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Abstract: During its operation, a photovoltaic system may encounter many practical issues such
as receiving uniform or non-uniform irradiance caused mainly by partial shading. Under uniform
irradiance a photovoltaic panel has a single maximum power point. Conversely under non-uniform
irradiance, a photovoltaic panel has several local maximum power points and a single global maxi-
mum power point. To maximize energy production, a maximum power point tracker algorithm is
commonly implemented to achieve the maximum power operating point of the photovoltaic panel.
However, the performance of the algorithm will depend on operating conditions such as variation
in irradiance. Presently, most of existing maximum power point tracker algorithms work only in a
single condition: either uniform or non-uniform irradiance. This paper proposes a new maximum
power point tracker algorithm for photovoltaic power generation that is designed to work under
uniform and partial shading irradiance conditions. Additionally, the proposed maximum power
point tracker algorithm aims to provide: (1) a simple math algorithm to reduce computational load,
(2) fast tracking by evaluating progress for every single executed duty cycle, (3) without random
steps to prevent jumping duty cycle, and (4) smooth variable steps to increase accuracy. The perfor-
mances of the proposed algorithm are evaluated by three conditions of uniform and partial shading
irradiance where a targeted maximum power point is located: (1) far from, (2) near, and (3) laid
between initial positions of particles. The simulation shows that the proposed algorithm successfully
tracks the maximum power point by resulting in similar power values in those three conditions. The
proposed algorithm could handle the partial shading condition by avoiding the local maxima power
point and finding the global maxima power point. Comparisons of the proposed algorithm and other
well-known algorithms such as differential evolution, firefly, particle swarm optimization, and grey
wolf optimization are provided to show the superiority of the proposed algorithm. The results show
the proposed algorithm has better performance by providing faster tracking, faster settling time,
higher accuracy, minimum oscillation and jumping duty cycle, and higher energy harvesting.

Keywords: metaheuristic; maximum power point; maximum power point tracker; random walk;
energy harvesting

1. Introduction

In the last decades, photovoltaic (PV) power generation has been attracting many
researchers’ interests to investigate them in comparison with other renewable energy
sources. PV offers benefits such as free fuel (sunlight), low operation and maintenance
costs, noise free nature and simple construction. However, the main drawback of PV is its
high initial cost, especially in the first construction. Therefore, to shorten the breakeven
cost period, many researchers have investigated how to maximize the energy produced by
PV such as using maximum power point tracker (MPPT). A typical MPPT structure for PV
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is shown in Figure 1. The MPPT algorithm must work properly under various condition of
irradiance: in uniform and/or non-uniform irradiance.

Figure 1. A typical PV Power Generation.

The conventional MPPT algorithms under uniform irradiance that have been well
studied are perturb and observe (P&O) [1] and incremental conductance (InC) [2] algo-
rithms. P&O and InC algorithms are popular due to their ease of implementation. However,
the P&O and InC have some issues such as continuous power oscillation at convergence
and fail to track maximum power point (MPP) under rapid change of irradiance. To address
these issues, variable step size-based algorithm which automatically adjusts perturbation
steps was proposed. The basic principle of variable step is to adapt the perturbation am-
plitude according to the MPP position; the closer the operating point to MPP, the smaller
step is used [3,4]. In [5], the variable step size is determined by fuzzy logic which results in
many choices of step sizes. However, the fuzzy logic implementation requires complex
algorithm and execution process. Adaptive variable step is implemented by checking
any decreasing power during perturbation which means that the MPP is passed, then the
step size is reduced by a constant value during iteration [6]. Another variable step size
algorithm were proposed by detecting the area near MPP using dP/dV value [6] and using
a scaling factor [7]. However, the scaling factor provides inconsistencies in the tracking
speed to achieve the MPP under various irradiance level.

Model-based MPPT has been proposed to increase the tracking speed. In [8], a
parameter-estimation-based MPPT was proposed. Solar irradiance and temperature are
directly calculated by the algorithm to estimate the MPP. Another improvement on the
MPPT algorithm was proposed with the fast-modeling approach based on the Lambert
PV circuit model for partially shaded PV systems [9]. By using this approach, the MPP
is determined by the numerical method based on the developed model. A novel MPPT
algorithm was also proposed based on the PV module with the single diode model [10].
In this algorithm, a gradient-based updating law is utilized to find the optimum voltage
value of MPP. Furthermore, a new model based MPPT (MBMPPT) was proposed to identify
the MPP of each PV panel based on its characteristics [11]. Even though a fast-tracking
feature is performed by the model based MPPT, this method requires high computational
iterations to achieve the optimum solution.

