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Abstract: This paper proposes an optimal design method to suppress critical harmonics and improve
the power factor by using passive power filters (PPFs). The main objectives include (1) minimizing
the total harmonic distortion of voltage and current, (2) minimizing the initial investment cost,
and (3) maximizing the total fundamental reactive power compensation. A methodology based on
teaching–learning-based optimization (TLBO) and Pareto optimality is proposed and used to solve
this multi-objective PPF design problem. The proposed method is integrated with both external
archive and fuzzy decision making. The sub-group search strategy and teacher selection strategy
are used to improve the diversity of non-dominated solutions (NDSs). In addition, a selection
mechanism for topology combinations for PPFs is proposed. A series of case studies are also
conducted to demonstrate the performance and effectiveness of the proposed method. With the
proposed selection mechanisms for the topology combinations and parameters for PPFs, the best
compromise solution for a complete PPF design is achieved.

Keywords: harmonic; passive power filters; teaching–learning-based optimization; Pareto front;
sub-group search strategy; teacher selection strategy

1. Introduction
1.1. Background

Non-linear loads that produce harmonics [1,2] are generally used in modern power
systems. Harmonic distortion of current and voltage may lead to adverse effects, such as
increased power loss and equipment damage [3,4]. These harmonics may also trigger some
power system problems such as voltage distortion, wrong protection system response,
transformer malfunctions, and conductor overheating [5–8]. To improve energy efficiency
in power systems [9], an efficient tool for the pre-evaluation of power quality [10–14]
and energy loss [15–19] is essential. Furthermore, a compensation strategy for the power
quality and energy loss was developed. Many studies have concentrated on planning and
designing passive power filters (PPFs) [8,20–34] to reduce harmonic distortion effects in
the past two decades.

The recent development of PPFs has been extensively explored, offering some ad-
vantages to compensate for harmonic distortion. Badugu et al. developed class topper
optimization (CTO) [35]. However, more constraints and detuning mechanisms are re-
quired to achieve an optimal solution. Another method was proposed by Wang et al. [36],
employing a tuning filtering process. The problem is similar in that it requires careful
work in the tuned filtering method. An advanced method was already used for harmonic
mitigation via a dynamic tuning passive filter (DTPF) [37]. However, a range setting of a
harmonic current coefficient is required.

Das presented a trial-and-error-based iterative process for designing PPFs [23]. How-
ever, optimal solutions are difficult to obtain with time-consuming tasks. In recent years,
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heuristic optimization algorithms, such as particle swarm optimization (PSO) [25,27,38,39],
genetic algorithm (GA) [21,24,30], and simulated annealing (SA) [20], have been used for
PPF designs. The optimization algorithms are used for calculating the parameters of PPFs
but also for evaluating the sizing, siting, type, and number of PPFs [24–27]; minimizing
the initial investment costs [32]; minimizing the harmonic distortion [33]; and maximizing
the reactive power compensation [22]. Therefore, the planning and design of PPFs is a
complicated multi-objective engineering problem with multiple constraints. However,
most of the existing research works treat PPF designs as a single-objective optimization
problem using the weight sum method [21,26,27]. The weight sum method may cause
imbalanced effects among objective functions. Therefore, Pareto optimality is used for
the PPF designs. An external archive procedure is adopted with a limited archive for
storing potential solutions effectively. In our previous work [40,41], a multi-objective bat
algorithm (BA) with Pareto optimality was used to optimize the PPF design. A case study
demonstrated the accuracy, efficiency, and superiority of the BA-based PPF design method.
However, the performance and effectiveness of the BA-based method are dependent on the
optimum control parameters. Determining the optimum parameters is an open question
for most evolutionary optimization algorithms.

1.2. Aim and Contributions

In 2011, Rao et al. proposed a computational intelligence algorithm called teaching–
learning-based optimization (TLBO) to imitate the teaching and learning behaviors of
teachers and learners in the class [42,43]. TLBO is a population-based algorithm with free
algorithm parameters. There are many successful applications, such as optimal power
flow [44], location of automatic voltage regulators [45], siting and sizing of energy storage
systems [46,47] and other problems. This paper proposes a multi-objective optimization
methodology based on TLBO with Pareto optimality for solving PPF planning problems.
A fuzzy decision-making strategy is used to select the best compromise solution for each
sub-group during the iteration procedure to search for potential global solutions. Using
the proposed multi-objective TLBO method, a set of feasible solutions can be obtained.
All feasible solutions are non-dominated solutions (NDSs). To improve the diversity of
the NDSs, the sub-group search strategy and teacher selection strategy are used in the
proposed TLBO-based method. Furthermore, the proposed TLBO-based method has the
potential to be applied to other multi-objective optimization engineering problems.

1.3. Paper Organization

This paper is divided into the following sections: the PPF models are introduced in
Section 2. The PPF design problem in terms of objectives and constraints is explained in
Section 3. In Section 4, the TLBO with Pareto optimality is proposed for PPF planning and
designing engineering problems. The experimental results are presented in Section 5, and
the conclusions are presented in Section 6.

