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Abstract: Reducing the energy consumption of the heating, ventilation, and air conditioning (HVAC)
systems while ensuring users’ comfort is of both academic and practical significance. However,
the-state-of-the-art of the optimization model of the HVAC system is that either the thermal dynamic
model is simplified as a linear model, or the optimization model of the HVAC system is single-
timescale, which leads to heavy computation burden. To balance the practicality and the overhead
of computation, in this paper, a multi-timescale bilinear model of HVAC systems is proposed.
To guarantee the consistency of models in different timescales, the fast timescale model is built first
with a bilinear form, and then the slow timescale model is induced from the fast one, specifically,
with a bilinear-like form. After a simplified replacement made for the bilinear-like part, this problem
can be solved by a convexification method. Extensive numerical experiments have been conducted
to validate the effectiveness of this model.

Keywords: bilinear model; convex relaxation method; energy consumption; multi-timescale opti-
mization; user comfort

1. Introduction

It has been well known that heating, ventilation, and air conditioning (HVAC) systems,
which are widely applied to various buildings, directly affect the user’s comfort and are
responsible for a large proportion of the building’s energy consumption. Over the last
several years, the problem of optimizing the energy consumption of HVAC systems while
ensuring user’s comfort has been extensively investigated [1–4].

In an HVAC system, the thermal dynamics of a residential house may be modeled
at a minute level, while the load profile for the maximum power consumption is usu-
ally specified at an hourly level. If the optimization problem of the HVAC system is
modeled in single-timescale, the time should be slotted with the length of the smallest
timescale (e.g., minute). Clearly, in this case, the number of decision variables increases
dramatically, which leads to the curse of dimensionality [5–7]. In addition, the thermal
dynamic model of the HVAC systems in a building is complex, which may further increase
the dimension of optimization problem and the computational complexity [8–12]. Ref-
erences [13,14] proposed a two-timescale stochastic optimization model for control and
scheduling the appliances to satisfy user’s thermal comfort requirement under the peak
power and cost constraints. The two-timescale model could efficiently reduce both the
dimension of the problem and its computational complexity. Despite the two-timescale
models in [13,14] can appropriately characterize the optimization problem of HVAC sys-
tems, the consistency of the models in two timescales was not guaranteed. To solve this
problem, article [15] improved these two-timescale models and developed a two-timescale
induced model to ensure the consistency. The consistency mentioned above refers to the
consistent models established no matter it is the fast timescale model obtained by decom-
posing the slow timescale model or the slow timescale model induced reversely from the
fast timescale model.
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In the above-mentioned research, the thermal dynamic model is simplified as a linear
model. Although the linear models are easy to solve, the bilinear models are more practical
to describe the thermal dynamics of buildings [16–20]. In [16], a Swiss office building was
formulated as a bilinear model to analyze its implementation, results, and cost–benefit
under model predictive climate control. In [17], a problem of HVAC control in a typical
commercial building was studied, which was formulated as a bilinear model. At present,
there already exist some mature algorithms for bilinear system optimization, e.g., dynamic
planning and maximum principle. In [18], a sequential quadratic programming method
was proposed to solve bilinear HVAC control problems, which is computationally expen-
sive for nonconvex problems and needs a good initialization to achieve local convergence.
In [19,20], a convex relaxation method is developed to reduce the computation burden
efficiently. The bilinear models in the above articles are modeled in single-timescale.

To make a trade-off between the practicality and the overhead of computation, this pa-
per formulates the optimization problem of HVAC system as a multi-timescale bilinear
model. In [15], a multi-timescale linear model is built. The current paper extends the
results in [15] to a multi-timescale bilinear model, which is more practical to describe
the thermal dynamics of HVAC systems. However, the coupling of multi-timescale and
bilinearity makes the induced slow timescale model not be the standard bilinear form.
The relationship between the slow timescale model and fast timescale model is clarified,
and then the multi-timescale bilinear model can be solved by the convexification method
after simplified replacement. In addition, a multi-timescale deterministic model is adopted
in this paper against the mixture of the inconsistency deviation and the random error.

