and supply and
simulating policy and technology choices and their impacts on energy demand and sup-
ply [15]. Diverse authors classify energy models by their analytical approach as top-down
or bottom-up [15,18–20]. Van Beeck [20] differentiates these models with the following key
features: level of data aggregation, degree of endogenous behavior, and level of detail of
technology representation. In this regard, top-down models use aggregated data to analyze
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synergies among sectors (e.g., energy versus demand). While bottom-up models only focus
on describing energy end-uses and technological choices using disaggregated data [20].
For this Systematic Review, we will be analyzing bottom-up models since we are interested
in models centered on end-use energy efficiency.

1.2. Bottom-Up Energy Models (Bottom-Up Energy Models)

According to Prina et al. [21] and Van Beeck [20], bottom-up energy models have
the following characteristics: sector coverage, which specifies how many sectors the model
can represent; geographical coverage, which defines the geographic level implemented in
the model; time horizon which determines the time-frame where the model is applied [21].
For instance, models can represent the evolution (e.g., forecast of energy efficiency) or
configuration (e.g., household operation in a smart-grid) of energy systems in the short,
medium, or long term. The model methodology which indicates the type of procedure used in
the bottom-up energy model’s construction, and the programming technique which specifies
the mathematical or non-mathematical approach used to create the model. Additionally,
Abbasabadi et al. [18] and Ugursal et al. [19] introduce the end-use energy modeling technique
as a feature to describe bottom-up energy models. Swan et al. [19] categorize models as
statistical or engineering, while Abbasabadi et al. classify them as data-driven or simulation-
based engineering. Moreover, based on Kannan et al.’s Intra-Annual Time Split [22], we
define the Data time split feature. This last represents the model’s time resolution of the
input data. Finally, we categorize bottom-up energy models according to the availability of
metrics and tools to ease policy design.

On the other hand, although Prina and Van Beeck coincide on the type of characteris-
tics of bottom-up energy models, there are differences in concepts. For instance, Prina et al.
characterize the geographical coverage as single-node or multi-node, while Van Beeck typi-
fies it as global, regional, national, local, or project. Likewise, Van Beeck’s methodologies
include economic, econometric, spreadsheet, and backcasting, which Prina et al. neglect.
Finally, Prina et al. consider non-linear and heuristics programming techniques, which Van
Beeck does not specify.

For this systematic review, we create a merged taxonomy of bottom-up energy models
based on the categorizations present in [18–22]. We include the most precise classification of
each attribute to generate a complete and accurate denomination of these kinds of models.
The merged taxonomy aims to represent relevant features of bottom-up energy models
and allows models’ cataloging for further analysis. Table 2 presents key characteristics of
bottom-up energy models as a merged taxonomy.

1.2.1. Sector Coverage

We choose Van Beeck’s [20] classification in the sector coverage case, including single
and multi-sector models. Against Prina et al.’s categorization [21], that specifies the options:
all sectors and one sector, ignoring the possibility to select more than one sector, but not
specifically all existent sectors.

Multi-sector models are concerned with the impacts of diverse factors (e.g., policies,
technologies, or others) in different sectors [23]. In contrast, single-sector models focus on
the effects of only one of them. White et al. [23] describe the following sectors that can be
included in a multi-sector model: economic sector, which includes energy and production
sectors, and demand sector (i.e., energy consumption sector) that include: households,
buildings, industries, and transport sectors [24].

1.2.2. Geographical Coverage

We decided to use Van Beeck’s [20] geographical coverage, which includes: global,
regional, national, local, and project models. Contrarily, Prina’s centers on bottlenecks of
energy transportation instead of the geographical scope represented in the model. The focus
of each geographical coverage is present in Table 2.
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1.2.3. Time Horizon

In [20], Van Beeck presents a simple time horizon classification with specific time
frames expressed in years. In comparison, Prina et al. describe the time-span with time-
slices, which could difficult the paper categorization. In this SR, we contemplate Van
Beeck’s that includes: short, medium, and long-term spans. See Table 2 for a description of
the focus of each of them.

1.2.4. Programming Technique

We use Prina’s [20] categorization of programming techniques used for model creation,
given its completeness versus Van Beeck’s. The merged taxonomy includes the following
types of programming techniques: linear, mixed linear, dynamic, heuristic, and other types.
Table 2 describes the focus of each of them.

1.2.5. Data Time Split

In [22], Kannan et al. define a categorization of Intra-annual time splits, which specifies
the number of temporal divisions that the model manages (e.g., minutes, hours, weeks,
or seasons). For our taxonomy, we represent the resolution of the model’s input data with
the following types of time splits: hourly or minute, weekly, monthly, and yearly.

1.2.6. Metrics and Tools

In this category, we focus on the availability of the following metrics: cost, CO2 emis-
sions metrics, and scenarios in bottom-up energy models. According to McNeil et al. [25],
cost and CO2 emissions are key energy efficiency indicators. So its presence in models ori-
ented to energy efficiency policy design is necessary. In the same manner, experts consider
that scenarios are useful tools for policy-making [26] and to provide scientific evidence to
decision-makers [27]. In this study, we examine in which proportion bottom-up energy
models include these metrics and tools.

This newly merged taxonomy allows the analysis of bottom-up energy models in a
quantitative form and the comparison of energy models based on relevant features.

1.3. Energy Efficiency Policies and Policy Design

A second taxonomy is necessary to analyze bottom-up energy models according to the
policy interventions they support. In this section, we define the following important concepts
to achieve that goal: energy efficiency (EE), energy efficiency policy, and policy design.

Residential Energy End-Uses

We study in this SR energy end-uses since they allow a detailed identification of
electricity consumption, which support detailed analyses of energy use and energy savings.

Energy end-uses are categorized by the International Energy Agency as [29]: Ap-
pliances (A), Space Heating(SH), Space Cooling (SC), Lighting (L), Water Heating (WH),
and Cooking (C). For our analysis, we examine energy end-uses supported by models in
the residential sector and residential buildings.

2. Literature Review

Few studies examine bottom-up energy models that support energy efficiency policy
design in residential buildings and households. Besides, none focuses on electricity end-
use efficiency or on evaluating how they support policy design. In this regard, Mundaca
and Neij [3] review energy-economy models used for energy efficiency policy evaluation
for households. Nevertheless, the authors consider one type of energy model, and the
portfolio of analytics techniques presented is limited. Calvillo et al. [31] review energy
efficiency modeling approaches using the TIMES energy system model. Although this
study is focused on energy efficiency policy in the residential sector using engineering-
economic models, it does not consider other existent modeling techniques and method-
ologies. Hong et al. present a review of applications of machine learning techniques for
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the Building Life Cycle [32]. The study categorizes the phases of a building life cycle
and analytics techniques applied for different applications during each stage. However,
the study does not show the perspective of energy efficiency policy design, and it focuses
entirely on the portfolio of techniques. Afroz et al. [33] create a review of data-driven
models to improve HVAC’s energy efficiency systems (e.g., Heating, Ventilation, and Air
Conditioning) in buildings. The revision categorizes and examines data-driven modeling
for HVAC based on their applicability and performance. However: (1) the study is not
focused on energy models applied to households or residential buildings, and (2) it does
not consider the policy design as part of the classification and analysis. Also, Abbasabadi
and Ashayeri [18] describe, characterize and compare analytics modeling approaches. Yet,
the review excludes applications on energy efficiency policies. Likewise, it does not make a
differentiation among building types, which limits the residential perspective.