Non-uniform irradiance and characteristic can occur on a PV panel. These phenomena
generate local maxima power point (LMPP) and global maxima power point (GMPP) in
the PV power characteristics. Non-uniform irradiance may be caused by dirty surface on
PV panel or temporary shading due to cloud [12]. These conditions will reduce energy
production in PV power plant [13,14]. The forecasting of energy production has been stud-
ied under these conditions [15]. Several forecasting methods are proposed to investigate
the problems such as, repairing big data and neural networks [16,17]. Furthermore, the
non-uniform characteristic can be caused by the non-similarity characteristics between PV
panels in string connection or parallel connection [18]. Unfortunately, the MPPT methods
mentioned above could not deal with these conditions. To overcome these problems, the
artificial intelligence based MPPT was investigated to explore the most effective solution
for GMPP without prior knowledge of the system’s model or utilize analytical method.
artificial neural networks (ANN) [19–22] and fuzzy logic controllers (FLC) [23–26] have
been explored by many researchers. Additionally, the hybrid AI based method was also
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proposed. In FLC for example, fuzzy rules are decided based on the knowledge of PV
characteristics and its relationship to weather conditions. However, its performance de-
pends on the determination of membership function and rules. Therefore, the performance
depends on extensive training, which usually takes a long time and consumes significant
computational power and large memory size.

In recent years, metaheuristic algorithms have been considered for MPPT. Metahueris-
tic algorithms were originally designed to solve complex functions such as more than three
dimensions equation, multi optimum values, etc. Metahueristic algorithms work effectively
by using exploration and exploitation modes. Exploration mode is entering the new search-
ing space while exploitation mode is searching within previous searching space [27]. To test
a new metaheuristic algorithm performance, several complex equations are used such as
Rastrigin, Ackley, etc. Metaheuristic bio-inspired algorithms have emerged for their ability
in finding GMPP. Metaheuristic maximum power point tracker (MMPPT) methods such
as ant colony optimization (ACO) [28–30], cuckoo search (CS) [31–33], firefly algorithm
(FF) [34–37], whale optimization (WO) [38,39], differential evolution (DE) [40–42], grey
wolf optimization (GWO) [43,44] and particle swarm optimization (PSO) [45–48] have
been proposed. Some recent MPPT algorithms of PV system were proposed to specifically
solve the partial shading problem. These bio-inspired algorithms can detect the GMPP by
involving combination of possible solutions or using random variables. These algorithms
apply several particles for each iteration to find possible solution. Evaluation will be taken
after all particles deployed. High number of particles may increase accuracy or tracking
speed. But at the same time may produce lower energy tracking. Moreover, unwanted
power fluctuation is generated due to the random variables of combination and selection of
the solution [40]. Similarly, unwanted fluctuation in the output power is caused by random
walk (for example, Levy flight). Furthermore, power oscillation occurs in convergence due
to the random variables in the above bio-inspired algorithms. To solve these problems,
the method employs a threshold to lock to the best solution in convergence. However, the
locking mechanism will lead to lower accuracy. Furthermore, random walk for particles
in initialization may cause prolonged unstable starting period which may further cause
premature convergences, thereby missing the GMPP [46–48]. The premature convergence
occurs when the GMPP is not surrounded by initialization particles. Random walk or
random variables helps to reach GMPP but at the same time it generates power oscillation.
Note that, metaheuristic algorithms are designed originally to solve complex numerical op-
timization of three dimensions equation or higher dimension. In contrast, PV characteristic
is only single dimension equation. Furthermore, its characteristics of random calculation
to PV power generation has risk to power oscillation. To avoid this problem, the random
number is removed in [49] from the voltage calculation equation of the conventional CS
algorithm. Simple math is used to determine GMPP in this algorithm. To surround the
GMPP, particles move from left to right side of GMPP or vice versa. However, this move-
ment yields power oscillation due to the jump of duty cycle. In addition, it is important
to guarantee the MPPT works in any condition, uniform or non-uniform. Some existing
works have considered these issues, such as involving metaheuristic algorithm: Adaptive
cuckoo search optimization algorithm [50], butterfly optimization algorithm [51], Jaya and
DE [52], and multi-producer group-search-optimization [53]. The other algorithms are
proposed by using complex algorithm such as: multiloops to detect MPP during uniform
and partial shading [54], ANFIS-based [55], and novel spline-MPPT technique [56].

This paper proposes a MPPT algorithm for working under uniform and partial shad-
ing. The summary of issues in the existing MPPT algorithms and the key contributions
of the proposed algorithm (PA) is shown in Table 1. Similar issues are put in the same
category.
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Table 1. Comparison between issues and key contributions.

No. Identified Existing Issues from
the Literature

The Key Contributions of the
Proposed Algorithm

1.

� Complex algorithm
� High computational iteration
� Consumes significant computational

power and large memory size

� Simple math algorithm to
reduce computational load

2.
� Exploration and exploitation mode

involving random walk/variables
� Exploration and exploitation

mode using simple math

3.

� Away from the MPP
� Inconsistencies tracking speed
� Prolonged unstable starting period
� Evaluation after all particles

deployed

� Fast tracking by evaluating
progress for every single
executed particle/duty cycle

4.

� Power fluctuations
� Unwanted fluctuations
� Power oscillations by random walk
� Random variables
� Jumping duty cycle

� Without involving random
step to prevent power
fluctuations, mainly in
convergence

5.