2. Passive Power Filter Model

The harmonics can be eliminated by power filters such as active power filters, PPFs,
and hybrid power filters. PPFs are widely used in industry because of their simple con-
figuration and low cost. PPFs consist of resistors (R), inductors (L), and capacitors (C).
The impedance (Z) or admittance (Y) of the PPFs is highly dependent on the frequency
variation. In addition to mitigating harmonics, PPFs can be used to compensate for the
system power factor. The PPFs used in this study can be divided into single-tuned (ST),
second-order-damped (SD), third-order-damped (TD), and C-type-damped (CD) PPFs, as
shown in Figure 1. The harmonic impedances of the PPFs used in this study are listed in
Table 1. For the ST and SD PPFs, XC = 1/(ωC) and XL = ωL. For the TD and CD PPFs,
XC = 1/(ωC2) and XL = ωL. In addition, C1 = C2 for the TD PPFs, and C1 = 1/(ω2

1 L)
for the CD PPFs.
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Figure 1. Typical PPFs: (a) ST PPF, (b) SD PPF, (c) TD PPF, and (d) CD PPF.

Table 1. The harmonic impedance of PPFs.

Type RF(h) XF(h)

ST R hXL − XC
h

SD R(hXL)
2

R2+(hXL)
2

R2hXL

R2+(hXL)
2 − XC

h

TD R(hXL)
2

R2+
(

hXL−
XC

h

)2
R2hXL−hX2

L XC+
XL X2

C
h

R2+
(

hXL−
XC
h

)2 − XC
h

CD R(hXL− XL
h )

2

R2+(hXL− XL
h )

2

R2(hXL− XL
h )

R2+(hXL− XL
h )

2 − XC
h

3. Problem Formulation

With the rapid industrial growth, power electronic devices are widely used in power
systems. However, non-linear devices may produce severe harmonic pollution, which leads
to equipment damage or malfunctions. PPFs have been widely used to reduce harmonic
effects and improve system power factors because of their simplicity and low cost. The
PPFs can be roughly divided into two major types—namely, (1) single-pass-tuned PPFs and
(2) band-pass-damped PPFs. Furthermore, the band-pass-damped PPFs can be divided
into (1) SD PPF, (2) TD PPF, and (3) CD PPF. The ST PPFs are used to mitigate harmonics at
particular frequencies. The damped band-pass filters have better performance in mitigating
harmonics at high frequencies, but they have high initial investment costs and power losses.
Cost and performance are critical indices in a PPF design problem. The objective functions
and constraints used in this study are explained in the following text.

3.1. Objective Functions

In this study, the objective functions were (1) minimizing the total harmonic distortion
of the current and voltage, (2) minimizing the investment cost, and (3) maximizing the
total fundamental reactive power compensation.

3.1.1. Minimizing Total Harmonic Distortion of Current

The total harmonic distortion of current is defined as

THDI =

√(
H
∑

h=2
|Ih|2

)
|I1|

(1)

where

h harmonic order;
H highest harmonic order considered;
I1 rms of fundamental current;
Ih rms of harmonic current with integer order.
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3.1.2. Minimizing Total Harmonic Distortion of Voltage

The total harmonic distortion of voltage is defined as

THDV =

√(
H
∑

h=2
|Vh|2

)
|V1|

(2)

where

h harmonic order;
H highest harmonic order considered;
V1 rms of fundamental voltage;
Vh rms of harmonic voltage with integer order.

3.1.3. Minimizing Initial Investment Cost

The cost of a PPF may include passive component cost, fundamental power loss, and
installation and maintenance costs [40,41]. In engineering problems, the investment cost
(IC) can be expressed as a linear combination of passive component cost, fundamental
power loss, and installation and maintenance costs, as shown in Equation (3).

IC =
4

∑
i

αi ·
Ni

∑
j=1

(k1Rij + k2Lij + k3Cij + k4Qij + k5Ploss,ij) (3)

where

i type of filters;
Ni number of filters of type i;
Rij resistance of j-th filter of type i;
Lij the inductance of j-th filter of type i;
Cij the capacitance of j-th filter of type i;
Qij reactive power capacity of j-th filter of type i;
Ploss,ij the power loss of j-th filter of type i;

k1 to k5 are the cost weighting coefficients, and k1 = 5 (pu/Ω), k2 = 3 (pu/mH),
k3 = 2 (pu/µF), k4 = 0.1 (pu/kVAR) and k5 = 0.1 (pu/kW) are adopted in this study. αi
is a set coefficient for the i-type filter, as shown in Table 2.

Table 2. Set coefficient αi.

Set No. ST
α1

SD
α2

TD
α3

CD
α4

1 1 1 1.2 1.2
2 1.2 1.4 1.6 1.6
3 1.6 1.8 2.0 2.0
4 2.0 2.2 2.4 2.4
5 2.4 2.5 2.8 2.8

3.1.4. Maximizing Total Fundamental Reactive Power Compensation

The PPFs are used to solve the problems of harmonic pollution and are also used to
compensate for the system power factor. The total fundamental reactive power produced
by the power filters is

QF =
4

∑
i=1

Ni

∑
j=1

QFij (4)

where

QFij fundamental reactive power produced by j-th filter of i-th type.
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3.2. Constraints

In this study, the constraints were (1) total harmonic distortion, (2) individual harmonic
distortion, (3) total fundamental reactive power compensation, (4) harmonic resonance,
and (5) perturbations.