3. Methodology

We conduct the following systematic review considering the guidelines of Kitchenham
and Charters [34], Normadhi et al. [35], and Moher et al. [36]. Figure 1 shows the executed
phases, and we describe them in detail in the following sections.

Figure 1. Systematic Review phases (adapted from [36]).

3.1. Identification Phase

We start carrying out trial searches to find systematic reviews related to our field of
study. The retrieved studies guide us to discover research opportunities and establish
specific research questions (RQs).

1. RQ1: What characteristics have bottom-up energy models that support energy effi-
ciency policy design in the residential sector and residential buildings?

2. RQ2: Which analytical techniques are used in bottom-up energy models to support
energy efficiency policy design in the residential sector and residential buildings?

3. RQ3: Which types of energy policies are supported by bottom-up energy models in
the residential sector and residential buildings?

3.1.1. Search Strategy

We perform manual and automated searches to find studies in scientific databases (i.e.,
IEEExplorer, ACM, Science Direct, Google Scholar, and Scopus). Since diverse databases
have restrictions in the number of keywords accepted within queries, we create programs
to generate customized searches per database. Further, we use APIs to perform the query
execution and article extraction processes in two of them. Although, the automation
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facilitates the retrieval of possible studies from databases. Yet, we use manual extraction
when we do not have access to the corresponding SearchAPI.

The authors simplify the scope by identifying domains of study and related keywords.
From the RQs, we select the following study domains: (1) Energy Efficiency, (2) Residential
sector and residential buildings, (3) Analytics techniques, (4) Energy modeling, and (5)
Policy Design.

3.1.2. Keyword Identification and Selection

In this stage, we propose an objective approach for keyword selection that relies on
keywords from formal taxonomies and terms available in top journals and conferences.
In contrast with the classic method, in which researchers select keywords based on expertise
and domain knowledge. Our approach includes relevant keywords and excludes non-used
terms in publications oriented to the research domain.

First, the selection process involves the identification of keywords for each domain of
study in formal taxonomies (e.g., IEEE and ACM) and journals related to energy efficiency
policy (e.g., Energy Efficiency Journal, Energy Policy, Energy and Buildings, Applied
Energy and Energy Procedia). Second, using this initial list of terms, we look for synonyms
present in scientific databases, using trial queries. Finally, we select the final keywords using
the following criteria: (1) Keywords present in more than one publication are included
in the final keyword list (2) Keywords with one or more synonyms are included in the
list (e.g., data driven, data-driven) and (3) If synonyms share a similar expression(e.g.,
model-based, modeling, models), we use the shared term as key term (e.g., model). Table 3
shows the keywords used for query construction.

Table 3. Keywords by Domain of Study.

Domains of Study Keywords (IEEE/ACM/Indexed Journals)
and Synonyms

DS1.
Energy Efficiency

Energy efficiency, energy-efficiency, CO2, appliance,
technology, energy conservation, retrofit, energy
saving, insulation

DS2.
Residential Sector and Residential
Buildings

Household, dwelling , residential

DS3.
Analytics
techniques

Analytics, mining, prediction, data analysis, decision
support, forecast,time series, regression, data-driven,
data driven, Machine learning

DS4.
Energy Modeling

Model

DS5.
Policy design

Policy, policies, regulation, scenario, intervention,
program, incentive

3.1.3. Query Construction

We automate the query generation using a Phyton application to obtain relevant
domain-related articles. Although, the program generates a set of queries that includes all
possible keyword combinations. The creation process reveals that some databases require
numerous searches to obtain all potential publications. A circumstance that can result in an
unmanageable number of publications to review.

To address this situation, we propose the following inclusion/exclusion criteria. So
we can guarantee the creation of manageable and domain-oriented queries.

The inclusion criteria involve:

1. Queries that consider papers published after 2014 and with a compelling keyword
combination in its title. We review articles from the last five years of research.
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2. Queries that include the following combination of domains: DS1, DS2, and DS3 or
DS1, DS2, and DS4. We exclude the policy term (DS5) since it affects the query result.
For instance, using DS5 keywords, we retrieve an excessive or limited number of
articles with poor orientation to the study domain. To overcome this problem, we
validate the article’s policy orientation in future phases.

Table 4 shows the keyword combinations used for query construction.

Table 4. Queries with their keyword combination.

Query Domain
Combination

Keywords in Query Constraint

Q1 DS1, DS2 and DS3 “energy efficiency” OR energy-efficiency OR
CO2 OR appliance OR technology OR “energy
conservation” OR retrofit OR “energy saving”
OR insulation AND household OR dwelling OR
residential AND “machine learning” OR ana-
lytics OR mining OR prediction OR “data anal-
ysis” OR “decision support” OR forecast OR
“time series” OR regression OR “data-driven”
OR “data driven”

TITLE AND
Year > 2014

Q2 DS1, DS2 and DS4 “energy efficiency” OR energy-efficiency OR
CO2 OR appliance OR technology OR “energy
conservation” OR retrofit OR “energy saving”
OR insulation AND household OR dwelling
OR residential AND model

TITLE AND
Year > 2014

On the other hand, we filter the queries using the following exclusion criteria:

1. Queries that return more than 200 records and that that fail to pass a pre-screening
process. In this case, we perform manual screening to validate the granularity of
the returned articles. If we detect that the majority of records are not in the scope
of the research, we discard them. In future examinations, we plan to automate this
screening process.

After applying the inclusion/exclusion criteria, the program returns a total of
396 accepted queries. See Table 5 for the query generation summary per database.

The previous procedure permits quality assurance of the results and eases the auto-
matic extraction of articles from databases. The query generation program is available for re-
view in the following GitHub repository: https://github.com/tsetsuna/Systematic-Review
(accessed 30 August 2021).

3.1.4. Query Execution

We automate the query execution and article retrieval for IEEE and Scopus databases
using IEEE Python and ElsClient Python APIs. On the other hand, we download publica-
tions from ACM, Google Scholar, and Science Direct directly from each database portal.

The query execution summary available in Table 5 reveals a total of 340 retrieved
publications. From Google Scholar and Scopus databases, we retrieve most of the articles
with 118 and 112, respectively. Also, we remove 148 out of 340 publications identified
as duplicated per specific database and by comparing all databases (e.g., de-duplicated).
In the end, we obtain 192 unique articles after inclusion/exclusion criteria. For duplicate
removal, we use the EndNote application.

https://github.com/tsetsuna/Systematic-Review
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Table 5. Number of articles obtained after query execution.