� Lower accuracy/ Premature
convergence by:

• Locking best solution in
metaheuristic algorithms

• Fixed step in conventional
MPPT

� Smooth variable steps to
increase accuracy in
exploitation mode

2. PV and Buck Converter Modeling
2.1. PV Cell Modeling

A PV cell can be modeled as single diode model or double diode model [57]. The
single diode model of PV cell is the most popular due to its simplicity. A single diode ideal
and practical model is shown by red and blue dotted line respectively in Figure 2. IPV
and V are the current and voltage of cell terminal, respectively. IPV is resulted by Ix, ID,
and IRp represented in Equation (1) Ix is DC current source model for electrical current
produced by solar irradiance. ID and IRp is internal diode current and shunt resistance
current, respectively. ID is represented in Equation (2). Io is the dark saturation current
of the PV cell. q is the electronic charge (q = 1.6 × 10−19). VD is internal diode voltage.
A is the ideality factor of each PV cell, also called emission coefficient. It is around 2 for
crystalline silicon and is less than 2 for amorphous silicon. k is the Boltzmann’s constant
(k = 1.3806505 × 10−23). T0 and S0 are temperature and irradiance standard test conditions,
respectively. Io is represented in Equation (3). Iso is Diode saturation current. T is the
ambient temperature. Eg is the bandgap energy of each PV cell, in eV. It is around 1.12 for
crystalline silicon, and around 1.75 for amorphous silicon. VD is represented in Equation (4).
The series Rs and shunt resistors RP represent an internal resistance and leakage current
respectively. Ix is represented by Equation (5). Isc is short circuit current at PV cell terminal.
S is the actual irradiance of PV panel. Ct is temperature coefficient. IRp is represented by
Equation (6). The total voltage of PV array connected in series is represented by Equation
(7). The total current of PV array connected in parallel is represented by Equation (8). Ns,
Np, Vs and Ip are number of PV cells, voltage and current in series array and in parallel
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array, respectively. Table 2 shows the detail electrical characteristics of PV panel used
in this study extracted from ICA Solar Polycrystalline ICA100P. Series string connection
of three panels is used to test the MPPT algorithms. Figure 3 shows the string panel
characteristics of power-voltage (P-V) and current-voltage (I-V) curves demonstrating
the effects of various uniform solar irradiance. Higher solar irradiance will significantly
increase PV panel current and MPP, but it has small effect to open circuit voltage:

IPV = Ix − ID − IRp (1)

ID = Io

[
exp

(
qVD
AkT0

)
− 1

]
(2)

Io = Iso

(
T
T0

)3
exp

[
qEg

Ak

(
1
T0

− 1
T

)]
(3)

VD = V + IPV ·Rs (4)

Ix = Isc
S
S0

+ Ct(T − T0) (5)

IRp =
VD
RP

(6)

Vs = Ns·V (7)

Ip = Np·IPV (8)

Figure 2. PV cell single diode model.

Figure 3. The Current-Voltage and Power-Voltage characteristics of PV.
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Table 2. PV panel specifications.

No. Parameters Variable Value

1. Number of Cells Ns 36

2. Maximum Power Pm 100 W

3. Voltage at Pm Vm 17.6 V

4. Current at Pm Im 5.69 A

5. Open-Circuit Voltage Voc 22.6 V

6. Short-Circuit Current Isc 6.09 A

7. Shunt Resistance RP 134.0754 Ohm

8. Series Resistance Rs 0.286 Ohm

9. Light Intensity S0 1000 W/m2

10. Ambient Temperature T 25 ◦C

11. Diode saturation
current Iso 8.99 × 10−9 A

12. Ideality factor A 1.25052

13. Temperature
coefficient Ct 0.003958 A/◦C

14. Bandgap energy Ns 1.12 eV

2.2. Partial Shading and Its Effects

PV array with uniform irradiance have only one MPP at the knee of the curve I-V. PS
occurs when PV array receive non uniform or different irradiance [58]. The number of
maxima on each power-voltage curve is equal to the number of PV panel arrays. Figure 4
shows the PV characteristics used to test the algorithm in this paper. PV panel arrays consist
of three PV panels which indicate by PV1, PV2 and PV3. Black dots and blue diamonds
show LMPP and GMPP, respectively. The number of maxima is three points, according to
number of PV panel arrays. Under uniform irradiance, PV panel arrays generate a single
MPP as shown in red line in Figure 4. Contrary to partial shading, PV panel arrays generate
LMPP and GMPP, as shown in blue, yellow, and green lines in Figure 4.

Figure 4. Power-Voltage characteristics of PV under PS.

2.3. Buck Converter

Buck converter provides the interface between the PV array and the load. By regulating
buck converter’s duty cycle, load impedance can be varied as viewed from the PV array side.
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This in turn enables the buck converter to push PV operating point at GMPP impedance.
The buck converter circuit can be formulated by Equations (9)–(13):

Vo = D·Vi (9)

D =
ton

Ts
(10)

Lmin =
(1 − D)R

2 f
(11)

L f =

(
Vi − Vo

∆iL f

)
D (12)

C f =
1 − D

8L
(

∆Vo
Vo

)
f 2

(13)

where Vi and Vo are the input and output voltages, D is the duty cycle, ton is PWM signal
duration to turn on buck converter switch, Ts is switching period, Lmin is the minimum
inductance needed for continuous current operation, R is load resistance. L f and C f are
the filter inductor and capacitor, respectively. f is the switching frequency, ∆Vo is the load
ripple voltage, and ∆iL is the inductor ripple current [59]. Duty cycle 0% means open
circuit and duty cycle 100% means short circuit to PV array. Table 3 lists the specifications
of the buck converter used in the study. Components value are chosen from list of standard
values charts to simulate real experimental system.

