
energies

Article

Emission Characteristics of Pollution Gases from the
Combustion of Food Waste

Haili Liu *, Xu Zhang and Qingchao Hong

����������
�������

Citation: Liu, H.; Zhang, X.; Hong,

Q. Emission Characteristics of

Pollution Gases from the Combustion

of Food Waste. Energies 2021, 14, 6439.

https://doi.org/10.3390/en14196439

Academic Editors: Aiwu Fan,

Jiaqiang E and Adam Smoliński
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Abstract: The emission characteristics of pollution gases produced via the combustion of food waste
were studied through a laboratory-scale electrically heated tube furnace. The results showed that
the pollution gases generated from the combustion of food waste were CO, H2 and NOx. Each
emission curve of CO had a peak. When the combustion temperature rose from 400 ◦C to 1000 ◦C,
the peak first increased (from 400 ◦C to 700 ◦C) and then decreased (from 800 ◦C to 1000 ◦C). However,
the burnout time shortened with the increase in temperature. Therefore, food waste should be
combusted at a higher temperature than 700 ◦C from the perspective of reducing CO emissions.
The emissions of H2 were similar to those of CO. In other words, if CO emissions increased, H2

emissions also increased in the same temperature range. Some NOx emission curves had two peaks
(the combustion of cooked rice at 1000 ◦C; the combustion of vegetable leaves in the temperature
range of 600 ◦C to 1000 ◦C). The higher the combustion temperature, the higher the second NOx

emission peak. NOx emissions from the combustion of cooked rice were greater in the temperature
range of 400 ◦C to 500 ◦C, whereas for vegetable leaves, that temperature range was from 600 ◦C to
700 ◦C. Hence, from the viewpoint of reducing pollution gases, food waste should be combusted at a
higher temperature than 700 ◦C.

Keywords: pollution gases; food waste; combustion; emission characteristics

1. Introduction

With the development of the social economy and the acceleration of urbanization,
municipal solid waste is growing rapidly. In China, for example, the solid waste yields
were 2.28 × 108 tons in 2018 [1]. If such a large amount of domestic waste cannot be treated
harmlessly and reduced in time, it will pose a major threat to people’s health and the
sustainable development of society.

Municipal solid waste mainly includes three types of substances, namely, combustible
organic matter such as plastic, waste paper and rubber, inorganics such as cinders, glass
and metal, as well as perishable organic matter such as branches, flowers, food waste [2–4].
Of all types of waste, food waste is the largest, accounting for about 50% of the total [5–8].
Food waste refers to a kind of solid waste produced by residents in daily consumption,
which mainly covers leftover food, vegetable leaves, peel, bones and meat. Food waste
is not only high in water content and prone to corruption and deterioration, but also
generates a variety of bacteria, pathogens and emits foul-smelling gases, which all lead to
serious environmental pollution [6]. How to dispose of food waste safely and effectively
has attracted widespread attention from all sectors of society.

At present, there are a few methods to deal with food waste, such as landfill, compost-
ing, anaerobic digestion and incineration. Of these methods, landfill is the most widely
used because it has lots of degradable components, low stability, and simple operation,
which are conducive to the recovery of landfill sites [7,9]. However, landfill also has
its shortcomings. For instance, landfill occupies a large area, generates a large amount
of methane gas, accelerates the greenhouse effect, and is prone to fire and explosion
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accidents. In particular, a large amount of leachate is produced, which pollutes the sur-
rounding groundwater [10]. Therefore, the rate of landfill is showing a downward trend.
The advantages of aerobic composting are its simple process and the ability to retain more
nitrogen in the compost product, which can be used in agriculture or in the manufac-
ture of animal feed. However, it also occupies a large area, has a long production cycle,
and produces lots of sewage and odor [11]. Although anaerobic digestion technology has
the advantages of low energy consumption, lower secondary pollution and the generation
of clean energy, it also has some problems, such as the high levels of water consumption,
difficult solid–liquid separation after digestion, high treatment investment and the high
operation cost of follow-up digestive solution [12].

Incinerating food waste together with other waste is of high treatment efficiency, with
only about 5% of residues remaining [13]. At the same time, incineration can dispose of
large quantities of waste and only occupies a small area of land, so it is popular in developed
areas of China where there is a shortage of land. However, waste incineration emits large
amounts of contaminants to the atmosphere, such as particulate matter, NOx, SO2, CO
and dioxin, causing serious secondary pollution. To protect the environment and prevent
pollution, the Standard for Pollution Control on the Municipal Solid Waste Incineration (GB18485-
2014) was formulated in April 2014 in China. The standard sets stricter requirements for
the emissions of smoke, such as NOx < 300 mg/Nm3, CO < 100 mg/Nm3 and SO2 < 100
mg/Nm3. Therefore, methods for the control of gas pollutants from municipal solid waste
combustion have become a hot topic [14,15].