Database Num. Queries Num. Articles Duplicated After Duplicates Deduplicated Final

IEEE 312 38 8 30

105 192
ACM 2 16 1 15
Science Direct 56 56 3 53
Scopus 2 112 8 104
Google Scholar 24 118 23 95

TOTAL 396 340 43 297 105 192

3.2. Screening Phase

We use the Rayyan application which is a specialized tool to perform systematic
reviews and to filter publications according to a defined inclusion and exclusion criteria.
The program facilitates paper labeling and parallel revisions among reviewers. More
information about Rayyan can be found in: https://rayyan.qcri.org/welcome (accessed on
30 August 2021).

To begin article screening, we export unique articles from EndNote to Rayyan and
coordinate reviews among contributors. All authors participate in the screening process.
Lastly, we apply inclusion and exclusion criteria to examine the articles.

The inclusion criteria involve:

1. Research papers (RPs) published between 2015 and 2020 will be considered for
the study.

2. RPs that allow to answer the defined research questions
3. RPs from journals and conferences (with citations)
4. RPs should be in English
5. RPs should have an available and complete abstract

On the other hand, the exclusion criteria eliminate:

1. RPs without models applied to the residential sector or residential buildings
2. RPs without policy orientation. The abstract or title must include at least one of

the following terms: policy, policies, regulation, scenario, intervention, program,
or incentive.

3. RPs without orientation to energy efficiency (i.e., energy savings or energy conservation)
4. RPs without application to electricity end-use

Finally, after applying the inclusion and exclusion criteria, we accept 22 articles for
quality validation and discard 170 out of 192.

3.3. Eligibility and Inclusion Phases

The quality validation of articles aims to guarantee the inclusion of studies that
contain information that allows answering the RQs. We design a straightforward checklist
to identify publications that are compliant with the requirements of the study. The complete
QA checklist is available in Table 6.

The quality criteria CK1 aims to identify the articles’ orientation concerning bottom-up
energy models and energy efficiency policy. If the publication does not consider those
subjects, the answer to the question is negative. Secondly, CK2 and CK4 are used to
identify specific features of bottom-up energy models. In this regard, if definitions of
variables/methods are not present, the answer to the criteria is negative. Lastly, Ck3 and
Ck5 are used to assess how accurate the data analysis is. If no validation procedure is
present, the answer to the criteria is negative. We apply the quality criteria to 22 articles.

Figure 2 shows the results of the checklist execution. The summary of findings is
the following: (1) 100% of studies have a correct orientation to bottom-up energy models
and energy efficiency policy (2) 95% of publications describe exogenous and endogenous
variables of the energy model (only two of them don’t) (3) 90% of articles describe the

https://rayyan.qcri.org/welcome
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measuring process of the model’s variables (4) 95% studies describe the methods to analyze
the model’s data and (5) 68% of publications present a validation procedure. In the end,
two studies accomplish less than four affirmative criteria, while 20 publications achieve
four or more. This last fact allows us to identify the articles to be excluded from the final
analysis and consider only those who achieve compliance with at least 80% of the quality
criteria. At the end, only 20 studies passed the quality check, and 2 out of 22 were rejected.

Table 6. Quality Checklist.

Item Assessment Criteria Checklist Description

CK1 Are the aims of the article clearly de-
fined?

No, the aim is not defined
Yes, the aim is clearly defined

CK2 Are endogenous and exogenous
variables of the model described?

No, the variables are not described
Yes, the variables are clearly listed and de-
scribed

CK3 Are the variables used in the study
adequately measured?

No, the variables measurement process is not
explained or justified
Yes, the variable measurement process is clearly
explained and justified.

CK4 Are methods for analyzing model’s
data described?

No, the methods for data analysis are not de-
scribed nor explained
Yes, the methods for data analysis are clearly
described and explained.

CK5 Do the study present a validation
procedure?

No, the study does not present a validation pro-
cedure of the obtained results
Yes, the study presents a validation procedure
of the obtained results.

Figure 2. Quality Assurance Summary.

Ultimately, we organize research papers according to the following aspects of models.
First, the taxonomy of bottom-up energy models available in Table 2 (e.g., sector coverage,
geographical coverage, time horizon, methodologies, end-use energy modeling, program-
ming techniques, data time split, metrics and tools, and residential electricity end-uses).
Second, the policy instruments supported (e.g., market-based, financial, regulatory, infor-
mation and feedback, and non-regulatory). And finally, the utilization of specific analytics
methods available in the model.

The described organization allows the analysis of models from different facets with
a quantitative and qualitative perspective. Table 7 shows a partial categorization of QA
approved studies.
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Table 7. Article Classification by Bottom-up model characteristics.

Citation Authors Consumer Sector Geographical Time Methodology Modeling Programming Electricity Technique Used
Sector Coverage Coverage Horizon Technique Technique End-Use

[37] Jridi et al. Residential Single-Sectorial Local Short Economic DDS Other AL Discrete choice models (Logit model)

[38] Hara et al. Residential Single-Sectorial Local Medium Economic DDS Other SC Discrete choice models (Logit and probit),
Time-series analysis

[39] Marshall et al. Building Single-Sectorial Local Short Simulation E Other SH Transient Thermodynamics equations

[40] Braulio Gonzalo et al. Building Single-Sectorial Local Short Simulation E Other SH, SC Bayesian Inference, INLA (Integrated
Nested Laplace Approximation)

[41] M. Aghamohamadi et al. Residential Single-Sectorial Local Short Optimization DDS Other AL, SC Probability Density Functions Least Square
Method, Person distribution

[42] w. Kleebrang et al. Residential Multi-Sectorial Local Long-Term Economic DDS Other AL, SC, WH End-use Model Linear Regression

[43] A. Mohseni et al. Residential Single-Sectorial Project Short Optimization DDS Mixed LP A, SC Set of Sequential Uninterruptible Energy
Phases MILP

[44] Schutz et al. Building Single-Sectorial Project Short Optimization E Mixed LP SH, SC Dynamic Building Model MILP

[45] Radpour et al. Residential Single-Sectorial Local Long-Term Economic DDS Other A Econometric diffusion models, market share
functions energy system parameters

[46] Cerezo Davila et al. Building Single-Sectorial Local Long-Term Simulation E Other AL, SC Occupant uncertainty modeling

[47] Jafary et al. Residential Single-Sectorial Project Short Other DDS, DDAI Other A Cluster analysis Regression analysis

[48] Heidari et al. Residential Single-Sectorial Local Long-Term Economic DDS Other L Material flow analysis (MFA) Weibull distribution,
Techno-economic analysis

[49] Pradhan et al. Residential Multi-Sectorial National Long-Term Optimization DDS Linear C Linear optimization
Programming

[50] Lundgren et al. Residential Single-Sectorial Local Medium Other DDS, DDAI Other AL Two level time series mediation model,
Regression analysis, Principal Component analysis

[51] Meangbua et al. Residential Single-Sectorial Local Medium Other DDS Other SC Panel data regression

[52] Wang et al. Building Single-Sectorial Local Short Other DDS Other SC, SH Propensity score matching method

[53] Wen and Cao Residential Single-Sectorial Local Medium Other DDS, DDAI Heuristic SC, A Bivariate correlation analysis
Butterfly optimization algorithm,
Least square support vector machine

[54] Liang et al. Residential Single-Sectorial Project Short Other DDS Other A Sliding Window Linear Regression, Kernel Density

[55] Wen and Cao Residential Single-Sectorial Local Long-Term Other DDS, DDAI Heuristic SC, A Grey Relational analysis, chicken swarm
optimization, Support Vector Machine

[56] Krarti et al. Building Single-Sectorial Local Long-Term Simulation E Other AL, SC Mathematical equations

Note: Electricity end-uses: AL = Appliances and Lighting, SC = Space Cooling, SH = Space Heating, WH = Water Heating, A = Appliances, L = Lighting, C = Cooking. Modeling Techniques: DDAI = Data-driven
AI-Based, DDS = Data-driven statistical, E = Engineering.
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4. Results and Discussion

We contemplate approved QA papers (i.e., 20 articles) to perform quantitative analysis
and respond to the defined research questions.