Table 3. Buck Converter specifications.

No. Component/Parameter Label Value

1 Switching frequency f 10 kHz

2 Inductor L f 87 µH

3 Capacitor C f 43 µF

4 Load resistor R 1.2 Ω

3. Proposed Algorithm

Figure 5 illustrates the MPP tracking concept according to proposed algorithm. The
main idea of proposed algorithm works based on particles position. Each particle cor-
responds to operating point of duty cycle Dn

i and PV power Pn
i. To simplify the the

illustration, minimum number of three particles are shown. It shows position of MPP Pm
marked by blue diamond, duty cycle at MPP Dm, three particles of P1

i green dots, P2
i red

dots and P3
i yellow dots, and their duty cycle of D1

i, D2
i and D3

i respectively. D3
i is the

highest duty cycle, D1
i is the lowest, and D2

i is between D1
i and D3

i. During the movement
of particles, D1

i, D2
i and D3

i cannot cross one another. They will be kept in the sequence
wherein D1

i is the smallest and D3
i is the highest duty cycle. P2

i is directed to the highest
power point. Once P2

i reaches the highest point, P1
i and P3

i will approach P2
i.

The relationship of those three particles can be classified into four conditions as shown
in Figure 5a–d. Imitating to metaheuristic algorithm principle operation of exploration and
exploration mode, Figure 5a,b are exploration mode, while Figure 5c,d are exploitation
mode. Figure 5a illustrates case 1, where P1

i is the highest value. If P1
i is the highest,

P1
i will be shifted to new position by reducing duty cycle D1

i. P2
i will move to previous

position of P1
i. P3

i will move to previous position of P2
i. This procedure is repeated until

P2
i > P1

i. Figure 5a illustrates case 2, where P3
i is the highest value. If P3

i is the highest, P3
i

will be shifted to new positions by increasing duty cycle D3
i. P2

i will move to previous
position of P3

i. P1
i will move to previous position of P2

i. This procedure is repeated until
P2

i > P3
i. Figure 5c,d illustrate case 3, where P2

i is the highest value: P2
i > P3

i and P2
i > P1

i.
There are two possibilities of case 3: P2

i is at the left side or right side of Pm as shown by



Energies 2021, 14, 483 8 of 22

Figure 5c. P1
i and P3

i will approach P2
i. Under certain conditions, P3

i can be higher than
P2

i. If this condition occurs, the case will change from case 3 to case 2. Another possibility
is P2 at the right side of Pm as shown by Figure 5d. P1

i and P3
i will approach P2

i. Under
certain conditions, P1

i can be higher than P2
i. If this condition is occurred, the case will

change from case 3 to case 1.

Figure 5. Illustration of algorithm (a) case 1 (b) case 2 (c) and (d) case 3.

The detailed implementation of the proposed algorithm is shown in Figure 6 and can
be described as follows. Step 1: Set the initial duty cycles of D1

0, D2
0 and D3

0.
Choose D1

0 as the lowest, D2
0 as the middle and D3

0 as the highest. Measure the PV
voltage and current, and then calculate the obtained PV power respectively as P1

0, P2
0 and

P3
0. These three particles are memorized, and then they will be identified.

Step 2: Check relationship between P1
i, P2

i and P3
i.

If P2
i > P1

i and P2
i > P3

i is false then enter the exploration mode, which falls to Case 1
or Case 2.

If P2
i > P1

i and P2
i > P3

i is true then enter the exploitation mode, which falls to Case 3.
Step 3: Duty cycle calculation.
Case 1 is identified by condition of P1

i > P3
i. If case 1 is true, then update the duty

cycle by the following equations:

D1
i+1 = D1

i − (D2
i − D1

i)·k
D2

i+1 = D1
i; D3

i+1 = D2
i

P2
i+1 = P1

i; P3
i+1 = P2

i
(14)

Constant k is chosen a value between 0 and 1. Copying data is implemented in case 1
for D2

i+1, D3
i+1, P2

i+1 and P3
i+1. Copying data follows Equation (14).

Case 2 is identified by condition of P3
i > P1

i
. If case 2 is true, then update the duty

cycle by the following equations:

D3
i+1 = D3

i + (D2
i − D3

i)·k
D1

i+1 = D2
i; D2

i+1 = D3
i

P1
i+1 = P2

i; P2
i+1 = P3

i
(15)
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Figure 6. Flow chart of proposed algorithm.

Copying data is implemented in case 2 for D1
i+1, D2

i+1, P1
i+1 and P2

i+1. Copying data
follows Equation (15).