Many scholars have completed significant amounts of research on the control of pollu-
tants from solid waste combustion. Dong et al. [16] reported that the emissions of pollutants
could be reduced by controlling the combustion temperature (950–1100 ◦C) and residence
time (not less than 2 s). At the same time, oxy-fuel combustion technology is considered
to be one of the most effective methods for low pollutant emissions and CO2 capture in
solid waste incineration [17,18]. Tang et al. [19] found that NOx and SOx emissions were
reduced in oxy-fuel combustion when the temperature was in a certain range of 800 ◦C to
1000 ◦C. Ding et al. [20] affirmed that the generation of NOx is significantly suppressed
in the process of O2/CO2 combustion. In addition, co-firing solid waste and other fuels
is also a way to reduce pollutant emissions [21]. For example, researchers mixed solid
waste with biomass or coal to improve combustion performance and reduce pollutant emis-
sions [21–23]. However, considering people’s different lifestyles, consumption standards
and environmental awareness, the components of municipal solid waste are also different,
which causes distinct pollutant emission characteristics [24]. Therefore, it is necessary
to study the typical components of solid waste separately. Tang et al. [2,19] studied the
emission of rubber, plastic, and leather combustion. Jiang et al. [4] studied the oxy-fuel
emission of scrap tire combustion. However, as the main component of municipal solid
waste, there are few studies on the combustion emissions of food waste.

At present, research on the combustion emission characteristics of food waste is
insufficient. Studies on the influence of temperature on the emission of CO, H2 and NOx in
the flue gas from food waste combustion would be helpful to develop efficient food waste
treatment technology. The study takes into account the emissions of CO, H2 and NOx, and
determines the appropriate combustion temperature range, which provides a theoretical
basis for efficient and low pollution in food waste combustion.

2. Materials and Methods
2.1. Materials

This paper selected two main components in food waste, namely, vegetable leaves
and cooked rice, as research materials. After being dried at 105 ◦C for 24 h, cooked rice and
vegetable leaves were pulverized and then filtered through 80-mesh screens. The resulting
powder was sealed in a polythene bag for later use. The results of proximate and ultimate
analysis of vegetable leaves and cooked rice are shown in Table 1.
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Table 1. Proximate and ultimate analysis of vegetable leaves and cooked rice (dry basis). Reprinted with permission from
ref. [25]. (Copyright 2021 Taylor & Francis).

Materials
Proximate Analysis (wt.%) Ultimate Analysis (wt.%)

LHV(MJ·kg−1)
A V FC C H N S

Vegetable leaves 13.62 76.22 10.16 40.86 6.638 4.219 0.389 14.938

Cooked rice 0.45 91.41 8.14 43.28 8.04 1.527 0.26 15.806

2.2. Experimental Equipment

The experiments were conducted on a self-built experimental bench for pollutants in
the smoke from food waste combustion. The experimental bench was mainly composed of
a gas supply system and a tube furnace. The quartz tube was placed in the electric heating
furnace. The temperature was adjusted by a digital PID controller. The center of the quartz
tube was allowed to rise to the pre-set temperature within a set time (Figure 1).
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Figure 1. The experimental bench diagram.

The probe of a 350-Pro smoke analyzer (Testo, Germany) that was connected to a
computer was positioned at the smoke outlet. The experimental data were imported into
the computer for further processing, the data collection time interval is 2 s. The smoke
analyzer can measure the content of several gases, such as CO, H2, CO2, NOx, SO2,
and H2S. Their measuring range, resolution and accuracy are as follows: CO (measur-
ing range, 0–10,000 ppm; resolution, 1 ppm; accuracy, ±10 ppm), H2 (measuring range,
0–10,000 ppm; resolution, 1 ppm; accuracy, ± 10ppm), CO2 (measuring range, 0–50%;
resolution, 0.01%; accuracy, ±0.3%); NOx (measuring range, 0–4000 ppm; resolution,
1 ppm, accuracy,±5 ppm); SO2 (measuring range, 0–5000 ppm; resolution, 1 ppm; accuracy,
±5 ppm); and H2S (measuring range, 0–300 ppm; resolution, 0.1 ppm; accuracy, ±2 ppm).