4.1. Summary of Selected Studies

Figure 3 shows the distribution per year of studies. As can be noticed, the quantity of
papers focused on bottom-up energy models that support energy efficiency policy design
is low, with an average of three publications per year. However, this number can increase
to some extent if we consider that 2020 publications were obtained from January to June
2020, excluding the last two quarters of the year.

Figure 3. Distribution graph of the number of articles per year.

4.2. Analysis by Consumer Sector

We performed the articles’ analysis by sector (e.g., residential sector and residential
buildings) to discover the characteristics of bottom-up energy models and the policy
orientation of each of them.

Figure 4 shows how the residential sector surpasses by more than double the number
of residential buildings publications. The last statistic is coherent; if we consider that energy
policy modeling for buildings is a new field of study, in contrast to the residential sector,
which has documented research since the 70 s [57].

Figure 4. Distribution graph of number of articles by Consumer Sector.
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4.3. Results

In this section, we answer the defined RQs.
RQ1: What kind of bottom-up energy models aim to support policy design of electric-

ity end-use efficiency for residential buildings and the residential sector, and how do they
relate to specific policy instruments

The following features are selected to characterize bottom-up energy models that
support policy design of electricity end-use efficiency: sector and geographical coverage
and time horizon, obtained from the taxonomy in Table 2. Likewise, we incorporate the
electricity end-use, data time split, cost and CO2 emissions included within the model,
and the use of scenarios. The characteristics of bottom-up energy models for the residential
sector are available in Table 8 and for residential buildings in Table 9.

Table 8. Characteristics of bottom-up energy models-Residential Sector.

Citation Authors Sector
Coverage

Geographic
Coverage

Time
Horizon

Electricity
End-Uses

Data Cost Scenario
Based

CO2

[37] Jridi et al. Single-sector Local Short AL Yearly no no no
[41] Aghamohamadi

and Amjady
A, L, SC Hourly yes yes no

[38] Hara et al. Single-sector Local Medium SC Yearly no no no
[50] Lundgren and

Schultzberg
AL Yearly yes no no

[51] Meangbua et al. SC Yearly no no yes
[53] Wen and Cao A, SC Yearly no no yes

[45] Radpour et al. Single-sector Local Long-term A Yearly yes yes no
[48] Heidari et al. L Yearly yes yes no
[55] Wen and Cao A, SC Yearly no no yes

[43] A.
Mohseni et al.

Single-sector Project Short A, SC Hourly yes yes no

[47] Jafary and
Shephard

A Hourly no no no

[54] Liang et al. A Hourly no yes no

[42] w. Klee-
brang et al.

Multi-sector Local Long-term A, L, SC,
WH

Yearly no yes no

[49] Pradhan et al. Multi-sector National Long-term C Yearly yes yes yes

Note: Electricity end-uses: AL = Appliances and Lighting, SC = Space Cooling, SH = Space Heating, WH = Water
Heating, A = Appliances, L = Lighting, C = Cooking.

Residential Sector

Bottom-up energy models for households are single-sector models with local coverage
and different time horizons (e.g., short, medium, or long-term). Evidence shows that most
of these models (i.e., 71%) depend on surveys and statistical data for model construction and
have a yearly data time split. The only exception is Aghamohamadi & Amjady’s model [41],
which uses a sampling of appliance energy consumption with hourly resolution. Likewise,
the models have the following applications: behavioral studies towards energy efficiency,
perception of electricity consumption, determinant factors of appliance replacement, CO2
energy requirements, appliances and bulbs replacement, appliances market penetration,
and emissions in electricity production. Therefore, we can conclude that they aim to
address failures on consumer behavior of end-users and on access to capital measures in
the case of appliance replacement [6], which makes them useful for financial and regulatory
instruments design. However, their limited geographical coverage does not allow their
applicability for regional or international policy design.

In contrast, single-sector bottom-up energy models with project coverage are short
time horizon models that rely on granular time split with minute resolution. Two studies
use the Pecan Street dataset to analyze household baseload consumption [54] and model
appliances benchmark [47]. Likewise, Mohseni et al. [43] use smart meter samples to create
an energy model for day-ahead planning. Given the short time horizon and data time split,
we deduce that these models deal with imperfect information barriers among consumers
and energy suppliers [6], which allows us to correlate them with information and feedback
policy instruments.
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Also, we identify a limited set of multi-sector models in the literature. Yet, they
characterize as long-time horizon models with yearly data time split. For instance, Klee-
brang et al. [42] create a long-term model (2013–2030) for lighting and air conditioning
replacement in Vientiane, Lao PDR, taking into account the residential and the economic
sectors. Likewise, Pradhan et al. [49] analyze the effects of electricity-based and bio-gas
cooking from 2010 to 2050 in Nepal considering the same two sectors. These models can
address the problem of markets that undersupply services like energy efficiency [6]. For in-
stance, governments at the national or regional level can apply regulatory instruments to
guarantee a minimum energy efficiency level in products or services.

On the other hand, in terms of energy end-uses, 50% of studies include Appliances (A)
end-use in their models, 50% Space Cooling (SC) (i.e., air conditioning), and 35% Lighting
(L). Unique studies include Water Heating (WH) and Cooking (C) end-uses. Aghamo-
hamadi and Amjady [41] report the larger number of end-uses included in a single-sector
model by incorporating three end-uses (e.g., A, L and SC). Likewise, Kleebrang et al. [42] are
the multi-sector leaders by comprising four end-uses within a model (e.g., A, L, SC, WH).

Additionally, the use of scenarios is present in 50% of bottom-up energy models for
the residential sector. Multi-sector bottom-up energy models report the highest utilization
of scenarios with 100% and the least in single-sector models with local coverage and
medium time horizon with 0%. Likewise, 50% of studies provide results using: CO2
emissions (28%) or cost (42%). The article that includes all three characteristics (e.g.,
scenarios, CO2 emissions, and cost) is documented by Pradhan et al. [49] in 2017; however,
the model is useful exclusively for the cooking end-use. These statistics reveal concerns
if we compare these models with a model-based decision support system. Since this last
should include the following components to guarantee decision support [58]: (1) a user
interface (e.g., scenarios) and organizing module (2) a database (3) a model base (e.g.,
variables and metrics) and (4) and algorithmic base or library (e.g., analytical methods
portfolio). Therefore, based on this definition, we can affirm that only 50% of the analyzed
studies create decision/policy support models.