3.2.1. Total Harmonic Distortion

The total harmonic distortions of currents and voltages are restricted by

THDI ≤ THDI (5)

THDV ≤ THDV (6)

where

THDI maximum tolerance for total harmonic distortions of currents;
THDV maximum tolerance for total harmonic distortions of voltages.

3.2.2. Individual Harmonic Distortion

The individual harmonic distortions for each order harmonic component are restricted by

HDIh
∆
=
|Ih|
|I1|
≤ HDIh (7)

HDVh
∆
=
|Vh|
|V1|

≤ HDVh (8)

where

HDIh maximum tolerance for harmonic current at h-th order;
HDVh maximum tolerance for harmonic voltage at h-th order.

3.2.3. Total Fundamental Reactive Power Compensation

PPFs can effectively improve the power factor of the system. However, over-compensation
may cause voltage instability and result in an increase in power loss. Therefore, the total
fundamental reactive power compensation is restricted by

Q ≤ QF ≤ Q (9)

where

Q maximum reactive power compensation;
Q minimum reactive power compensation.

3.2.4. Harmonic Resonance

Each PPF is inductive to its corresponding harmonics to be filtered to prevent harmonic
resonance with the system impedance. Furthermore, the impedance of multiple PPFs is
also inductive to the critical harmonics. The harmonic resonance is restricted by

Im
[
ZFij(hF)

]
> 0 (10)

Im
[
ZF(hC)

]
> 0 (11)

where

hF order of harmonic to be mitigated;
hC order of critical harmonic;
ZFij the impedance of j-th filter of i-th type;
ZF the impedance of multiple passive power filters.
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3.2.5. Perturbations

Uncertainties in designing PPFs may include parameter variations in the system
impedances and harmonic currents and in the power filter itself. Perturbations in PPFs
may include aging, heating damage, or design flaws in PPFs. The changes in capacitance
and inductance and the shifts in the desired resonance may occur in the above cases. The
perturbations are considered as follows:

• Percentage variation of frequency for a power system:

f ≤ ∆ f
f
≤ f (12)

• Percentage variation of resistance for a PPF:

R ≤ ∆R
R
≤ R (13)

• Percentage variation of inductance for a PPF:

L ≤ ∆L
L
≤ L (14)

• Percentage variation of capacitance for a PPF:

C ≤ ∆C
C
≤ C (15)

where

f , f the upper limit and lower limit of the percentage variation of frequency for a
power system in [−1%, 1%];

R, R the upper limit and lower limit of the percentage variation of resistance for a
PPF in [−3%, 3%];

L, L the upper limit and lower limit of the percentage variation of inductance for
a PPF in [−3%, 3%];

C, C the upper and lower limits of the percentage variation of capacitance for a
PPF in [−3%, 3%].

4. Proposed Multi-Objective TLBO

In 2001, Rao et al. [42] proposed a teaching–learning process-inspired algorithm that
was developed by imitating the teaching and learning behaviors of teachers and learners in
the class. The effect of a teacher on learners in a class is considered in the TLBO. In general,
TLBO can be divided into two basic modes: (1) the teacher phase and (2) the learner phase.
The best learner in terms of grade in a class is regarded as a teacher. The quality of the
teacher may also have a significant effect on the learning outcomes of learners. Moreover,
learners may learn to improve their grades over time.

Similar to most heuristic optimization algorithms, TLBO is a population-based op-
timization algorithm. In general, the overall performance of these algorithms may be
affected by population size and parameter setting. In TLBO, parameter settings can be
avoided. The learners were regarded as the population, and the different subjects were
considered to be other parameters. The grades of learners in all subjects were mapped to
the fitness of the optimization problem. The search steps of TLBO are divided into two
parts: (1) the teacher phase and (2) the learner phase. The detailed steps are described in
what follows.
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4.1. Teacher Phase

In the teacher phase, the capability level of the class can be improved by sharing the
knowledge of the teacher; that is, the mean of the class can be improved to the level of
the teacher.

For each subject, the difference between the existing mean grade Mj,i and the corre-
sponding grade of the teacher xbest,j,i is given by

Di f f erenceMeank,j,i = ri · (xbest,j,i − TF Mj,i) (16)

where

i i-th iteration;
Mj,i mean grade of the learners in subject j at the i-th iteration;
xk,j,i grade of learner k in subject j at the i-th iteration;
xbest,j,i grade of the teacher in the subject j at the i-th iteration;
ri random number in the range [0,1].

TF is a teaching factor used to adjust the mean value. ri is a random number uniformly
distributed in the range [0,1] without any particular setting. Therefore, the value of TF is
either 1 or 2, as determined by Equation (17).

TF = round[1 + rand(0, 1){2− 1}] (17)

Then, the new grades can be updated by using Equation (18).

x′k,j,i = xk,j,i + Di f f erenceMeank,j,i (18)

If the fitness of x′k,j,i is better than that of xk,j,i, xk,j,i then is replaced by x′k,j,i. Con-
versely, xk,j,i is retained.