2.3. Methods
2.3.1. Experimental Methods

The main steps of the experiment were as follows: (1) The heating process was started
after setting a certain temperature on the temperature controller of the tube furnace;
(2) the cylinder valve was opened and the air flowmeter was adjusted at 0.1 m3/h;
(3) after rising to the pre-set temperature, specimens with a mass of 0.1 g were put in a com-
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bustion boat and pushed to the center of the quartz tube immediately after being leveled;
(4) the probe of the smoke analyzer was placed at the smoke outlet and collected data were
observed on the computer screen; (5) the measurement was stopped and the tube furnace
was turned off when the amount of gases was almost zero. The combustion boat was then
removed and cooled in a dryer; (6) experiments were repeated three times for each group
and the mean values were taken as representative.

2.3.2. Calculation Methods

1. Peak concentration (ppm): the maximum concentration of gases produced.
2. Peak time (s): the time taken to reach the peak concentration of gases.
3. Burnout time t (s): the longer one of either the time taken for the H2 concentration to

fall to zero or the time for CO concentration to decrease to 5% of its peak value.
4. The average concentration (AC) is given by

ACi =

∫ t
0 cidt

t
(1)

where the numerator on the right-hand side refers to the integral of the gas concentration
for the reaction time, t represents the burnout time, and the AC is measured in ppm.

5 The produced gas volume (GV) is given by

GVi = Q

(
1 +

∑n
i=1

ACi
106

1−∑n
i=1

ACi
106

)
× t× ACi

106 (2)

where Q, ∑n
i=1

ACi
106 , and t refer to the injected air flow (L/s), the sum of AC of all gases, and

the burnout time, respectively. The gas production is measured in L.
Considering that ∑n

i=1
ACi
106 is very small and can be ignored relative to 1, Equation (2)

can be simplified to

GVi = Q× t× ACi
106 (3)

6 The yield of gas (Yg) is given by

Ygi =
GVi
m

(4)

where m refers to the mass of the test sample.

3. Results and Discussion

In the range of 400 ◦C to 1000 ◦C, CO, H2 and NOx appeared in the smoke arising
from the combustion of food waste specimens, while no SO2 was discovered. This occurred
because the concentration of SO2 in the smoke was so low that it was not detected by flue
gas analyzer. Therefore, more attention was paid to analyzing the emission of CO, H2,
and NOx.

3.1. Emission Characteristics of CO

CO emissions during the combustion of food waste at different temperatures are
displayed in Figure 2. Each emission curve of CO presents a single peak distribution (see
Figure 2a,c); this may be because the combustion process of volatile and fixed carbon over-
laps when the food waste is suddenly placed at a constant high temperature. Interestingly,
CO emission concentration changed rapidly at first and then slowly, which indicates that,
in the early stage, CO mainly comes from the combustion of volatile matter, while in the
later stage, it is released from the joint combustion of fixed carbon and volatile matter.
However, in terms of peak time, cooked rice and vegetable leaves demonstrated different
laws as temperature changed. During the combustion of cooked rice, the peak time gradu-
ally dropped with the increase in temperature, which was only 30 s at 1000 ◦C, only 11.03%
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of that at 400 ◦C. Nevertheless, during the combustion of vegetable leaves, the peak time
gradually shortened and then incrementally extended with the increase in temperature,
which hit the minimum value of 70 s at 700 ◦C. Furthermore, the higher the combustion
temperature of food waste, the shorter the burnout time. For cooked rice and vegetable
leaves, the burnout time of 1000 ◦C is 0.065 times and 0.29 times that at 400 ◦C, respectively.
This is because the higher the combustion temperature, the faster the combustion speed of
the food waste, and the shorter the burnout time [26].
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Figure 2. The CO emission curves at different combustion temperatures: (a) the volume concentration of CO at cooked
rice combustion; (b) the yield of CO at cooked rice combustion; (c) the volume concentration of CO at vegetable leaves
combustion; (d) the gas yield of CO at vegetable leaves combustion.

As the combustion temperature rose from 400 ◦C to 1000 ◦C, the peak concentration of
food waste combustion first increased and then decreased, indicating that CO had a strong
formation reaction, which was closely related to temperature. The highest peak values of
cooked rice and vegetable leaves correspond to 500 ◦C and 600 ◦C, respectively, with values
of 2547 ppm and 6336 ppm, which may be because the temperatures are the transition
temperature from incomplete combustion to complete combustion of carbon [27]. Similarly,
the maximum yield of CO is obtained at 500 ◦C (cooked rice) and 600 ◦C (vegetable
leaves), up to 157.2 mL/g and 117.3 mL/g, respectively (see Figure 2b,d). This may also be
attributed to the dual effect of temperature on CO formation. There does exist a minimum
temperature of complete combustion of carbon. When the experimental temperature is
lower than the minimum temperature, the higher the temperature, the more conducive
to the overflowed of volatile matter from food waste and to CO emission [27]; when
the experimental temperature exceeds that temperature, the higher the temperature, the
greater the temperature gradient and the shorter the time for food waste to reach that
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temperature, which promotes carbon in food waste conversion to CO2, resulting in a
reduction in CO emissions.