The contribution of this paper is formulating the multi-timescale bilinear optimization
model of HVAC systems to balance the practicality and the overhead of computation.
Based on the induction method for multi-timescale model in [15], the fast timescale bilinear
model is built first, and then the slow timescale model is induced from the fast one,
in which the consistency of models in different timescales is guaranteed. Compared with
single-timescale bilinear models, the proposed model can decrease the computational
complexity; while compared with multi-timescale linear models (e.g., [15]), the proposed
model can describe the thermal dynamic of HVAC systems more practically and get
better optimization results in some cases, and the accuracy and the computational cost
are acceptable.

The remainder of this paper is outlined as follows. In Section 2, the multi-timescale
HVAC bilinear induced model is formulated. In Section 3, the solution algorithm is
introduced. In Section 4, the performance of the proposed strategy is illustrated through
case studies. In Section 5, we conclude this paper. Due to space limitation, proofs of
theorems are omitted and can be found in [21].

2. Problem Formulation
2.1. Single-Timescale Bilinear Optimization Model

An HVAC system draws power and drives the indoor temperature by following a ther-
mal dynamic model, and the HVAC control directly affects the user’s comfort. The user’s
comfort in this paper reflects that the deviation from the indoor temperature and the
desired temperature of the user is minimized. This paper regulates the indoor temperature
by control and decision for HVAC.

Based on a practical building, the HVAC optimization model is built as follows,
in which the objective is to improve user’s comfort with limited energy. The details can
be seen in our previous work [15] and are not repeated here. For simplicity, some random
factors are not considered in this paper.

(P1) min ∑|xk − dk| (1)

s.t. xk+1 = axk + buk + cxkuk (2)

0 ≤ uk ≤ umax (3)
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∑uk ≤ Umax (4)

where xk is the indoor temperature at time k. dk is the user’s desired temperature at time k.
uk is the control variable of HVAC at time k. umax denotes the maximum limit of control
variable of HVAC. Umax denotes the maximum total limit of control variable of HVAC.
a, b, c are coefficients.

Constraint (2) is a bilinear state transfer equation. Bilinear system is a kind of system
derived by introducing the product term of state variable and control variable in linear
state equation. It is relatively linear to state variable and control variable, respectively,
but not linear to state variable and control variable simultaneously. In fact, bilinear system
is a special nonlinear system with simple form. Bilinear system model is a promotion from
linear system model, which can more practically describe the indoor temperature state
transfer process.

In the system, the time domain is divided into two timescales, as shown in Figure 1,
where K is the number of time slot in slow timescale, and n is the number of time slot in
fast timescale of slow timescale. According to [15], states transfer in fast timescale, that
is, the model in (P1) is the fast timescale model, and the slow timescale model should be
induced by it.

Figure 1. Slow timescale and fast timescale diagram.

2.2. Two-Timescale Bilinear induced Model

For simplicity, we select one interval of slow timescale, including four slots of fast
timescale, as shown in Figure 2.

Figure 2. One interval of slow timescale.

The standard bilinear state transfer equation of fast timescale is known as (2).
The relationship between state variables of slow timescale and fast timescale is as-

sumed as follows.
X[0] = x0, X[1] = x4 (5)

When the slow timescale state transfers from X[0] to X[1], the fast timescale state
transfers from x0 to x4, both of them transfer n times fast timescales.

According to the fast timescale state transfer equations, this transfer process can be
described as

x1 = ax0 + bu0 + cx0u0
x2 = ax1 + bu1 + cx1u1 = bu1 + a2x0 + abu0 + acx0u0 + acx0u1 + c2x0u0u1
x3 = ax2 + bu2 + cx2u2 = bu2 + abu1 + a3x0 + a2bu0 + a2cx0u0 + a2cx0u1 + abcu0u1 + ac2x0u0u1 + bcu1u2
+a2cx0u2 + abcu0u2 + ac2x0u0u2 + ac2x0u1u2 + bc2u0u1u2 + c3x0u0u1u2
x4 = ax3 + bu3 + cx3u3 = bu3 + abu2 + a2bu1 + a4x0 + a3bu0 + a3cx0u0 + a3cx0u1 + a2bcu0u1 + a2c2x0u0u1
+abcu1u2 + a3cx0u2 + a2bcu0u2 + a2c2x0u0u2 + a2c2x0u1u2 + abc2u0u1u2 + ac3x0uou1u2 + bcu2u3 + abcu1u3
+a3cx0u3 + a2bcu0u3 + a2c2x0u0u3 + a2c2x0u1u3 + abc2u0u1u3 + ac3x0u0u1u3 + bc2u1u2u3 + a2c2x0u2u3
+abc2u0u2u3 + ac3x0u0u2u3 + ac3x0u1u2u3 + bc3u0u1u2u3 + c4x0u0u1u2u3

(6)
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Combine (5) with (6) we can obtain the slow timescale state transfers from X[0] to X[1]
as follows.