Residential Buildings

Differently, for residential buildings, bottom-up energy models reveal to be single-
sector, local, or project in their geographical coverage with short or long-term time-horizons.
In contrast to the residential sector, these models include the following proportion of energy
end-uses: SH (66%), SC (83%), and some articles include appliance or lighting end-uses
(33%). Besides, 50% of the studies provide cost information in their results, and the same
percentage use scenarios to present results. Schtz et al.’s model [44] is the only study
that provides the CO2 metric. The described features indicate that these models are not
focused to support national or regional policy decisions but local regulations. Likewise,
their support to policy design is also limited as in the households case.

Evidence shows that bottom-up energy models for residential buildings depends
on information from literature, surveys, statistics, and simulated data to model creation.
The data time split of this kind of model in its majority has a yearly resolution (i.e., 50%)
and in less proportion (i.e., 16%), monthly, daily, and hourly.

Finally, we find the following applications in these models: energy saving scenarios,
energy performance assessment, building energy standards validation, retrofit scenarios,
and optimization of energy systems and envelops.
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Table 9. Characteristics of bottom-up energy models—Residential Buildings.

Citation Authors Sector
Coverage

Geographic
Coverage

Time
Horizon

Electricity
End-Uses

Data Cost Scenario
Based

CO2

[39] Marshall et al.
Single-sector Local Short

SH Yearly no yes no
[40] Braulio Gon-

zalo et al.
SH, SC Daily no no no

[52] Wang et al. SH, SC Monthly no no no

[46] Davila et al. Single-sector Local Long-term A, L, SC Yearly yes yes no
[56] Krarti et al. A, L, SC Yearly yes no no

[44] Schutz et al. Single-sector Project Short SH, SC Hourly yes yes yes

Note: Electricity end-uses: AL = Appliances and Lighting, SC = Space Cooling, SH = Space Heating, WH = Water
Heating, A = Appliances, L = Lighting, C = Cooking.

RQ2: Which types of analytical methods are used in bottom-up energy models that
aim to support policy design of electricity end-use efficiency in residential buildings and
the residential sector?

The distribution of studies, according to the modeling technique, can be visualized
in Figure 5. As stated in the graph, most models (55%) use a data-driven statistical mod-
eling technique in their development. Followed by: data-driven hybrid techniques (e.g.,
data-driven statistical+AI-based) with 20%, engineering modeling techniques with 15%,
and engineering-statistical hybrid techniques (e.g., engineering+data-driven statistical)
with 10%. A detailed summary of modeling techniques and methodologies used in both
sectors is available in Tables 10 and 11 respectively.

Figure 5. Distribution graph of number of articles by Modeling Technique.

Residential Sector

For the residential sector, we identify two central energy modeling techniques applied:
data-driven statistical (DDS) with 72% and data-driven hybrid (DDH) techniques(e.g.,
statistical+AI-based) with 28%. The results reveal the utilization of DDS modeling with
economic, optimization, or miscellaneous methodologies. We also identify that the eco-
nomic approach is the most commonly used in this kind of study (50% of the articles),
followed by optimization (30%) and other non-categorized methods (20%). See Figure 6.
Differently, only non-categorized (i.e., other) methodologies are used in DDH modeling
techniques. See Table 10 for a complete list of techniques and methodologies used in the
residential sector.
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Table 10. Techniques and Methodologies used in bottom-up energy models that support energy
efficiency policy design—Residential Sector.

Modeling Technique Methodology Programming
Technique

Techniques Used Citations

Data-driven statistical

Economic Other Discrete choice models (Logit
model or/and probit mod-
els), time-series analysis, end-
use model, linear Regression,
econometric diffusion models,
market share functions, ma-
terial flow analysis (MFA),
weibull distribution, techno-
economic analysis

[37,38,42,45,48]

Optimization Other Probability Density Functions,
least Square Method, Pearson
distribution

[41]

Linear Pro-
gramming

Linear optimization [49]

Mixed LP Set of sequential uninterrupt-
ible energy phases, MILP

[43]

Other Other Panel data regression, Sliding
window linear regression, ker-
nel density

[51,54]

Data-driven statistical and
data-driven AI-based
(Hybrid)

Other Other Cluster analysis, regression
analysis, two level time series,
mediation model, regression
analysis, principal component
analysis

[47,50]

Heuristic Bivariate correlation analy-
sis, Butterfly optimization
algorithm, Least square sup-
port vector machine, Grey
relational analysis, Chicken
swarm optimization, Support
Vector Machine

[53,55]

Figure 6. Distribution graph of number of articles by Methodology.

Economic DDS Models

The literature reveals that economic DDS models focus on appliances and utilize
econometric modeling techniques. For instance, Jridi et al. [37] study factors that influence
the adoption of water heaters, efficient refrigerators, and energy-saving bulbs using discrete
choice models. Likewise, Hara et al. in [38] use the same technique, but to analyze
electricity end-use consumption. On the other hand, Radpour et al. [45] create a long-term
penetration model of energy-efficient appliances using econometric diffusion modeling that
considers refrigerators, freezers, dishwashers, clothes washers, clothes dryers, and ranges.
Kleebrang et al. [42] design a long-term model to predict household electricity demand
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and energy-saving potential by appliance replacement in Vientianne using regression and
scenario analyses. Finally, lighting end-use is studied by Heidari et al. [48] using Material
Flow Analysis and considering: legislation and evolution of lighting technology.

As can be regarded, these models focus on analyzing scenarios of technology replace-
ment, which can support the implementation of regulatory and financial instruments.

Optimization DDS Models

The revised optimization models use statistical techniques to analyze energy end-use
features and optimize energy investment choices. In this systematic review, we find out
that most optimization models in this category focus on appliance modeling. For instance,
in [43] , Mohseni et al. describe the modeling of appliances energy consumption in a
residential microgrid to create a day-ahead energy management framework and support
time-based demand response programs. The authors use SSUEP (i.e., Set of Sequential
Uninterruptible Energy Phases) and MILP optimization framework to identify optimal
time-based scenarios of energy consumption for different appliances in combination with
photovoltaic(PV) systems, battery energy storages, and electric vehicles. The study reveals
that diminishing peak power and energy cost in the microgrid is possible. Similarly,
Aghamohamadi and Amjady [41] presents an analytical tool to optimize households’
energy efficiency programs using probability distributions and the least square method.
The study focuses on providing the most cost-effective solution to specific end-users based
on their income level. The authors report an expected increase in energy savings and a
decrease in energy cost. Finally, Pradhan et al. [49] create a long-term model using linear
optimization techniques to adjust Nepal’s energy mix considering cleaner energy sources
in the residential sector. The introduction of electric and bio-gas based cooking devices is
analyzed using four scenarios that measure: total primary energy supply (toe), fuel use in
the residential sector (toe), electricity generation requirements (TWh), and GHG emissions
in the residential sector.

Finally, the results of these models can be relevant in the design of market-based and
non-regulatory instruments, given the possibility to adjust energy prices and diminish
greenhouse emissions by energy suppliers.