In general, the yields of CO from food waste combustion was larger at relatively
low temperatures (400 ◦C to 700 ◦C), while those were smaller at higher temperatures
(800 ◦C to 1000 ◦C). The yields of CO at 400 ◦C are 12.62 and 71.32 times higher than
those at 1000 ◦C, respectively. This means that the Reaction (4) plays a dominant role in
the high temperature range. Therefore, from the perspective of controlling CO emissions,
the combustion temperature of food waste should exceed 700 ◦C.

3.2. Emission Characteristics of H2

H2 started to be emitted as CO emissions reached their peak (see Figures 2 and 3). This
may have occurred for two reasons: On the one hand, under the reduction environment of
CO, H2 produced by the gasification of food waste is hard to react with O2. On the other
hand, the reducing ambient facilitates Reactions (5) and (6) for the generation of H2 [20].

C + H2 O→ CO + H2 ∆hr = + 131 kJ/kmol (5)

CO + H2 O→ CO2 + H2 ∆hr = −41 kJ/kmol (6)
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Figure 3. The H2 emission curves at different combustion temperatures: (a) the volume concentration of H2 at cooked
rice combustion; (b) the yield of H2 at cooked rice combustion; (c) the volume concentration of H2 at vegetable leaves
combustion; (d) the gas yield of H2 at vegetable leaves combustion.

The emission of H2 in the combustion smoke arising from food waste was similar
to that of CO. Generally, the greater CO emissions at a certain temperature, the greater
H2 emissions at this temperature. The maximum value (9.5 mL/g) of H2 emissions is
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obtained at 500 ◦C during the combustion of cooked rice, while that of vegetable leaves
is 16.5 mL/g at 600 ◦C. Similar to CO, H2 emissions were larger in the range of 400 ◦C
to 700 ◦C and lower in the range of 800 ◦C to 1000 ◦C, which was particularly true for
the combustion of vegetable leaves. In Figure 3d, the H2 emission curve in the range
of 800 ◦C to 1000 ◦C followed a linear trend and was almost parallel to the time axis.
At a given combustion temperature, H2 emissions were much smaller than those of CO,
with differences of one order of magnitude, which was due to H2 is easier to react with O2
under the same conditions because of its stronger reducibility than CO [28].

3.3. Emission Characteristics of NOx

NOx does great harm to the environment, which can not only contribute to acid
rain and mist, but also react with hydrocarbons to produce photochemical smog [29,30].
In addition, it also deteriorates the ozonosphere [31]. During the combustion of food waste,
NOx mainly originates from two sources. It is, mainly, on the one hand, produced from
nitrogen of fuel generated by oxidation and, on the other hand, from the combination
reaction of nitrogen with oxygen in the air at high temperatures [32,33]. The former is
known as fuel NOx and the latter is known as thermal NOx. As only a small amount of
thermal NOx is produced at temperatures below 1800 K [34], the NOx emitted in these
experiments is mainly fuel NOx.

As shown in Figure 4, large amounts of NOx were released from the combustion of
food waste, particularly from the combustion of vegetable leaves (see Figure 4c,d ) during
which their peak emission exceeded 100 ppm under most conditions. This is because food
waste has high nitrogen content, and the nitrogen content of vegetable leaves was higher
than cooked rice. An abnormal phenomenon can be observed in Figure 4a,b. The NOx
emission peak is the highest at 800 ◦C, but at 400 ◦C the yield is the highest, which is mainly
due to the slow combustion reaction and long NOx emission time at 400 ◦C, which is
5.68 times that of 800 ◦C, resulting in the maximum yield of NOx at 400 ◦C. Distinguished
from CO and H2, some NOx emission curves (when combusting cooked rice and vegetable
leaves at 1000 ◦C and in the range of 600 ◦C to 1000 ◦C, respectively) had two peaks.
Lane [35] and Sun [36] also found a similar phenomenon. This was mainly because the
mechanism of NOx formation differed from that of CO and H2 formation, and proceeded
in the following three stages [37]: (1) nitrogenous compounds were volatilized; (2) during
the heating process, the volatilized nitrogenous compounds were decomposed to NH3
and HCN, which were then converted to NOx after a series of redox reactions; and (3)
the nitrogen remaining in the char is burnt to produce NOx. The first peak was attributed
to the oxidation of nitrogen volatilized from the fuel, and the second was attributed to the
oxidation of nitrogen in the char.