X[1] = x4 = a4X[0] + b(a3u0 + a2u1 + au2 + u3 + c3u0u1u2u3
+a2cu0u1 + a2cu0u2 + a2cu0u3 + acu1u2 + acu1u3 + cu2u3
+ac2u0u1u2 + ac2u0u1u3 + ac2u0u2u3 + c2u1u2u3)
+cx0(a3u0 + a3u1 + a3u2 + a3u3 + c3u0u1u2u3
+a2cu0u1 + a2cu0u2 + a2cu0u3 + a2cu1u2 + a2cu1u3 + a2cu2u3
+ac2u0u1u2 + ac2u0u1u3 + ac2u0u2u3 + ac2u1u2u3)

(7)

The slow timescale bilinear state transfer equation should have been the same form as
fast timescale, however, unless in the particular condition that a = 1, there does not exist a
uniform control variable U[k] in (7). In other words, the control variables in control term and
bilinear term are different, so we describe the two as UB[k] and UC[k], respectively. UB[k] is
the second term at the right-hand side of (7), and x0UC[k] is the third term. Comparing
UB[k] with UC[k], we find that the former still carries the quality of weighted sum with
coefficient a, while the latter reflects such quality similar to simple sum 15.

Therefore, unlike the linear system in our previous work, the slow timescale state
transfer equation of bilinear system cannot be described as the standard bilinear state
transfer equation, but a bilinear-like form as follows.

X[k + 1] = AX[k] + BUB[k] + CX[k]UC[k] (8)

where X[k] is the indoor temperature at kth slow timescale. A, B, C are coefficients in slow
timescale.

To extend n = 4 to general cases, we formulate the following theorems.

Theorem 1. The fast timescale system state equation is (2). The relationship between state variables
of slow timescale and fast timescale is X[k] = xnk. Thus, the slow timescale system state equation
can be induced as (8), where the coefficients are

A = an, B = b, C = c (9)

The slow timescale control variable is

UB[k] = an−1unk an−2unk+1 + . . . + unk+n−1 + an−2cunk ∑n−1
j=1 unk+j + an−3cunk + 1 ∑n−1

j=2 unk+j

+ . . . + cunk+n−2unk+n−1 + an−3c2unk ∑n−1
i 6=j,i,j=1 unk+iunk+j + an−4c2unk+1 ∑n−1

i 6=j,i,j=2 unk+iunk+j

+ . . . + c2unk+n−3unk+n−2unk+n−1 + . . . + cn−1unk . . . unk+n−1
Uc[k] = an−1 ∑n−1

i=0 unk+i + an−2c ∑n−1
i 6=j,i,j=0 unk+iunk+j + . . . + cn−1unk . . . unk+n−1

(10)

Proof of Theorem 1. See [21]. �

In this mode, UB[k] and UC[k] indicate two different kinds of control effect.

Corollary 1. By solving the slow timescale model, the control variable is obtained with a set of unk
decomposition, i.e., (10). Thus, the decision is realizable in the fast timescale, in other words, there is
a set of fast timescale state transfer as X[k] = xnk.

Theorem 2. The fast timescale system state equation can be described as the standard bilinear
system state Equation (2), and the relationship between the state variables of slow timescale and fast
timescale is X[k] = xnk. When a 6= 1, there does not exist two same U[k], making the slow timescale
system state equation have the standard bilinear form like (2).

Proof of Theorem 2. See [21]. �
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2.3. Two-Timescale Bilinear Optimization Model

Based on the proposed theorems in last section, the two-timescale bilinear optimization
model is built as follows.

Slow timescale:
(P2) min ∑|X[k] − D [k]| (11)

s.t. (8), (10)

Uc[k] = ∑n−1
i=0 unk+i (12)

0 ≤ Uc[k] ≤ Umax (13)

where D[k] is the desired temperature at kth slow timescale. Uc[k] denotes the total
of fast timescale control variables of HVAC at kth slow timescale, which is an actual
physical quantity.