4.2. Learner Phase

In the learner phase, learners attempt to interact and communicate with other learners
to increase their knowledge. From the viewpoint of the optimization algorithm, the teacher
phase is used to search for a local optimum. The remaining feasible solutions were moved
to the location of the local optimum. However, the search rules in the teacher phase are
monotonous. The concentration of initial populations or difference in the direction of a
local optimum is different from the global optimum, which can lead to a local optimum
or premature convergence. Therefore, the convergence behavior of the learner phase in
TLBO is similar to that of the interaction between individuals in PSO. Potential solutions
can avoid the local optimum trap. Thus, the probability of finding a global optimum can
be improved further.

x′P,j,i and x′Q,j,i represent the grades of learner P and learner Q, respectively, in subject
j at the i-th iteration selected randomly. x′P,all,i and x′Q,all,i represent the overall grade of
learners P and Q in all subjects (x′P,all,i 6= x′Q,all,i).

The solution procedure in the learner phase is expressed as follows:

x′′P,j,i = x′P,j,i + ri · (x′P,j,i − x′Q,j,i),
i f f (x′P,all,i) < f (x′Q,all,i)

(19)

x′′P,j,i = x′P,j,i + ri · (x′Q,j,i − x′P,j,i),
i f f (x′Q,all,i) < f (x′P,all,i)

(20)

If the fitness of x′′P,j,i is better than that of x′P,j,i, x′P,j,i is replaced by x′′P,j,i as a new
solution. In contrast, x′P,j,i remains.
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4.3. Pareto Optimality

In multi-objective optimization problems, there is always a clash between solutions.
In other words, one solution cannot minimize or maximize all objectives simultaneously.
Therefore, Pareto optimality is used to solve such a problem.

In [40,41], the Pareto optimality approach and the BA were used to optimize the PPF
design. In Pareto optimality, a set of efficient solutions is called the Pareto optimal set. These
efficient solutions are also regarded as NDSs. To obtain the appropriate Pareto front shown
in Figure 2, the search space of the decision variables is divided into several hypercubes.

Figure 2. NDSs in a two-objective problem.

Suppose a multi-objective optimization problem where an objective function needs to
be minimized, i.e.,

Minimize f j(x) (j = 1, 2, . . . , nF) (21)

subject to
gk(x) ≤ 0 (k = 1, 2, . . . ng) (22)

hl(x) = 0 (l = 1, 2, . . . nh) (23)

where

x vector of decision variables;
f j(x) vector of an objective function;
gk(x) inequality constraint;
hl(x) equality constraint; nF number of objective functions;
ng number of inequality constraints;
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nh number of equality constraints.

x = [x1, x2, . . . , xn]
t, x ∈ Ω ⊆ S (24)

A region where a decision variable x shall satisfy all the constraints called a feasible
region is denoted by set Ω and S is assumed to be a search space.

Suppose f1(x1) and f2(x2) are two objective functions:

fi(x2) ≤ fi(x1) ∀i ∈ {1, 2, . . . , k} (25)

fi(x2) < fi(x1) ∃i ∈ {1, 2, . . . , k} (26)

If a decision variable x2 ∈ Ω, and its function fi(x2) are dominated over all other
fi(x1) functions for each x ∈ Ω, then the vector decision variable x2 belonging to f is called
the Pareto optimal solution or non-dominated solution.

4.4. External Archive Strategy

To solve multi-objective problems, many NDSs may be produced in each iteration;
therefore, it is necessary to store these solutions. For storage purposes, an external archive
was used by researchers for PSO and an evolutionary algorithm (EA) [48]. In practice, the
size of the external archive is 100. The storing process is simple as the solution store if
and only if it dominates all other solutions within the external archive, and the dominated
solutions are removed from the external archive.

The concept of selection and removal of the solution from the external archive is
explained in [40]. If the solution is out of constraint (infeasible), it is rejected. If the solution
is under all constraints (feasible), and the external archive is not full, it is stored in the
external archive. If the external archive is full, then the feasible solution is compared with
the other solutions. If it dominates one or more solutions, it is stored in the external archive,
and the dominated solutions are removed from the external archive.

Similarly, all NDSs are stored in an external archive. If a new NDS is produced and
the external archive is full, then an adaptive grid is used to decide whether it should be
stored or not. The adaptive grid is an objective space that is divided into several tubes.
If the external archive is full, and a new NDS is produced, then the solution in the most
crowded hypercubes is chosen randomly and removed, as shown in Figure 3.

Figure 3. Insertion of an NDS when the external archive is full.
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4.5. Fuzzy Decision-Making Strategy

To find the best solution for a single-objective function, a single-objective optimization
was adopted. In practice, multi-objective optimization may involve conflicting objectives,
as no solution can simultaneously minimize or maximize all objective functions. The NDSs
are not dominated by any member in a set of solutions and form Pareto optimal solutions.
During the solution procedure, NDSs were generated at each iteration. A so-called external
archive is widely used in evolutionary algorithms to store NDSs [48].

In this study, a multi-objective TLBO with a Pareto front was developed to search for
potential global solutions. To select one solution in the Pareto optimal solutions as the
compromise solution, the fuzzy decision-making strategy is used as follows:

µi =


1 , fi(x) ≤ f

i
f i− fi(x)

f i− f
i

, f
i
< fi(x) < f i

0 , fi(x) ≥ f i

(27)

where

µi membership value of the i-th objective function fi;
f i , f

i
the upper and lower bounds of the i-th objective function.