DDS Models with Other Methodologies

The identified DSS models with non-categorized methodologies appear to be ex-
ploratory and descriptive. For instance, Meangbua et al. [51] perform a model to determine
factors of households’ energy and CO2 requirements, using panel data regression. The au-
thors discover influencing factors on energy and CO2 requirements in Thailand (e.g.,
temperature and education). The study concludes that change on factors depends on
the country and its specific-energy policy. On the other hand, Liang et al. [54] create a
model to evaluate domestic appliances’ constant power (i.e., baseload). Sliding Window
Linear Regression is used to find consistent power-consuming segments and Kernel Den-
sity to improve baseload discovery accuracy. The model’s input contemplates data from
smart meters and daily temperature, while average baseload power, baseload temperature
sensitivity, and energy-saving potential as final outputs.

The first study can be used to define information and feedback instruments that
improve people’s education. In the second, the energy supplier can provide subsidies and
promote appliance replacement to decrease energy consumption.

DDH Models with Other Methodologies

Hybrid models use statistical and artificial intelligence techniques to analyze energy
end-use features. One common characteristic of these models is the utilization of non-
categorized methodologies, as shown in the following publications. In [50], Lundgren
and Schultzberg design a model to understand the behavior towards energy-efficiency in
households using regression analysis, time series mediation model, and principal com-
ponent analysis. This model analyses behavior considering: the sensitivity to electricity
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price, the monitoring habits like supervise energy bills and energy meters, cutting activities
like turn off appliances or leave them on, and upgrading actions like the acquisition of
energy-efficient products or replacement of non-efficient ones. The authors conclude that
levels of energy efficiency behavior do not impact the level of electricity consumption.

From another perspective, Jafary and Shepard [47] perform an analysis to identify
factors that affect appliance energy consumption variability in a sustainably designed
community. Energy consumption is analyzed using clustering and regression analysis,
considering building attributes (BAs) and socio-econo-mic characteristics (SECs). The study
concludes that BAs, SECs, and occupant behavior influence the energy consumption of
appliances. Likewise, Wen and Cao, in the following papers [53,55], present two predictive
models to analyze CO2 emissions and their influence factors in the residential sector.
The authors use an innovative combination of techniques (e.g., bi-variate correlation
analysis, kernel principal component analysis, butterfly optimization algorithm, and least
square support vector machine) to perform the CO2 emissions prediction. The study
compares the prediction accuracy of six models versus the actual emission metrics.

As can be regarded, these hybrid models concentrate on user behavior, which can be
beneficial for information and feedback instruments’ design.

Residential Buildings

For residential buildings, the majority of studies (50%) use engineering modeling
techniques, followed by data-driven statistical (DDS) with 25% and a hybrid combination
of engineering and DDS techniques (EDDS) with also 25%. See Figure 5. The majority
of residential building studies (66%) use simulation in model development, followed by
optimization and non-categorized methodologies with 17%. See Figure 6. Finally, regarding
programming techniques, 75% of publications use non-categori-zed techniques, followed
by Mixed LP with 25%. As in the residential sector, we include a complete list of techniques
used in the building sector in Table 11. Also, we provide a detailed description of the
studies in this section.

Table 11. Techniques and Methodologies used in bottom-up energy models that support energy
efficiency policy design—Residential Buildings.

Modeling Technique Methodology Programming
Technique

Techniques used Citations

Data-driven statistical Other Other Propensity score matching method [52]

Engineering

Simulation Other Transient thermodynamics equations, math-
ematical equations

[39,56]

Optimization Mixed LP Dynamic Building Model, MILP [44]

Engineering-
Data-driven statistical
(Hybrid)

Simulation Other Occupant uncertainty modeling, Bayesian
inference, INLA (Integrated Nested Laplace
Approximation)

[40,46]

Engineering Models with Simulation

This kind of bottom-up energy models calculates energy consumption based on
thermodynamics and heat transfer of end-uses to replicate the energy system operation.
We identify the following publications as part of this category: In [39], Marshall et al.
implement a model that allows the visualization of energy-saving scenarios in residential
buildings by the application of Energy Efficiency Measures. The authors use transient
thermodynamic equations to calculate annual savings of heating demand in a building.
The model considers the application of one or more of the following energy efficiency
measures types: conversion of devices (e.g., boiler upgrade), passive system (e.g., solid
wall and roof insulation), service control (e.g., use of thermostatic radiator and zonal heat
controls) and service level (e.g., reducing internal temperature and partial heating house).
Yet, the model does not include non-summer cooling demand and other types of house
archetypes, climates, or occupancy patterns (e.g., the elderly). Additionally, Krarti et al. [56]
design a model to evaluate residential buildings’ energy efficiency programs. Different
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from the previous model, this one uses 54 archetypes and simulations to calculate energy
consumption. The model includes the following building retrofit strategies in the stock
model: envelope components, appliances, air conditioning systems, occupancy behavior
changes, and cool roofs. The authors discover that a target and complete implementation
of retrofit programs can reduce by 50% the annual energy consumption in the king of
Saudi Arabia.

Finally, these models are valuable to support technology replacement and support
regulatory instruments.

Engineering Models with Optimization

Engineering models that use optimization methodologies calculate energy consump-
tion based on thermodynamics and heat transfer of end-uses to optimize energy investment
choices (e.g., financial and/or regulatory instruments). We identify the following research
paper as part of this category in the literature: In [44], Schütz et al. present a building
model useful for assessing the building’s dynamic behavior considering the energy system
optimization and its envelope. The model allows the evaluation of retrofitting options
(e.g., PV unit installation and envelop modernization) by calculating the cost of technology
adoption and total CO2 emissions. The authors conclude that the model is compliant with
approved building standards and assesses buildings’ dynamics behavior (e.g., indoor air
temperature and annual heat loads). However, the model has a drawback; it includes a
limited stock of heating devices, affecting its applicability in other environments.

EDDS Hybrid Models with Simulation

EDDS hybrid models are used to calculate energy consumption based on thermo-
dynamics, heat transfer, and supported by statistical techniques to replicate the energy
system operation. For this category, we find the following research papers. Braulio-
Gonzalo et al. [40] model the passive energy efficiency performance of a residential building
stock using Bayesian inference. A set of forecasting models with different co-variants is
assessed by how well they fit the data. As a result, the authors reveal the key parameters of
buildings performance. Even though the model calculates building stocks’ performance at
an urban scale, it excludes possible important co-variants like energy demand or discom-
fort hours. A second bottom-up energy model applied to urban buildings is designed by
Cerezo Davila et al. [46] using building archetypes and simulation. The authors create basic
and stochastic building archetypes to generate scenarios of retrofitting strategies, including
its affordability and economic feasibility. The model provides two aggregation levels:
neighborhood demand and single building savings, to predict energy use and cost savings.
Moreover, the design includes combinations of energy efficiency strategies like equipment
upgrade and building envelop retrofit, which is not common in energy efficiency modeling.

Finally, these scenarios are valuable for regulatory and financial instruments’ design.