Constraint (12) expresses the energy conversation law. Constraint (13) restricts the
maximum limit of the actual consumption of HVAC in the slow timescale.

Fast timescale:
(P3) min ∑n

i=1 |xnk+I − dnk+i| (14)

s.t. xnk+1 = axnk + bunk + cxnkunk (15)

0 ≤ uk ≤ umax (16)

∑n−1
i=0 unk+i ≤ Uc[k] (17)

Constraint (15) ensures that fast timescale state/control variables satisfy the bilinear
state transfer equations. Constraint (10) ensures the consistency of decomposition from
the slow timescale to the fast timescale. Constraint (17) ensures that the total consumption
of control variables in this period shall not exceed that in the scheduling plan of slow
timescale.

3. Convexification Solution Method

The aforementioned optimization problem is nonconvex due to the bilinear term. To
solve this issue, a convex relaxation method is used in this section.

3.1. Simplified Constraint

Before convexification, constraint (10) is so complicated that should be simplified to
solve. We find that both UB[k] and UC[k] consist of first-order term to n-order term of u.
The terms are divided into n = 6 parts in Table 1.

Table 1. Terms in U[k].

UB[k]

S1
B a5u0 + a4u1 + . . . + u5

S2
B a4cu0(u1 + . . . + u5) + a3cu1(u2 + . . . + u5)+ . . . + cu4u5

S3
B a3c2u0∑5

i 6=j,i,j=1uiuj + a2c2u1∑5
i 6=j,i,j=2uiuj + ac2u2∑5

i 6=j,i,j=3uiuj + c2u3u4u5

S4
B a2c3u0∑5

6=,i1,i2,i3=1ui1ui2ui3 + ac3u1∑5
6=,i1,i2,i3=2ui1ui2ui3 + c3u2u3u4u5

S5
B ac4u0∑5

6=,i1,i2,i3,i4=1ui1ui2ui3ui4 + c4u1u2u3u4u5

S6
B c5u0u1u2u3u4u5

UC[k]

S1
C a5(u0 + . . . + u5) S4

C a2c3∑5
6=,i1,i2,i3,i4=0ui1ui2ui3ui4

S2
C a4c∑5

i 6=j,i,j=0uiuj S5
C ac4∑5

6=,i1,...,i5=0ui1ui2ui3ui4ui5

S3
C a3c2∑5

6=,i1,i2,i3=0ui1ui2ui3 S6
C c5u0u1u2u3u4u5

According to the physical meaning of the system, the state variable denotes indoor
temperature, the control variable u is related to air flow rate of HVAC, a is a self-loss
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coefficient, b denotes air temperature from HVAC, K is the number of time slot in slow
timescale, so values of u of HVAC are always small rated with other variables. The value
of the fourth-order term tends to 0, so the fifth-order to nth-order terms can be ignored.
Although the values of second-order term to fourth-order term are small, with numbers
of these terms not small, they cannot be ignored simply. For example, the number of
u’s second-order terms is C2

n, the number of u’s third-order terms is C3
n, etc. However,

also because these terms have little influence on the whole formula, they can be replaced
by two constant terms, CB[k] and CC[k], for UB[k] and UC[k], respectively. In other words,
S1 remains and S2–S4 is replaced by CB[k] and CC[k]. Constraint (10) is changed as follows.

UB[k] ≈ an−1u0 + an−2u1 + . . . + un−1 + CB[k]
UC[k] ≈ an−1(u0 + u1 + . . . + un−1) + CC[k]

(18)

In this mode, UB[k] is not the simple sum of u, but the weighted sum with coefficient a.
UC[k] has a linear relationship with the simple sum of u, i.e., the actual energy consumption,
a physical quantity.

Let all u of S2–S4 equal ue[k], the values of S2–S4 in UB[k] and UC[k] equal CB[k] and
CC[k], respectively. ue[k] means the control variable that is needed over one slot in fast
timescale to keep the desired temperature at kth slow timescale. Namely, the state variable
in (15) is replaced with the desired temperature D[k], as follows.