Furthermore, the NDSs in the external archive were normalized using (28). The
maximum value of µk is the best compromise solution used as the teacher in TLBO [49].

µk =
∑nF

i=1 ωiµ
k
i

∑M
k=1 ∑nF

i=1 ωiµ
k
i

(28)

where

µk nominal membership value of the non-dominated solution k;
M number of non-dominated solutions in the external archive;
ωi weighting factor of objective function i, and ∑nF

i=1 ωi = 1.

4.6. Sub-Group Search Strategy

In this study, the fuzzy decision-making strategy can be used to successfully combine
TLBO and the Pareto front. However, it may produce a restraining effect, causing a
nonuniform Pareto front solution. In the original fuzzy decision-making strategy, the
individuals are monotonically updated by approaching the individual with the highest
score. In other words, the optimal solution search is limited to a few specific areas, making
it impossible to search for feasible solutions in the global optimum. Furthermore, the
diversity of feasible solutions is affected. For this reason, a sub-group search strategy is
implemented to improve the performance of the proposed TLBO method, as shown in
Figure 4. The solution procedure for the sub-group search strategy is as follows:

Step 1: The number of groups is determined by the number or attributes of the objective
functions. The score criteria for each sub-group are defined by (27) and (28) with the
corresponding weighting factors.
Step 2: The NDSs in the external archive are evaluated according to the score criteria of
each sub-group. The roulette wheel selection method was used to choose the teacher for
each sub-group.
Step 3: Learners are uniformly and randomly distributed into each sub-group.
Step 4: According to the score criteria of each sub-group, the solutions of the previous and
current generations are evaluated to determine the replacement of the previous generation.
Step 5: Steps 2 to 4 are repeated until the termination criterion is satisfied.
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Figure 4. Cont.
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Figure 4. Pareto front obtained by (a) sub-group search strategy, (b) without sub-group search
strategy, and (c) Monte Carlo simulations.

4.7. Teacher Selection Strategy

In this study, the sub-group search strategy and the teacher selection strategy were
used to improve the diversity of solutions obtained by the proposed TLBO method. After
performing the sub-group strategy, the roulette wheel selection method was used to choose
the teacher for each sub-group. The NDSs in the external archive were evaluated according
to the score criteria of each sub-group. The score level was used to associate the probability
of selection with each individual. The higher the score is, the higher the probability of
selection is. While candidate solutions with a higher score are less likely to be eliminated,
there is still a chance to be eliminated because the probability of the selection is less than 1
(or 100%), and vice versa.

A flowchart of the proposed multi-objective TLBO is shown in Figure 5. The pseudo-
code of the proposed method is shown in the following steps:

Step 1: Initialize population;
Step 2: Determine the type of group and score criteria for each sub-group;
Step 3: Evaluate the multi-objective functions with multi-constraints;
Step 4: Store the first NDS in the external archive.

While iter ≤maximum number of iterations,

Step 5: Select the teacher for each sub-group using roulette wheel selection;
Step 6: Divide learners into sub-groups randomly;
Step 7: Update the grades of learners if the evaluation criteria for each sub-group are satisfied;
Step 8: Evaluate the multi-objective functions with multi-constraints;
Step 9: Store new NDSs in the external archive.

End while loop.
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Figure 5. Flowchart of the proposed multi-objective TLBO method.

5. Simulation Results

In this study, all computer programs were developed using MATLAB 2016a on a
Windows 10-based Intel Core i7-2600 personal computer. A one-line diagram of two ST
PPFs is shown in Figure 6. The rated voltage and frequency in this sample system are
11.4 kV and 60 Hz, respectively. The fundamental real power demand was 14,590 kW with a
power factor of 0.892 lagging. The short-circuit currents varied from 8268 to 19,695 A. In this
study, harmonic loads were regarded as harmonic sources. The fundamental equivalent
system impedance, which was assumed to be purely inductive, varied from 0.3342 to
0.7961 Ω. The parameters of the test system are presented in Table 3. The distributions of
the harmonic current and voltage without the PPFs are listed in Table 4. The limitations of
harmonic voltages and currents are based on the IEEE standard 519-1992 [50]. In Table 4,
the fifth harmonic current and the total harmonic distortion of the current violate IEEE
standard 519.
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Table 3. Parameters of the test system.

Item Feasible Ranges of Parameters

Short-circuit current 8268–19,695 A
System short circuit capacity 163–388 MVA

Equivalent system impedance 0.3342–0.7961 Ω
System voltage level 11.4 kV

System frequency 60 Hz

Table 4. Distributions of harmonic current and voltage without PPFs.

Harmonic
Orders

Current,
A

Voltage,
V

IEEE Standard 519

Current, A Current, % Voltage, V Voltage, %

1 828.37 6581.79 - - - -
2 7.02 11.18 8.28 1 197.5 3
3 8.64 20.63 33.1 4 197.5 3
4 5.92 18.85 8.28 1 197.5 3
5 45.8 182.3 33.1 4 197.5 3
7 19.0 105.9 33.1 4 197.5 3

11 15.4 134.9 16.6 2 197.5 3
13 9.4 97.28 16.6 2 197.5 3

THD (%) 6.55 4.11 - 5 - 5

Figure 6. One-line diagram with two single-tuned filters.