Case 3 is identified by condition of P2
i > P1

i and P2
i > P3

i. P2
i can be laid on the left

side or the right side of Pm. P1
i and P3

i approach P2
i by regulating D1

i+1 and D3
i+1. Duty

cycle of D1
i+1 and D3

i+1 for case 3 is determined by the following equations:

D1
i+1 = D1

i + (D2
i − D1

i)·k (16a)

D3
i+1 = D3

i − (D2
i − D3

i)·k (16b)

D1
i+1 and D3

i+1 approach D2
i D1

i+1 and D3
i+1 are executed alternately during iterations.

Step 4: Power measurement according to case number.
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In case 1 and case 2, power measurements for P1
i+1 and P3

i+1 are taken, respectively.
In case 3, power measurements for P1

i+1 and P3
i+1 are taken alternately according to

Equation (16a) or Equation (16b).
In this proposed algorithm, simple math is used to perform exploration and explo-

ration mode. A data copying technique is proposed to increase tracking speed during
exploration mode. This technique is implemented to avoid same search space which may
waste number of iterations and helps to fast tracking. Fast tracking is implemented by
evaluating progress for every single executed particle/duty cycle. It can be seen from
Figure 6, for each iteration only once measurement of power is needed. This is contrary to
metaheuristic algorithm in which every iteration is evaluated after implementation of all
particles. Furthermore, the proposed algorithm has smooth variable steps. At the beginning
of iteration, a large step is produced by the algorithm considering the far distance between
particles position. By the time, the step becomes smaller, the particle distance is getting
closer. At near convergence, particles will be at very close position. The value of duty cycle
is close to each other, including the power. Consequently, without involving random calcu-
lation, steps are kept very small and the results show less power fluctuation. Additionally,
small steps will help increase accuracy in reaching MPP at the exact value. Conversely,
if random calculation is used, the calculation can be independent from particle distance.
Hence, steps can be large compared to the particle distance which produce jumping duty
cycle and high-power fluctuation.

4. Simulations and Results

Algorithm is implemented using PSIM, a simulation solution for all power electronics
applications. Figure 7 presents the PSIM simulator circuit for the overall system. An overall
system specification is shown in Table 3. The PV string consisting of three PV panels
are used to simulate single MPP or multi MPP. Several MPPT algorithms including the
proposed algorithm are tested under several test conditions. The test conditions are:

(a) DE, FF, PSO and GWO algorithms are implemented using five particles, while the
proposed algorithm is using three particles to simplify the coding implementation.

(b) Uniform irradiance tests: constant irradiance at STC (1000 W/m2 and 25 ◦C), targeted
MPP is (Test 1) far from initial positions of particles, (Test 2) near initial positions, and
(Test 3) laid between initial positions.

(c) Partial shading tests: targeted GMPP is (Test 4) laid between initial particles, (Test 5)
near initial particles, and (Test 6) far from the initial particles with similar value of
power points.

(d) To verify the performance, each algorithm is tested 10 times for each test 1–6. Duration
of energy harvesting process in simulation is 2 s. Sample test is provided in Section 4.1.
Uniform Irradiance test and 4.2. Partial Shading.
The effectiveness of the algorithms is analyzed in terms of tracking time, settling
time, power convergence, steady-state oscillations, actual tracked maximum power
(PA

MPP), actual harvested energy (EA
MPP), power tracking accuracy (ηP), and energy

tracking accuracy (ηE). PT
MPP is the maximum power that can be produced by PV

panel according to GMPP. ET
MPP is the harvested energy during the operation of PV

panel at GMPP. The tracking time is the time taken to track the GMPP for the first
time. The settling time is the time taken by all the particles to settle at GMPP without
further power oscillation or fluctuation. The power tracking accuracy is calculated by
comparing PA

MPP and PT
MPP:

ηP =
PA

MPP
PT

MPP
× 100% (17)
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Figure 7. The buck converter used to implement the MPPT.

The energy tracking accuracy is calculated by comparing EA
MPP and ET

MPP:

ηE =
EA

MPP
ET

MPP
=

PA
MPP × t

PT
MPP × t

× 100% (18)

where t is the duration of energy harvesting process.

4.1. Uniform Irradiance Test

PV array is operated at STC which results in a total Pm = 300 W and Vm = 53.16 V.
Duty cycle at MPP Dm is 34%. Initial particles are chosen in the three areas of Test 1, 2 and
3 as shown in Figure 8. Tests 1 and 2 are to verify the performance of exploration mode
of algorithm. In test 1 and 2, initial particles are not surrounding MPP. Each algorithm is
tested to shift its operating point using exploration mode to approach MPP. Test 3 is to
verify the performance of exploitation mode. In exploitation mode test, tracking speed and
accuracy are observed.

Figure 8. PV Characteristic for uniform irradiance test.