D[k] = aD[k] + bue[k] + cD[k]ue[k] (19)

ue[k] =
(1− a)D[k]
b + cD[k]

(20)

We will make a preliminary estimate roughly whether user can accept the error from
the above replacement. Firstly, S2/S1 ≈ C2

nu2/nu = (n − 1)u/2. For example, u ranges
[0.05, 0.15], n = 6, S2/S1 ≈ 0.125~0.375. With the value of u small, S2/S1 is small, i.e.,
the changes of S2 have little influence on S1 + S2. The absolute value of relative error of S2
changed before and after is estimated as follows.

|εS2| =
∣∣∣nu + C2

nu2
e − (nu + C2

nu2)
∣∣∣/(nu + C2

nu2) =
∣∣∣nu + C2

n(u + δ)2 − (nu + C2
nu2)/(nu + C2

nu2)

=
∣∣2C2

nuδ + C2
nδ2

∣∣/(nu + C2
nu2)

(21)

where δ denotes the deviation between ue and u, and is generally an order magnitude
smaller than u. |δ| is from 0 to [0.005, 0.015], so δ2 can be ignored. Equation (21) is
transformed as follows.

|εS2| = |2 C2
nuδ + C2

nδ2|/(nu + C2
nu2) = |δ|/(1/n − 1 + u/2) (22)

Considering the ranges of u and δ, |εS2| is estimated as 0~[0.02, 0.05]. Thus, the in-
fluence of S2 replaced before and after is little for the formula. For the same reason,
the influences of S3 and S4 decrease progressively. It will be further illustrated through
numerical examples in Chapter IV.

Then, in order to further simplify Equation (10), let ζB[k] = (an−1 + . . . + 1)ue[k], ζC[k]
= nan−1ue[k], we can obtain

CB[k] = c[dζB[k]/da]ue[k] + . . . + (ci/i)[diζB[k]/dai]ue
i[k] + . . . + (cn−1/n − 1) [dn−1ζB[k]/dan−1]ue

n−1[k] (23)

CC[k] = c[dζC[k]/da]ue[k] + . . . + (ci/i)[diζC[k]/dai]ue
i[k] + . . . + (cn−1/n − 1) [dn−1ζC[k]/dan−1]ue

n−1[k] (24)

3.2. Convex Relaxation Method

Another computational issue is the bilinear model always results in nonconvex opti-
mization problem. To solve this issue, some convex relaxation method will be developed.

McCormick Envelopes is a common method of convex relaxation used in bilinear
nonlinear programming problem [19,20,22–25]. According to the method, the bilinear term
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can be bounded by its convex and concave envelopes. We need to confirm the upper and
lower bound of the bilinear term first.

The optimization objective is to minimize the deviation from indoor temperature and
the user’s desired temperature, so state variable is constrained within the scope above and
below near the user’s desired temperature.

dk − ∆ ≤ xk ≤ dk + ∆ (25)

The upper and lower bound of control variable is (16).
Therefore, the bilinear term xkuk is bounded by

xkuk ≥ max{(dk − ∆)uk, (dk + ∆)uk + umaxxk − umax(dk + ∆)} (26)

xkuk ≤ min{umaxxk + (dk − ∆)uk − umax(dk − ∆), (dk + ∆)uk} (27)

The nonconvex problem can be relaxed by replacing the bilinear term xkuk with an
additional variable yk. The relaxed state transfer equation is

xk+1 = axk + buk + cyk (28)

Additional constraints are needed as follows.

0 ≤ (buk + cyk)/(b + cxk) ≤ umax (29)

∑n−1
i=0

(
bunk+icynk+i

)
/(b + c(dnk+i − ∆)) ≤ Uc[k] (30)

It is worth noting that the above convex relaxation method is applied to fast timescale
under the default condition, yk = xkuk. However, for slow timescale, there is not
Y[k] = X[k]U[k].

The bilinear term in slow timescale is X[k]UC[k], which can also be bounded by its
convex and concave envelopes. We confirm its upper and lower bound first.

Similarly, state variable of slow timescale is constrained within the scope above and
below near the user’s desired temperature.

D[k] − ∆ ≤ X[k] ≤ D[k] + ∆ (31)

According to (12), (13) and (18), we can obtain the upper and lower bound of UC[k]
as follows.