It is notable that the second peak in the NOx emission curves (see Figure 4c) was generally
higher than the first. Meng also found a similar phenomenon when pine and 85% corn
were co-combusted [38]. It can be deduced that the combustion of nitrogen in the char
plays a leading role in the formation of NOx. In general, the nitrogen in the char can
only be combusted at high temperatures, which probably explained that the higher the
temperature, the higher the second NOx emission peak, and that the second peak did not
appear at low temperatures. Moreover, differing from vegetable leaves, two peaks did
not show up in the NOx emission curves of cooked rice in the range of 400 ◦C to 900 ◦C,
but only occurred at 1000 ◦C. This was probably because the combustion temperature of
fixed carbon in the cooked rice was higher than that in vegetable leaves.

At different combustion temperatures, cooked rice and vegetable leaves showed
different trends in the NOx emission. As for cooked rice, the NOx emissions were large at
400 to 500 ◦C, whose maximum value was 2.1 mL/g obtained at 400 ◦C, while for vegetable
leaves, the maximum value was 7.0 mL/g obtained at 600 ◦C. This is different from Chen’s
findings [39]. This was mainly because temperature exerted both positive and negative
effects on NOx generation. Higher temperatures were conducive to NOx generation from
the combustion of nitrogen in the char (Reaction (7)) [40]. Meanwhile, the higher the
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temperature, the greater the amount of volatilized nitrogen, which caused a lack of oxygen,
accelerated smoke flow, and ultimately hindered the formation of NOx with intermediates
such as NH3, HCN and HNCO (Reaction (8)) [41].

Char-N + 0.5O2 → NO (7)

(Volatile-N: NH3 + HCN + HNCO) + O2 → NO (8)
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Figure 4. The NOx emission curves at different combustion temperatures: (a) the volume concentration of NOx at cooked
rice combustion; (b) the yield of NOx at cooked rice combustion; (c) the volume concentration of NOx at vegetable leaves
combustion; (d) the gas yield of NOx at vegetable leaves combustion.

In the combustion of cooked rice, high temperature is probably one of major negative
factors in NOx emissions—emissions were greater at lower temperatures. For vegetable
leaves, temperature mainly played a positive role from 400 ◦C to 600 ◦C during the
combustion, while negative effects predominated from 700 ◦C to 1000 ◦C. As a result, during
the combustion of vegetable leaves, NOx emissions first increased and then decreased with
as temperature increased. In general, the emission of NOx from the combustion of food
waste was similar to that of CO, with a large amount of emissions in the low temperature
range and less in high temperature range. Therefore, from the perspective of NOx emission
control, the combustion temperature of food waste should also be higher than 700 ◦C.
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4. Conclusions

The emission characteristics of three gases, namely, CO, H2, and NOx were analyzed
experimentally through the combustion of typical components of food waste (cooked rice
and vegetable leaves). The following conclusions were drawn:

1. Each emission curve of CO had a peak. The peak increased at first and then decreased.
The burnout time gradually decreased as the combustion temperature rose from
400 ◦C to 1000 ◦C. CO emissions were greatest from 400 ◦C to 700 ◦C; therefore,
the combustion of food waste within that temperature range should be avoided from
the perspective of controlling CO emissions.

2. The emission of H2 resembled that of CO. If CO emissions were present in large
amounts at a certain temperature, then those of H2 were also present in large amounts
at this temperature. H2 emissions from the combustion of cooked rice and veg-
etable leaves were greatest (9.5 mL/g and 16.5 mL/g, respectively) at 500 ◦C and
600 ◦C, respectively.

3. Two peaks occurred in the NOx emission curves within the range of high temper-
atures (1000 ◦C for the cooked rice and 600 ◦C to 1000 ◦C for the vegetable leaves).
The higher the temperature, the higher the second emission peak. When being com-
busted from 400 ◦C to 500 ◦C, cooked rice emitted a large amount of NOx, while
vegetable leaves emitted a large amount of NOx from 600 ◦C to 700 ◦C. Therefore,
from the perspective of reducing NOx emissions, the combustion of food waste should
be done at a temperature higher than 700 ◦C.
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Nomenclature

AC The average concentration of gas(ppm)
GV The gas volume (L)
Q The injected air flow (L/s)
t The burnout time(s)
Yg The yield of gas (mL/g)
Subscripts and Superscripts
i The type of gas
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