4.1.1. Test 1: Initial Particles at Left Side of MPP

In Test 1, initial particles for each algorithm are limited between duty cycles of 70%
and 90%. Targeted MPP is far from initial positions of particles. Exploration mode is tested
to reach a far targeted MPP. Figure 9a shows the MPP position at blue diamond and the
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initial positions of particles of all algorithms, indicated by red dot. The initial particles
position are around 15 V and 80 W. Figure 9b–d confirm that PSO and PA algorithm can
track MPP. However, other algorithms cannot track MPP. At t = 0.4 s, the PA algorithm
tracks the MPP and once time tracked never leaving the MPP. At steady state, the PA
keeps the duty cycle at a constant value of 34%. Figure 9d shows, without random walk
PA, there is no power oscillation after tracks MPP at t = 0.8 s. PSO can track the MPP at
t = 0.45 s by the help of large random walk. Conversely, large random in PSO algorithm
may cause unwanted duty cycle. It shows in Figure 9b–d PSO algorithm leaves and returns
to MPP several times. PSO algorithm cannot converge until the final time of simulation. FF,
DE and GWO reach premature convergence. They lose direction to reach MPP although
the random walk helps trying to find the MPP. In this test, PA shows its best exploration
performance compared to other algorithms. The maximum power achieved by PA is the
highest by reaching 300 W as compared to 77, 75, 299 and 90 W achieved by DE, FF, PSO,
and GWO. PA has 100% accuracy followed by PSO 99.66%, GWO 30%, DE 25.66%, and FF
has the least accuracy of 25%. Energy harvesting by PA is the highest per 2 s at 523 Ws,
followed by PSO 381, GWO 168, DE 146 and FF 72 Ws.

Figure 9. Test 1 (a) Initial particles (b) Duty cycle (%) (c) PV voltage (V) (d) PV power (W).
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4.1.2. Test 2: Initial Particles at Right Side MPP

In test 2, initial positions of particles are at near left side of MPP. The duty cycle is
set around 10% to 30%. Exploration mode is tested to reach close to the targeted MPP.
As shown in Figure 10a, initial position of particles are indicated by red dot. The initial
operating points are around 70 V and 150 W. Figure 10b shows duty cycle movement
during iterations. PA and PSO can track MPP. PA tracks MPP at t = 0.6 s and settling time
t = 0.8 s, PSO at t = 1.1 s and t = 1.7 s, respectively. Although PSO tracks the MPP, unwanted
duty cycle and power oscillations occur as shown in Figure 10b. DE and GWO approach
the MPP but take longer time than PA and PSO. FF loses direction to MPP. In this test,
PA shows its best exploration performance compared to other algorithms. The maximum
power achieved by PA and PSO is the highest by reaching 300 W as compared to 285 W,
257 W, and 84 W achieved by GWO, DE, and FF. PA and PSO has 100% accuracy followed
by GWO 95%, DE 85.67%, and FF has the least accuracy of 28%. Energy harvesting by PA
is the highest per 2 s at 549 Ws, followed by PSO 521, GWO 476, DE 469 and FF 212 Ws.

Figure 10. Test 2 (a) Initial particles (b) Duty cycle (%) (c) PV voltage (V) (d) PV power (W).
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4.1.3. Test 3: Initial Particles at Surrounding MPP

In test 3, targeted MPP is laid between the lowest and the highest initial duty cycles.
Exploitation mode is tested in this test. The duty cycle is set around 20% to 40%. Figure 11a
shows initial particles positions of the highest and lowest initial duty cycles, MPP is
between them. The initial operating points are between 43–65 V and 155–250 W. PA
algorithm tracks MPP at t = 0.6 s and it is the fastest tracking. Other algorithms track
MPP at different time, PSO at t = 1 s, and FF at t = 1.2 s. DE and GWO approach MPP
until the final time of simulation. PSO algorithm continues random walk, which produces
unwanted power oscillations near convergence. The settling time of PA is reached at
t = 1.1 s and PSO at t = 1.9 s. DE, FF and GWO exceed 2 s. GWO and FF algorithms show
the random walk which produces jump away duty cycle and sudden power oscillations.
It is recorded that GWO at t = 0.6 and t = 1 s and FF at t = 0.56 and t = 0.81 s produces
unwanted random duty cycle and high-power oscillations, which shown in Figure 11b,d
respectively. It can be seen in zoomed window of Figure 11b–d that PA shows fast tracking
without producing unwanted oscillation. DE slowly approaches MPP and produces less
power oscillation. Each algorithm shows different accuracy results of tracking Pm. The
maximum power achieved by PA and PSO is the highest. PA and PSO reach 300 W as
compared to 299, 298 and 296 W achieved by FF, GWO, and DE. Energy harvesting at 2 s
by PA is the highest with 573 Ws, followed by PSO 572, GWO 571, DE 571 and FF 567 Ws.
At the end of simulation, PA algorithm shows the highest accuracy, energy harvesting and
the fastest convergence.

4.2. Partial Shading

In PS test, all algorithms are tested mainly to find GMPP. The complete data tests
are shown in Table 4. Each test has three MPPs which consist of two LMPP and one
GMPP. GMPP position is designated at right, middle and left according to Test 4, 5 and 6
respectively. Table 4 shows the GMPP position by power, voltage and duty cycle. Initial
particles are located around Dstart range.