CC[k] − ∆ ≤ UC[k] ≤ an−1Umax + CC[k] (32)

Therefore, the bilinear term X[k]UC[k] is bounded by

X[k]UC[k] ≥ max{CC[k]X[k] + (D[k]− ∆)UC[k]− CC[k](D[k]− ∆),
(D[k] + ∆)UC[k] + (an−1Umax + CC[k])X[k]− (an−1Umax + CC[k])(D[k]+∆)} (33)

X[k]UC[k] ≤ min
{
(an−1Umax + CC[k])X[k] + (D[k]− ∆)UC[k]− (an−1Umax + CC[k])(D[k]− ∆),

(D[k] + ∆)UC[k] + CC[k]X[k]− CC[k](D[k]+∆)} (34)

Let Y[k] = X[k]UC[k], the relaxed slow timescale state transfer equation is

X[k + 1] = AX[k] + BUB[k] + CY[k] (35)

Additional constraint is needed as follows.

CC[k] ≤ (BUC[k] + CY[k])/(B + CX[k]) ≤ an−1Umax + CC[k] (36)

Moreover, according to Theorem 1 in 15, there are U*[k] and Y*[k] satisfying

U*[k] = UB[k] − CB[k] = an−1unk + an−2unk+1 + . . . + unk+n−1 (37)
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Y*[k] = Y[k] + (B/C)CB[k] = an−1uynk + an−2ynk+1 + . . . + ynk+n−1 (38)

To guarantee the consistency of the two-timescale model, additional constraint is
needed as follows.

∑n−1
i=0 an−i−1(bunk+I + cynk+i

)
/(b + c(dnk+i − ∆)) = U ∗ [k] (39)

3.3. Relaxed Two-Timescale Bilinear Optimization Model

With the aforementioned additional constraints, a modification of (P2)(P3) is pro-
posed below.

Slow timescale:
(P4) min ∑|X[k] − D [k]| (40)

s.t. (12), (13), (18), (35), (36)

Y[k] ≥ CC[k]X[k] + (D[k] − ∆)UC[k] − CC[k](D[k] − ∆) (41)

Y[k] ≥ (D[k] + ∆)UC[k] + (an−1Umax + CC[k])X[k] − (an−1Umax + CC[k])(D[k] + ∆)} (42)

Y[k] ≤ (an−1Umax + CC[k])X[k] + (D[k] − ∆)UC[k] − (an−1Umax + CC[k])(D[k] − ∆) (43)

Y[k] ≤ (D[k] + ∆)UC[k] + CC[k]X[k − CC[k](D[k] + ∆)} (44)

Fast timescale:
(P5) min ∑n

i=1|xnk+i − dnk+i| (45)

s.t. (16), (17), (28)–(30), (37)–(39)

yk ≥ (dk − ∆)uk (46)

yk ≥ (dk + ∆)uk + umaxxk − umax(dk + ∆) (47)

yk ≤ umaxxk + (dk − ∆)uk − umax(dk − ∆) (48)

yk ≤ (dk + ∆)uk (49)

The solution methodology for the two-timescale optimization problem has been
described in our work [15] in details. In brief, after removing the absolute value sign
of the objective functions, the slow timescale optimization problem is solved first, and
then the fast timescale optimization problem is solved with the results of slow timescale.
Based on the linear constraints, we formulate the relaxed model as a linear programming
(LP) problem, which can be efficiently solved using Cplex.

4. Numeric Results

In this chapter, we demonstrate the performance of the two-timescale bilinear opti-
mization model on an HVAC system. For simplicity, we choose one of rooms to illustrate,
where a = 0.95, b = 38, c = −1, n = 6, K = 16.

4.1. Error Analysis

The error analysis in this section is aimed at the simplified replacement mentioned
in III-A. To highlight the problem, we select the kth slow timescale, where X[k] = xnk = 24,
D[k + 1] = 25, ∆ = 0. According to (10),

UB[k] = (a5u0 + a4u1 + . . . + u5) + (a4cu0(u1 + . . . + u5) + a3cu1(u2 + . . . + u5) + cu4u5) + . . . + c5u0u1u2u3u4u5 (50)

UB[k] = a5(u0 + . . . + u5)+ a4c(u0(u1 + . . . + u5)+ u1(u2 + . . . + u5) + u4u5) + . . . + c5u0u1u2u3u4u5 (51)

Solving the kth slow timescale optimization, we can obtain a set of u = [u0, . . . , u5],
and then the numerical values of S1–S6 are shown in Table 2.
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Table 2. The Contrast of Replacement Before and After.