DDS Models with Other Methodologies

In this kind of bottom-up energy models, authors analyze energy end-uses using sta-
tistical techniques and non-categorized methodologies. For instance, Wang et al. [52] create
a model to explore the effect of energy efficiency standards (e.g., regulatory instruments) in
residential buildings using the propensity score matching method. A comparison of stan-
dard performances in buildings is provided by the model considering: appliances, occupant
behavior, and building and household characteristics. The authors report a gap between
the building’s calculated design performance savings and its actual operation savings.

Finally, we identify a limited classification of programming techniques in both sectors.
Furthermore, the utilization of methodologies like spreadsheet, back-casting, or multi-
criteria is absent.

RQ3: Which types of energy policies are supported by bottom-up energy models that
aim to support policy design of electricity end-use efficiency in residential buildings and
the residential sector?
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The distribution of policy instruments that are supported by bottom-up energy models
can be visualized in Figure 7. As can be regarded, the majority of bottom-up energy models
(45%) are useful to support information and feedback instruments. Followed by bottom-up
energy models that support market-based and financial instruments (40%) and finally,
the ones that support regulatory instruments (35%).

Figure 7. Distribution policy instruments supported by bottom-up models.

Residential Sector

In this sector, bottom-up energy models show the following trend regarding its ca-
pability to support policy design: information and feedback instruments are supported
in 57% of the studies, followed by financial incentives with 50%, market-based with 47%,
and regulatory measures with 14%. In the following sections, we describe how bottom-up
energy models support policy design using diverse instruments.

Information and Feedback (IF)

Evidence shows that bottom-up energy models in the residential sector support energy
policy using information and feedback policy instruments. For instance, Hara et al. [38]
perform an analysis of electricity and gas-saving, revealing households’ capability to reduce
energy consumption. Using the model’s results, the authors propose general IF instruments.
However, their model does not allow simulation of specific policy instruments to support
energy conservation programs. On the other hand, Mohseni et al. [43] present a model to
support the planning of energy loads in a residential microgrid to diminish peak power
and energy costs. The authors affirm that residential customers must be involved in the
demand response strategy; however, they do not recommend specific programs to achieve
that goal. In this regard, we identify that baseload profiles are useful IF instruments to
include clients in energy-saving programs. A third example is a research presented by
Meangbua et al. [51], where the authors analyze factors that influence energy requirements
and CO2 emissions of Thai households. The study’s findings reveal that education is the
key driving force to avoid barriers like the rebound effect or inadequate ideas about energy
conservation methods (e.g., applying IF instruments). A final model developed by Jafary
and Shepard [47] identifies determinants of appliance electricity consumption. The study
reveals that education is correlated with decreasing appliance electricity consumption.
However, the authors do not propose specific IF strategies.
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Financial Incentives

The following models are identified to support the design of financial incentives.
For example, Pradhan et al. [49] design a bottom-up energy model to evaluate different
cooking technologies and their impact on energy generation. The model reveals the need
to implement financial incentives to promote the acquisition of new cooking devices (e.g.,
access to capital measures); however, the authors do not propose it. On the other hand,
the study of Liang et al. [54] analyzes the baseload power of households to create target
energy efficiency programs. Based on the model’s results, the authors recommend the
implementation of subsidies to replace non-EE devices.

Market-Based

Radpour et al. [45] analyze the impact of incentives in the market penetration of energy-
efficient appliances in Alberta, Canada. The evaluation of tax credits reveals that the effect
of incentives varies among energy efficiency appliances. For instance, dishwashers and
clothes washers present the highest energy efficiency penetration rate considering diverse
tax credit combinations. Besides, the authors discuss the positive effect of increasing
electricity price (e.g., market-based intervention) to promote the acquisition of energy
efficiency appliances.

Hybrid Instruments

bottom-up energy models are also useful to support combination of policy instruments.
For instance, regarding energy efficiency programs, the model of Jridi et al. [37] analyzes
the effect of appliance certification programs, subsidies, and appliance prices. The authors
discover that households can accept regulatory programs and that subsidies seem to be
more attractive for households than low appliance prices. Although this model helps guide
policy-makers in implementing subsidies, energy taxes, and codes and standards, it requires
to be interpreted by an expert since it is not intuitive. In a second study, Kleebrang et al. [42]
use scenarios to present the result of retrofitting programs, considering the utilization of
energy efficiency devices (e.g., regulatory measures). The model reveals that policy-makers
should promote labeling programs (i.e., information instruments) to incentive energy-
efficiency attitudes. Also, they should use the energy-saving potential of appliance retrofit
for policy design. In this model, market-based interventions like energy taxation (e.g.,
change in electricity price) are not considered. In a third study, Heidari et al. [48] present
useful scenarios to visualize and compare the cost and energy savings of specific bulb
replacement programs. Thus, it is possible to choose the most cost-effective retrofit option.
Using the model’s information is possible to evaluate strategies that promote efficient
bulbs’ penetration in households. Likewise, the study evaluates the application of discount
rates provided by utility companies considering bulbs prices. The authors conclude
that the replacement of specific bulbs has fewer payback time than others. A fourth
model created by Aghamohamadi and Amjady [41] allows the evaluation of appliance
replacement programs to optimize investment costs and energy prices. The model’s results
support policy decisions regarding financial incentives (e.g., access to capital measures)
to be applied to certain income levels or market-based instruments (e.g., adjusting hourly
electricity price).

On the other hand, Lundgren and Schultzberg’s [50] model allows understanding
energy efficiency behavior in households that use smart meters. Based on the study results,
the authors conclude that energy-saving behavior depends on the household’s belief that
it is energy-efficient and on its price-sensitiveness before the intervention. The authors
recommend introducing a pre-paid electricity scheme to promote rationed energy con-
sumption and energy use monitoring (i.e., feedback interventions). Likewise, the concept
of solar panel lease is introduced to eliminate investment barriers in acquiring energy
efficiency devices. Finally, Wen and Cao [55] predict CO2 emissions and their factor in the
residential sector. The authors recommend making tax-free energy vehicles, subside energy
efficient devices (e.g., air conditioners, solar water heaters, and electric cars), and educate
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people to have environmental consciousness. A similar study by Wen and Cao [53] predicts
residential CO2 emissions in a China region. In this case, the authors propose applying
purchase subsidies to promote the acquisition of energy efficiency appliances, stimulation
of research on energy efficiency appliances, and enhancement in the understanding of
carbon reduction needs.

Residential Buildings

For residential buildings, bottom-up energy models capability to support policy design
present the following tendency: regulatory instruments are supported in 83% of the studies,
followed by market-based incentives with 33%, financial incentives with 17%, and finally
information and feedback initiatives with 17%. In the following sections, we describe how
bottom-up energy models support policy design using diverse instruments.

Regulatory Measures

In this category, we identified three studies that focus exclusively on regulatory
measures. For instance, Marshall et al. [39] document a model that supports the evaluation
of regulatory initiatives in residential buildings considering different occupancy patterns.
The authors conclude that a combination of measures should be analyzed since there are less
expensive and less intrusive options that can be discovered. A similar study is performed
by Schütz et al. [44], where the authors analyze possible retrofit options. The study reveals
that unconstrained retrofit (i.e., without government restrictions) can provide greater CO2
reduction compared to building envelop improvement, given the considerable investment
to perform envelop retrofits. Finally, Braulio-Gonzalo et al. [40] develop a model to evaluate
the energy performance of residential building stocks. Compared to the previous studies,
the model permits the identification of urban areas that require urgent interventions.
Yet, the model lacks scenario-based orientation, which could difficult the evaluation of
diverse policies.