Table 4. Partial Shading Tests.

Case Irradiance (W/m2) GMPP Dstart

Test PV1 PV2 PV3 Position Pm (W) Vm (V) Dm (%) D1 to Dn (%)

4 1000 500 700 Right 173.9 W 58.6 V 23% 10 to 25%
5 1000 800 300 Middle 171.9 W 36.9 V 37% 10 to 25%
6 100 150 800 Left 81.3 W 17.9 V 53% 10 to 25%

Figure 11. Cont.
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Figure 11. Test 3 (a) Initial particles (b) Duty cycle (%) (c) PV voltage (V) (d) PV power (W).

4.2.1. Test 4: GMPP at Right Side

In test 4, GMPP location is between initial particles as shown in Figure 12a. Initial duty
cycles are found between 10% and 25%. These duty cycles are equal to operating points of
around 55–74 V and 56–161 W. PA algorithm tracks GMPP at t = 0.45 s, followed by FF and
PSO at t = 0.5 s, then GWO at t = 0.75 s. DE cannot track the GMPP until the final time of
simulation. PA algorithm reaches settling time at t = 0.85 s, followed by GWO at t = 1.35 s.
FF algorithm shows the highest power oscillation and continuously oscillates during search.
PSO algorithm can track faster than GWO but oscillates and slowly reaches the settling
time. It can be seen in zoomed window of Figure 12b–d that PA shows fast tracking without
producing unwanted oscillation. At close to t = 2 s, PA, PSO and GWO track GMPP of
173.9 W. FF and DE reach 172 and 162 W. At close to t = 2 s, energy harvesting by PA, GWO,
PSO, FF and DE algorithm are 327, 326, 325, 320 and 304 Ws, respectively.

Figure 12. Cont.
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Figure 12. Test 4 (a) Initial particles (b) Duty cycle (%) (c) PV voltage (V) (d) PV power (W).

4.2.2. Test 5: GMPP Is Near Initial Particles Location

In test 5, exploration mode of the algorithm is tested. GMPP is outside of initial
particles’ range. The initial operating points are around 42–74 V and 56–127 W. As shown
in Figure 13a, initial particles are at right side of GMPP. The PA tracks GMPP at t = 0.4 s,
followed by GWO at t= 1.1 s. Unfortunately, other algorithms fail to track GMPP. PA has
settling time of t = 1 s and GWO t = 1.4 s. The PA tracks GMPP at 171.9 W, as well as GWO.
GWO can locate GMPP, but tracks slower than PA. Moreover, GWO generates unwanted
power oscillations near GMPP. GWO several times leaves and returns again to GMPP. DE,
PSO and FF track at 132, 112 and 100 W, respectively. The PA harvests energy at t =2 s
equal to 318 Ws, followed by GWO 296, DE 245, PSO 215 and FF 192 Ws. The PA shows its
superiority compared to other algorithms.

Figure 13. Cont.
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Figure 13. Test 5 (a) Initial particles (b) Duty cycle (%) (c) PV voltage (V) (d) PV power (W).

4.2.3. Test 6: GMPP Is Far from Initial Positions of Particles

In test 6, GMPP is outside of initial particles’ range. The initial operating points are
around 23–46 V and 31–34 W which are shown in Figure 14a. In this test initial particles
have similar power value. Note that, MPPT algorithm is based on highest power detection,
and so in this situation the algorithm may get confused. PSO and DE are trapped around
initial duty cycles. Figure 14b shows that PSO and DE duty cycle are almost constant at 26%
and 28% respectively. FF is trapped around duty cycle of 18%. PA and GWO track GMPP
successfully. PA track fastest at t = 0.5 s, GWO at t = 1.3 s. PA and GWO reach settling time
at t = 0.85 s and t = 1.6 s respectively. Figure 14d shows GWO produces unwanted power
oscillation. PA and GWO track GMPP at 81.3 W, while DE, PSO and FF at 36, 30 and 25 W
respectively. At t = 2 s, PA harvests the highest energy of 142 Ws, followed by GWO 127,
DE 69, PSO 59 and FF 50 Ws. The PA shows its superiority compared to other algorithms.

Figure 14. Cont.



Energies 2021, 14, 483 18 of 22

Figure 14. Test 6 (a) Initial particles (b) Duty cycle (%) (c) PV voltage (V) (d) PV power (W).