UB[k] UC[k]

Before After Before After

S1
B 0.7203 - S1

C 0.6384 -
S2

B −0.2430 −0.2048 S2
C −0.2291 −0.1909

S3
B 0.0449 0.0348 S3

C 0.0435 0.0335
S4

B −0.0047 −0.0034 S4
C −0.0046 −0.0033

S5
B 2.1606 × 10−4 Deleted S5

C 2.1454 × 10−4 Deleted
S6

B −6.1035 × 10−6 Deleted S6
C −6.1035 × 10−6 Deleted

Let Uˆ[k] = BUB[k]CX[k]UC[k], and X[k + 1] = AX[k] + Uˆ[k]. The absolute values of
relative error for Uˆ[k] and X[k + 1] is calculated as follows, respectively.

|εUˆ[k]| = |Uˆ[k] − Uˆ’[k]|/Uˆ[k] (52)∣∣∣εX[k+1]

∣∣∣ = X[k + 1]− X′[k + 1]/X[k + 1] =|AX[k] + Û[k]− AX[k]− Û′[k]|/X[k + 1]
= |Û[k]− Û′[k]|/X[k + 1]

(53)
The numerical results are shown in Table 3.

Table 3. Absolute Value of Relative Errors.

Uˆ[k] Uˆ’[k] |εUˆ[k]| X[k + 1] X’[k + 1] |εX[k+1]|

7.3578 7.6809 4.39% 25 25.3228 1.29%

Although |εUˆ[k]| = 4.39%, |εX[k+1]| = 1.29% merely, indicating that final output of
state is weakly affected. In terms of indoor temperature, 1.29% error is almost imperceptible
for user body.

Moreover, we compare the situation1 that simply deletes S2–S6 with the aforemen-
tioned situation 2 during the whole optimization process. The indoor temperature of the
original formula is regarded as the standard compared with those in the two situations,
and the mean absolute percentage error (MAPE) is calculated as follows [26].

MAPE1 = (100/K)∑K
k=1

∣∣X[k]− X′[k]
∣∣/|X[k]| (54)

The MAPE of state variable are contrasted in Table 4.

Table 4. MAPE1.

Situation 1 Situation 2

Relative error 14.85% 2.23%

In summary, the error from the way we make the simplification is acceptable.

4.2. Accuracy

The accuracy of the proposed optimization solution will be discussed in this section.
Through simulation, it is found that the value of ∆ can directly affect the accuracy of

optimization result from the proposed model. The less ∆ values, the more accuracy will be.
With the decrease of ∆, the range of state variable becomes less, and the bound by convex
and concave envelopes is more practical.
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The actual indoor temperature from simulation is compared with user’s desired
temperature and MAPE is calculated for each ∆. The MAPE formula is shown as follows,
which sums up all the absolute percentage error for one value and then finds the average.

MAPE2 = (100/nK)∑nK
k f=1

∣∣∣xk f − dk f

∣∣∣/∣∣∣dk f

∣∣∣ (55)

When ∆ = 0, 1, 2, 3, respectively, the MAPEs are shown in Table 5, where ∆ = 0 for
reference only.

Table 5. MAPE2.

MAPE

∆ = 0 0.045%
∆ = 1 0.57%
∆ = 2 1.88%
∆ = 3 4.94%

Under different values of ∆, the accuracy of the proposed model are contrasted
in Figure 3.

Figure 3. Model in slow timescale (a) and fast timescale (b).

Figure 3 shows the states and the desired temperature under different values in the
slow timescale and fast timescale. We see that the deviation from desired temperature
become more with the increase of ∆. When ∆ < 3, deviations are acceptable.

4.3. Comparison with the Linear Model

The results obtained from the proposed bilinear model are compared with those ob-
tained from the linear model in [15]. It should be pointed out that the linear model in [15]
is a Jacobian linearization [27] of the bilinear model in the current paper, i.e., the dynamics
at every time step are linearized around the equilibrium points of the system. Next, the per-
formances of linear model and bilinear model are compared through numerical results.