5.1. Basic Comparison Study

To confirm the efficiency of the proposed method, a solution obtained by the proposed
method was selected and compared with that obtained by the SA proposed in [20]. Further-
more, popular optimization algorithms such as BA, PSO, and GA were used as benchmarks
for comparisons. The parameters of the proposed TLBO algorithm are tabulated in Table 5.
Table 6 lists the parameters of the other optimization algorithms. A candidate solution with
a 0.95 lagging power factor obtained by the proposed method is selected by (29) during the
iteration process.

Maximum F = ∑4
i=1 µi (29)
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Table 5. Parameters of the proposed TLBO algorithm.

Item Feasible Ranges of Parameters

Number of iterations 200
Population size 20

Number of objectives 4
Number of constraints 22

Number of groups 4
Size of external archive 100

Number of divisions 30
Maximum number of PPFs set 2

Maximum initial IC 1000 pu
R for PPFs 0.01–100 Ω
L for PPFs 0.01–50 mH
C for PPFs 0.01–100 µF

Table 6. Parameters of the other optimization algorithms.

Parameter TLBO BA PSO GA

Number of iterations 200 200 200 200
Population size 20 20 20 20

Other related
parameters -

Maximum frequency,
Fmax = 2.0

Minimum frequency,
Fmin = 0

Constants,
α = 0.9
γ = 0.9

Cognitive parameter,
c1 = 2.0

Social parameter,
c2 = 2.0

EliteCount = 2;
CrossoverFraction = 0.8;

MutationRate = 0.1;
MaximumSurvivalRate = 2;

In [20], two sets of ST PPFs with hn,F1 = 4.75 and hn,F2 = 3.8 were used to suppress
the harmonic distortion. Table 7 shows the filter parameters obtained by the proposed
TLBO, BA, PSO, GA, and SA methods at 0.95 lagging power factor, where inductance is
depicted in mH and capacitance in µF. The individual harmonic distortions for the current
and voltage before and after PPF compensation are shown in Figure 7. From Table 7 and
Figure 7, the performance of the PPF parameters obtained by the proposed TLBO-based
method is better than that of the parameters obtained by other methods. The harmonic
distortion of the design solution obtained by the proposed TLBO-based method is listed
in Table 8. The performance of the designed filters can be evaluated using a harmonic
attenuation factor, as shown in (30). The smaller the harmonic attenuation factor is, the
higher is the harmonic current absorbed. The harmonic attenuation factor of the candidate
solution is shown in Figure 8. No resonance points were observed. The harmonic currents
at critical orders can be significantly reduced by the candidate solution.

γ =
Ih
S

Ih
L
=

∣∣∣∣∣ Zh
F

Zh
F + Zh

S

∣∣∣∣∣ (30)

where

Ih
S harmonic currents through power supply terminal;

Ih
L harmonic currents;

Zh
S system impedance;

Zh
F filter impedance.
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Table 7. Comparisons of PPFs design results with various methods (PF = 0.95).

Method TLBO BA PSO GA SA

Single-tuned (F1) L1 = 12.74 L1 = 15.78 L1 = 16.31 L1 = 17.39 L1 = 15.37
C1 = 24.48 C1 = 19.76 C1 = 19.12 C1 = 17.94 C1 = 20.27

Single-tuned (F2) L2 = 19.21 L2 = 16.18 L2 = 15.85 L2 = 13.85 L2 = 16.45
C2 = 25.36 C2 = 30.11 C2 = 30.74 C2 = 35.18 C2 = 29.61

THDI(%) 4.65 4.82 4.84 4.87 4.80
THDV(%) 3.05 3.11 3.12 3.12 3.11
Cost (pu) 545.46 546.55 547.23 572.47 545.99

Table 8. Harmonic distortion of the design solution obtained by the proposed TLBO-based method.

Harmonic
Orders

Current,
A

Voltage,
V

Current,
%

Voltage,
%

IEEE Standard 519

Current, % Voltage, %

2 7.26 11.55 0.93 0.18 1 3
3 9.85 23.51 1.27 0.36 4 3
4 4.54 14.45 0.58 0.22 1 3
5 25.13 100.03 3.23 1.52 4 3
7 15.91 88.64 2.04 1.35 4 3

11 13.53 118.51 1.74 1.80 2 3
13 8.31 86.03 1.07 1.31 2 3

THD (%) 4.65 3.05 - - 5 5

Figure 7. Individual harmonic distortions before and after compensation (a) current and (b) voltage.
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Figure 8. Harmonic attenuation factor with respect to harmonic order of the candidate solution.

5.2. Accuracy Study

The proposed algorithm was executed 20 times with 500 iterations to check the
distribution of the Pareto front solutions. The final solutions obtained by the proposed
TLBO-based method are shown in Figure 9. The Pareto front solutions obtained by Monte
Carlo simulations are shown in Figure 10. The generational distance (GD) was used to
determine the accuracy of the proposed method [51] as follows:

GD =

√
n
∑

i=1
d2

i

n
(31)

where di is the Euclidean distance between the solution and nearest member in the true
Pareto solution set, and n is the number of final solutions. The smaller the GD, the closer it
is to the true Pareto solution set.