5. Performance Evaluation

Table 5 shows comparison of testing results 1–6. Each algorithm is tested 10 times
for each test 1–6. The results shown in the table is the average value for 2 s. The best
performance is indicated by bold fonts. Test 1 shows tracking time between PA and
PSO is very close. On the contrary, PA can reach settling time fast but PSO cannot reach
convergence at the final time of simulation. PSO employs high random walk to reach MPP,
but it also causes leaving and returning to MPP. Metaheuristic algorithm tracking time and
settling time are influenced by random walk. If random walk is high, it may help to speed
up tracking time but settling time can be longer, and vice versa. Random walk may not
help to reach convergence rapidly, especially under condition of initial particles far from
MPP/GMPP. Moreover, random walk may produce unwanted duty cycle which may lead
to power oscillation. In Test 2, MPP location is close to initial particles. PSO can track the
MPP location. However random walk produces random duty cycle which leads to power
oscillation. Thereby, PSO harvests lower energy than PA. Additionally PA tracks faster than
PSO. In Test 3, exploitation mode is tested. All algorithms can track MPP, but their tracking
accuracy results are different. GWO is the fastest tracking time. Additionally, it shows that
PA has good exploitation performance. PA algorithm encircles MPP position using particle
P1 and P3, and surrounds MPP all the time of iterations. PA algorithm has the lowest
settling time, PA algorithm harvests the highest energy compared to other algorithms.
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Table 5. Comparison of test results.

Test
NO/Algorithm

Tracking Time
(s) Settling Time (s) Power Tracking

(W)
Power Tracking

Acc. (%)
Energy

Harvesting (Ws)
Energy Tracking

Acc (%)

Test 1 300.0 100.00 600.0 100.00

DE - - 76.7 25.57 146.8 24.47
FF - - 76.5 25.50 72.7 12.12

PSO 0.44 - 299.9 99.97 382.2 63.70
GWO - - 92.3 30.77 169.6 28.27

PA 0.39 0.79 299.9 99.97 523.6 87.27

Test 2 300.0 100.000 600.0 100.00

DE - - 256.7 85.57 466.5 77.75
FF - - 84.5 28.17 213.2 35.53

PSO 1.11 1.72 299.9 99.97 521.7 86.95
GWO - - 286.7 95.57 477.5 79.58

PA 0.61 0.82 299.9 99.97 550.7 91.78

Test 3 300.0 100.00 600.0 100.00

DE - - 295.7 98.57 570.6 95.10
FF 1.19 - 299.9 99.97 568.1 94.68

PSO 1.01 1.92 299.9 99.97 570.6 95.10
GWO 0.60 1.62 298.5 99.50 572.4 95.40

PA 0.61 1.11 299.9 99.97 573.4 95.57

Test 4 173.9 100.00 347.8 100.00

DE - - 163.4 93.96 305.1 87.72
FF 0.49 - 171.7 98.73 322.2 92.64

PSO 0.51 - 172.3 99.08 324.3 93.24
GWO 0.77 1.36 172.9 99.42 326.4 93.85

PA 0.45 0.85 172.9 99.42 327.3 94.11

Test 5 171.9 100.00 343.8 100.00

DE - - 133.2 77.49 244.5 71.12
FF - - 103.2 60.03 191.4 55.67

PSO - - 113.6 66.08 216.4 62.94
GWO 1.12 1.72 170.9 99.42 298.3 86.77

PA 0.41 1.02 170.9 99.42 316.7 92.12

Test 6 81.3 100.00 162.6 100.00

DE - - 35.7 43.91 70.2 43.17
FF - - 24.8 30.50 51.3 31.55

PSO - - 31.2 38.38 60.1 36.96
GWO 1.31 1.62 80.9 99.51 128.3 78.91

PA 0.52 0.87 80.9 99.51 140.3 86.29

In Test 4, GMPP location is laid between initial particles. Exploitation mode is tested.
FF, PSO, GWO and PA can track the GMPP. PSO, GWO and PA track GMPP at power
tracking accuracy at around 99%. PA shows the highest energy tracking accuracy, which
indicates minimum power oscillation. In Test 5, initial particles are close to the MPP
location. Although both PA and GWO can track the GMPP, PA is faster than GWO. Test
results confirm fast tracking of PA that energy harvesting by PA is higher than GWO. In
Test 6, initial particles have similar power value. It may confuse metaheuristic algorithm
which works based on attractiveness of the highest power point. GWO successfully tracks
MPP, but its tracking and settling time are reached slowly. Energy harvesting by PA is
higher than GWO, confirming that PA performs fast tracking and reaches settling time
with minimum oscillation.

It can be concluded that, without involving random calculation, PA has advantages
of avoiding unwanted duty cycle which may lead to power oscillations. Exploration and
exploitation mode can be done by simple math without random calculation. The ability
of exploration helps with the fast tracking. Also, the ability of exploitation mode helps
to achieve high accuracy. Automatically variable step size can be done by exploration
and exploitation modes. Additionally, high energy harvesting is the combination of high
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performance of exploration, exploitation, and minimum power oscillation. In terms of
overall performance, PA shows superiority among the tested algorithms.

6. Conclusions

In this paper, a new MPPT algorithm is proposed. The performance of proposed
algorithm is compared to four existing MPPT algorithms. Six test conditions are used to
evaluate the performance of each algorithm. The results show that the proposed algorithm
can successfully work under uniform and partial shading conditions. For all tests, the
proposed algorithm performs the fastest tracking time and settling time, and the highest
power tracking accuracy. Furthermore, the energy tracking accuracy of the proposed
algorithm is the highest compared to other tested algorithms. The proposed algorithm
overall shows superior performance compared to the DE, FF, PSO and GWO algorithms.
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