If the indoor temperatures at all time could satisfy the desired temperatures, as shown
in Figure 4, there does not exist linearization error in the linear model, so whose perfor-
mance is good in our previous work. Generally speaking, the indoor temperature in slow
timescale can meet the desired temperature with sufficient energy budget. However, when
the decision result of slow timescale is decomposed in fast timescale, only the states of
endpoint in fast timescale can be guaranteed, and the other states would transfer to the
endpoint through arbitrary paths, i.e., except the states of endpoint, not all of the other
states can meet the desired temperature [15]. At this time, deviation occurs in fast timescale
linear model.
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Figure 4. Two-timescale indoor temperatures in bilinear model (a) and linear model (b).

In the cases mentioned above, the optimization results of the bilinear model and linear
model are shown in Figure 5. In slow timescale, we see that all states of linear model
satisfy the desired temperatures, and the states of bilinear model also behave well with
just acceptable little error. However, in fast timescale, if user set the desired temperatures
with fluctuation at the first two periods (k = 1–2) of slow timescale (i.e., kf = 1–12 of fast
timescale), and the desired temperatures at the endpoints (kf = 6, 12) coincide with that in
slow timescale (k = 1, 2), there will be great deviation in linear model. Once state cannot
meet the desired temperature, linear model will make the following optimization process
based on a biased model after that. Since bilinear model is built in practice, following the
practical situation well, it can satisfy the desired temperatures within acceptable scope.

Figure 5. Two-timescale indoor temperatures in bilinear model (a) and linear model (b) with fluctuant
desired temperatures.

Under some special circumstances with not sufficient energy budget, where the main
aim is not for user comfort, the optimization results are shown in Figure 6.

Because of insufficient energy, states cannot satisfy the desired temperatures both in
bilinear model and linear model. As shown in Figure 6, it is obvious that the optimization
result of bilinear model is better than linear model.

Extensive simulation experiments have been carried out. The results show that the
mean computational time of the linear model solution is 2.14 s and of the bilinear model
solution is 11.47 s. Although the bilinear model gives better results at the price of more
computations, the overhead of computation is acceptable.



Energies 2021, 14, 400 12 of 13

Energies 2021, 14, x 12 of 14 
 

 

fluctuation at the first two periods (k = 1–2) of slow timescale (i.e., kf = 1–12 of fast timescale), 
and the desired temperatures at the endpoints (kf = 6,12) coincide with that in slow timescale 
(k = 1,2), there will be great deviation in linear model. Once state cannot meet the desired 
temperature, linear model will make the following optimization process based on a biased 
model after that. Since bilinear model is built in practice, following the practical situation 
well, it can satisfy the desired temperatures within acceptable scope. 

 

Figure 5. Two-timescale indoor temperatures in bilinear model (a) and linear model (b) with fluctuant desired tempera-
tures. 

Under some special circumstances with not sufficient energy budget, where the main 
aim is not for user comfort, the optimization results are shown in Figure 6. 

Because of insufficient energy, states cannot satisfy the desired temperatures both in 
bilinear model and linear model. As shown in Figure 6, it is obvious that the optimization 
result of bilinear model is better than linear model. 

  

Figure 6. Fast timescale indoor temperatures in bilinear model (a) and linear model (b). 

Extensive simulation experiments have been carried out. The results show that the 
mean computational time of the linear model solution is 2.14 s and of the bilinear model 
solution is 11.47 s. Although the bilinear model gives better results at the price of more 
computations, the overhead of computation is acceptable. 

5. Conclusions 
A method to build a two-timescale bilinear optimization model for HVAC system is 

proposed in this paper. The bilinear term generated by bilinear system will couple with 
two-timescale. Based on a single-timescale convex relaxation method, this paper proposes 
the two-timescale convex relaxation method after reasonable simplified replacement, 

Figure 6. Fast timescale indoor temperatures in bilinear model (a) and linear model (b).

5. Conclusions

A method to build a two-timescale bilinear optimization model for HVAC system is
proposed in this paper. The bilinear term generated by bilinear system will couple with
two-timescale. Based on a single-timescale convex relaxation method, this paper proposes
the two-timescale convex relaxation method after reasonable simplified replacement, which
can solve the optimization problem easily and guarantee the consistency. The two-timescale
bilinear optimization model is to minimize the deviation from indoor temperature and the
user’s desired temperature. Case studies demonstrate the performance of the proposed
model, which is better than the linear model.
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