Financial Incentives

Cerezo-Davila et al. [46] calculate energy potential and cost energy savings of retrofit
initiatives. The model is useful for emission reduction planning and policy implementation
considering energy prices and initiatives; however, it does not consider demographic,
economic, or social aspects; complicating policy design for specific target groups.

Hybrid Interventions

Wang et al. [52] evaluate building energy efficiency standards in China. The study
reveals that the building design performance differs from the actual energy-saving oper-
ation. The authors recommend implementing outcome-based compliance with current
standards and creating energy consumption databases to support policy design. Finally,
the model of Krarti et al. [56] allows evaluation of retrofit programs. The study reveals that
the implementation of large scale retrofit programs can generate economic, environmental,
and social advantages.

Finally, evidence reveals that residential building models (i.e., hybrid and engineering)
do not support information and feedback instruments. On the other hand, for the residential
sector hybrid models have not documented support for regulatory instruments. In the end,
we can observe a limited policy orientation in residential buildings’ data-driven statistical
and hybrid models requiring attention from researchers.

5. Comparison with Other Studies and Findings

This research expands the vision regarding bottom-up energy models by creating
a formal categorization of models, techniques, methodologies, energy policies, and en-
ergy end-uses applicable to the residential sector and residential buildings. Our study,
in comparison to other reviews [18,19,59], presents a quantitative analysis of bottom-up
energy models and policy instruments, which provides valuable insight into implemen-
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tation techniques, methodologies, and metrics of models for the design of these kinds
of bottom-up energy models. In this regard, we have not found a review that includes
such quantitative examination and exhaustive characterization of models. For instance,
Oladokun and Odesola [59] only present a critical revision of models focused on energy
consumption and carbon emissions; however, the models are not analyzed by specific
features, as we perform in this study. On the other hand, Mundaca and Neij [3] present a
classification of energy-economic models without considering diverse methodologies or
end-use modeling techniques. Differently, our study is valuable for the residential sector
and residential buildings, which is missing in the literature. On this subject, Swan and
Ugursal [19], Oladokun and Odesola [59], and Mundaca and Neij [3] models focus only
on the residential sector. While Abbasabadi and Ashayeri [18] and Hong et al. focus their
research only on building energy models. Finally, we present a comparison of models
using a formal taxonomy, which has not been performed in other reviews.

5.1. Findings in RQ1

In this analysis, we realize that bottom-up energy models contribute to the support
of policy design of electricity end-use efficiency by (1) implementing different techniques
and methodologies that allow the representation of energy-efficiency scenarios for diverse
electricity end-uses (2) allowing the configuration of scenarios (3) Permitting the represen-
tation of different objectives (e.g., diminish cost or energy consumption, change behavior
towards, maximize investment, etc.). Nevertheless, we also reveal that 50% of these models
partially support policy design given the absence of scenarios in models. In the same way,
we expose that the limitations in the utilization of relevant metrics can also constraint their
support to policy design.

On the other hand, we identify the following issues in the implemented models (1) the
geographical coverage of the models is limited to be local or project (2) bottom-up energy
models include a limited set of electricity end-uses, restricting their capability to represent
complete energy systems for the residential sector and residential buildings (3) The sector
coverage is limited to single-sector models (4) the design of models with hourly/minute,
daily, or week resolutions still scarce.

5.2. Findings in RQ2

The research allows identifying all kinds of techniques used in the design of bottom-up
energy models. The results reveal that the residential sector relies on data-driven energy
models, while residential buildings depend on engineering models. However, the studies
show a disconnection between the analytics techniques, the model base, and the user
interface (e.g., scenarios). Likewise, we also realize that these models do not provide
a portfolio of analytical methods which constrain their capability to support the design
of policies.

On the other hand, the study reveals a trend in adopting hybrid methodologies in
both consumption sectors. We can explain this by considering the current availability of
information from diverse sources (e.g., smart meters, surveys, databases, etc.), which was
not available in the past for these kinds of studies.

Finally, in this analysis, we observe that most articles rely on non-categorized method-
ologies. This last implies that the literature’s taxonomy does not reflect newly utilized meth-
ods and their classification. Something similar occurs with the programming technique
since its taxonomy is oriented mainly on techniques used in the optimization methodology.
The limitations of the current categorization should be examined in future research.

5.3. Findings in RQ3

The analysis reveals that bottom-up energy models for the residential sector provide
information to support market-based, financial, regulatory, and information-feedback
interventions. However, for residential buildings this tendency is not clear, since these
models have limitations to support diverse instruments. Besides, we recognize that bottom-
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up energy models do not support non-regulatory interventions, which presents a research
opportunity in this field.

Additionally, we understand that the design of bottom-up energy models focuses on
representing specific policy scenarios but not on implementing diverse policy instruments.
This last has created an issue in the development of bottom-up energy models since
modelers built customized scenarios of energy systems; however, they do not characterize
and represent diverse policy instruments and how they affect the energy system. This
finding is present in all analyzed articles.

Finally, we learn that bottom-up energy models design does not include an intuitive
user interface that eases model interaction and scenario analysis to policy-makers.

6. Conclusions and Future Work

This systematic review provides a multi-facet perspective of bottom-up energy models
that support policy design of electricity end-use efficiency. We propose a classification of
bottom-up energy models to analyze them from different perspectives. Next, we perform
quantitative analysis to identify relevant characteristics of the models. Lastly, we examine
the policy instruments and their relationship to the models.

The result of the analysis reveals that bottom-up energy models contribute to support
the policy design of electricity end-use efficiency by (1) implementing different techniques
and methodologies (2) allowing scenario configuration, and (3) representing the model’s
objectives. However, not all models implement best practices, which can jeopardize their
capability to support policy design. Moreover, we realize that relevant metrics in bottom-
up energy models provide pertinent information (e.g., economic and environmental) to
facilitate policy design. Finally, research reveals that models for residential buildings do
not employ data-driven techniques, which restricts the possibility of using a portfolio of
analytics methods within the model. However, the adoption of hybrid methodologies could
reverse the previous situation. The same sector presents limitations in the implementation
of diverse policy instruments.

Finally, in terms of the methodology used to perform this systematic review, we
present the development of tools and the execution of activities that assure the objec-
tive search of references and the increment of capacity to retrieve scientific publications.
The tools and processes allow the identification of relevant articles and the establishment
of semi-automatic retrieval processes. Thus, we can guarantee the quality of articles and
their selection based on their scope.

In future work, we aim to analyze endogenous and exogenous variables of bottom-up
energy models. Thus, we can understand their importance to policy design. Likewise,
it is interesting to study the assistance of bottom-up energy models to the policy design
process as decision support systems. And lastly, we expect to examine in subsequent
analyses the support provided by bottom-up energy models to policy evaluation and
policy implementation processes.

We urge model designers to create bottom-up energy models considering the findings
of this research.
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