In [40,41], the GDs of MOBA and MOPSO were compared. The GD obtained by the
MOBA was better. The behaviors of MOBA and MOPSO were similar. Both are population-
based optimization algorithms without a replacement strategy between the previous and
current generations. The distribution of the Pareto front solutions formed by these types of
optimization algorithms is broad. Therefore, MOBA and MOPSO were used as benchmarks
for comparison. As shown in Table 9, the GD results obtained by the proposed MOTLBO
were better than those obtained by MOBA and MOPSO.
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Figure 9. Pareto front set obtained by the proposed TLBO-based method: (a) voltage THD vs. current THD; (b) current
THD vs. cost; (c) voltage THD vs. cost; (d) reactive power compensation vs. cost.

Figure 10. Cont.
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Figure 10. Pareto front set obtained by Monte Carlo simulations: (a) voltage THD vs. current THD; (b) current THD vs.
cost, (c) voltage THD vs. cost, (d) reactive power compensation vs. cost.

Table 9. Generational distance—MOTLBO with MOBA and MOPSO.

Algorithm
Generational Distance

Best Worst Average Median Std. Dev.

MOTLBO 0.00000053 0.0013 0.0000689 0.0000571 0.000068
MOBA 0.00000094 0.0106 0.0000921 0.0000708 0.000220

MOPSO 0.00000193 0.0177 0.0001251 0.0000874 0.000566

5.3. Performance Test

To achieve a complete PPF design, the selection mechanisms of topology combinations
and parameters for PPFs are imperative. Generally, it is assumed that topology combina-
tions of PPFs are known. In practice, this is not a realistic situation. Therefore, a selection
strategy for the topology combination of PPFs was used in this study. The procedure of the
selection strategy to determine the topology combination of the PPFs is as follows:

Step 1: Check individual harmonic distortion; the individual harmonic distortion is evalu-
ated for the node candidates.
Step 2: Select the maximum number of PPF combinations; the harmonic limit violations
set the maximum number of PPFs.
Step 3: Select the pivot point; to develop a harmonic suppression strategy, a pivot point
needs to be selected for the harmonic components. The pivot point is determined by the
distribution of the major harmonic components. In most cases, the fifth-order harmonic is
regarded as the pivot point.
Step 4: Determine the possible combinations of PPFs; once the pivot point is determined,
the corresponding topology combination of PPFs can be selected to eliminate the major
harmonic components. The following rules can determine the topology combination of
PPFs: (1) If the major harmonic component occurs at the pivot point, all types of PPFs can
be regarded as candidates for evaluation; (2) if the major harmonic components occur below
the pivot point (i.e., second-, third-, and fourth-order harmonics), the ST and CD PPFs are
regarded as candidates for evaluation; (3) conversely, if the major harmonic components
occur above the pivot point (i.e., seventh-, ninth-, eleventh-, and high-order harmonics),
the SD and TD PPFs are regarded as candidates for evaluation.
Step 5: Verify the feasible combinations of PPFs; the initial number and possible combina-
tion of PPFs are selected in accordance with the above rules. Not all combinations of PPFs
can be used to search for the NDSs for PPF design. If the first NDS for PPF design can be
found in a limited number of the initial population, this topology combination of PPFs can
be regarded as a feasible combination of PPFs. Otherwise, proceed to Step 6.
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Step 6: Recheck individual harmonic distortions; the individual harmonic distortion with
the existing PPFs is reevaluated to determine the additional combinations of PPFs.
Step 7: Determine the additional combinations of PPFs; according to the remaining major
harmonic components, the additional combinations of PPFs are generated by the above
rules. The feasible combinations of PPFs are verified until the number of PPFs exceeds the
predefined threshold.

In this case, the fifth harmonic current and THDI exceeded the tolerance limit. There-
fore, the possible combinations of PPFs are ST, SD, TD, CD, ST-ST, ST-SD, ST-TD, ST-CD,
SD-SD, SD-TD, TD-TD, and CD-CD. However, the feasible combinations of PPFs were ST,
ST-ST, ST-SD, and ST-TD. The first NDS for PPF design can be found in these topology
combinations of PPFs within the maximum initial IC. The Pareto solutions with minimum
and maximum cost under various types of PPF combinations are listed in Table 10. The
THDI did not significantly improve with a single ST PPF. However, an ST PPF can be
used to improve the reactive power. The double-ST PPFs with the minimum cost can
significantly improve the THDI and THDV. Combining an ST and an SD PPF with the
maximum cost can considerably suppress the THDV. Although an ST and a TD PPF can
mitigate the THDI and THDV within the harmonic limits, the cost is higher than the other
combinations. In terms of cost considerations, the double-ST PPF combination is ranked
first. In terms of THDV suppression, the ST and SD PPF combinations were ranked first.

Table 10. Pareto solutions with minimum cost and maximum cost.

Type of Filters
Parameter

THDI THDV PF QF Cost
L1 C1 R2 L2 C2 C *

ST 4.60 86.35 4.99 2.98 0.98 4484 635

ST 4.07 96.35 4.83 2.88 0.99 4999 705

ST 11.05 26.58
3.77 2.74 0.95 2596 538ST 18.31 23.69

ST 10.31 28.47
3.73 2.68 0.96 3024 592ST 14.22 30.07

ST 10.16 28.89
4.01 2.80 0.96 3064 589SD 20.96 8.68 31.18

ST 9.81 29.95
3.87 2.53 0.99 5609 929SD 20.54 5.67 78.06

ST 10.16 29.19
4.10 2.92 0.95 2606 788TD 38.41 23.45 21.01 21.01

ST 9.07 33.04
4.20 2.85 0.98 4652 1254TD 47.81 31.83 46.27 46.27

* ST: single-tuned, SD: second-order damped, TD: third-order damped, and CD: C-type damped.

6. Conclusions

In this study, a multi-objective TLBO algorithm for optimizing parameters for PPF
design was successfully proposed. Four objective functions were considered in this
study: (1) total harmonic distortion of current, (2) total distortion of voltage, (3) IC, and
(4) total fundamental reactive power compensation. With the external archive, the NDSs
were stored to deal with multi-objective problems for the optimal design of the PPF set.
To improve the diversity of NDSs, the sub-group search strategy and teacher selection
strategy were used. In addition, a selection mechanism for topology combinations for PPFs
was proposed. This study used a sample system with two sets of ST PPFs as a benchmark
system for comparison. With the same characteristic harmonic order and reactive power
compensation, the harmonic currents at critical orders can be significantly reduced using
the candidate solution. In terms of THDI, THDV, and cost, the performance of the proposed
TLBO method was better than those of the BA, PSO, GA, and SA methods for basic compar-
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ison studies. In terms of the GDs, the proposed TLBO method was better than the MOBA
and MOPSO methods for accuracy studies. With the proposed selection mechanisms
for the topology combinations and parameters for PPFs, the best compromise solution
for a complete PPF design was achieved. In terms of cost considerations, the double-ST
PPF combination was ranked first. In terms of THDV suppression, the ST and SD PPF
combinations were ranked first. The results show that the proposed method exhibits good
performance for improving power supply reliability and ensuring power quality while
controlling costs.

Author Contributions: Conceptualization, N.-C.Y.; Data curation, N.-C.Y.; Funding acquisition,
N.-C.Y.; Investigation, N.-C.Y. and S.-W.L.; Methodology, N.-C.Y. and S.-W.L.; Resources, N.-C.Y.;
Software, N.-C.Y. and S.-W.L.; Supervision, N.-C.Y.; Validation, N.-C.Y. and S.-W.L.; Writing—original
draft, N.-C.Y.; Writing—review & editing, N.-C.Y. Both authors have read and agreed to the published
version of the manuscript.

Funding: This work was partially supported by the Ministry of Science and Technology (MOST) in
Taiwan (MOST 109-3111-8-011-001) and Delta–NTUST Joint Research Center.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was partially supported by the Ministry of Science and Technology of
Taiwan. The authors would like to thank the funding provided by MOST (MOST 109-3111-8-011-001)
and DELTA-NTUST Joint Research Center.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Cij the capacitance of j-th filter of type i;
C, C upper and lower limits of percentage variation of capacitance for a PPF;
di Euclidean distance;
I1 rms of fundamental current;
Ih rms of harmonic current with integer order;
Ih
L harmonic currents;

Ih
S harmonic currents through power supply terminal;

Fj(x) vector of an objective function;
f , f upper and lower limits of percentage variation of frequency for a power system;
f i , f

i
upper and lower bounds of the i-th objective function;

gk(x) inequality constraint;
GD generational distance;
H highest harmonic order considered;
HDIh upper tolerance for harmonic current at h-th order;
HDVh upper tolerance for harmonic voltage at h-th order;
h harmonic order;
hC order of critical harmonic;
hF order of harmonic to be mitigated;
hl(x) equality constraint;
k1 to k5 cost weighting coefficients;
L, L upper and lower limits of the percentage variation of inductance for a PPF;
Lij the inductance of j-th filter of type i;
M number of non-dominated solutions in the external archive;
Mj,i mean grade of the learners in subject j at the i-th iteration;
Ni number of filters of type i;
nF number of objective functions;
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ng number of inequality constraints;
nh number of equality constraints;
Ploss,ij power loss of j-th filter of type i;
Qij reactive power capacity of j-th filter of type i;
QF total fundamental reactive power;
QFij fundamental reactive power produced by j-th filter of i-th type;
Q, Q upper and lower limits of reactive power compensation;
R, R upper and lower limit of percentage variation of resistance for a PPF;
Rij resistance of j-th filter of type i;
ri random number in the range [0,1];
TF teaching factor;
THDI upper tolerance for total harmonic distortions of currents;
THDV upper tolerance for total harmonic distortions of voltages;
V1 rms of fundamental voltage;
Vh rms of harmonic voltage with integer order;
xbest,j,i grade of the teacher in the subject j at the i-th iteration;
xk,j,i grade of learner k in subject j at the i-th iteration;
x vector of decision variables;
ZFij the impedance of j-th filter of i-th type;
ZF the impedance of multiple passive power filters;
Zh

F filter impedance;
Zh

S system impedance;
αi set coefficient for i-type filter;
γ harmonic attenuation factor;
ωi the weighting factor of objective function I;
µi membership value of the i-th objective function fi;
µk nominal membership value for the non-dominated solution k.
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