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Abstract: Due to increasing concern over global warming, the penetration of renewable energy in
power systems is increasing day by day. Gencos that traditionally focused only on maximizing their
profit in the competitive market are now also focusing on operation with the minimum pollution
level. The paper proposes a multiobjective model capable of finding a set of trade-off solutions
for the joint optimization problem, considering the cost of reserve and curtailment of power from
renewable sources. Managing a hybrid power system is a challenging task due to its stochastic nature
mixed with the objective function and complex practical constraints associated with it. A novel
metaheuristic Equilibrium Optimizer (EO) algorithm incepted in the year 2020 utilizes the concept of
control volume and mass balance for finding equilibrium state is proposed here for computing the
optimal schedule and impact of renewable energy integration on profit and emission for different
optimization objectives. In this paper, EO has shown dominant performance over well-established
metaheuristic algorithms such as particle swarm optimizer (PSO) and artificial bee colony (ABC).
In addition, EO produces well-distributed Pareto-optimal solutions and the fuzzy min-ranking is
used as a decision maker to acquire the best compromise solution.

Keywords: multi-objective; renewable energy; profit-based scheduling; Equilibrium Optimizer

1. Introduction

The electricity demand is increasing day by day due to the growth and evolution
of industrial establishments and changing lifestyles. A substantial part of the demand is
still being met by thermal power generation, which depends on fossil fuels such as coal,
natural gas and petroleum, which are considered the main sources of harmful emissions
and air pollution. The burning of fossil fuels releases harmful gases into the atmosphere.
Globally, the power generation sector contributes more than 30% of carbon dioxide emis-
sions to the atmosphere [1]. These pollutant gases affect not only humans but are also
responsible for the destruction of other lifeforms. Due to growing concern over envi-
ronmental considerations, there is a demand for sufficient and secured electricity at the
lowest price along with a minimum level of pollution to stabilize the environment. It is
possible by multi-objective optimization that considers power generation cost and emission
both for minimization. Economic emission dispatch (EED) is a key optimization problem
of the power system. The objective is to schedule the committed generator optimally,
so that generation cost and emission are minimized simultaneously while satisfying all
operational constraints associated with it [2]. Various solution approaches have been
reported for the EED problem, broadly categorized into classical, metaheuristic and hybrid
approaches [3]. As a practical EED problem, is a highly nonlinear, complex constrained
optimization problem, and it is not easy to find the optimal solution to such a problem
by classical methods. The metaheuristic approach can overcome the difficulties, but its
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computational time is more. Metaheuristic and hybrid approach includes evolutionary
algorithm (EA) [2], genetic algorithm (GA) [4], non-dominating sorting genetic algorithm
(NSGA) [5–7], particle swarm optimization (PSO) [8–10], harmony search (HS) [11,12], dif-
ferential evolution (DE) [13], hybrid bat algorithm (HBA) [14], kernel search optimization
(KSO) [15], time-varying acceleration coefficient particle swarm optimization (TVAC-PSO)
with exchange market algorithm (EMA) [16], interior search optimization (ISO) [17], grass
shopper optimization (GSO) [18], sine cosine algorithm (SCA) [19], hybrid bacterial forag-
ing with Nelder-mead [20] and many more. A detailed review metaheuristics approach for
the solution of the EED problem can be found in references [21,22].

Creating new efficient power plants or identifying and expanding existing ones that
produce low emission is time-consuming and require significant capital investment to fulfill
the ever-increasing power demand. Another way is to integrate renewable energy resources
(RER) such as wind and solar power into the existing grid. However, the integration of RER
in the existing power grid creates several operational issues due to the unpredictable nature
of wind speed and solar irradiation. Therefore, fluctuation in the wind and solar power
generation needs more consideration. Further load demand is a random variable, and we
cannot predict it accurately. The system operator can anticipate the uncertainty associated
with wind power generation/solar power generation/load demand using the forecast.
Generally, the probability distribution function is used to modeling the uncertainty related
to RER integration. Consequently, integration of RER complicates the formulation of the
EED problem significantly [21].

Simultaneous minimization of cost, emission and loss for the wind-thermal system
with complex operational constraints such as valve point loading (VPL) effect, ramp rate
limits (RRL), prohibited operating zones (POZ) and spinning reserve (SR) are available
in reference [23]. Here, the time-varying fuzzy selection mechanism is used to rank the
conflicting objective. Wind-based combined economic emission dispatch (WCEED) has
been investigated in reference [24] to acquire Pareto optimal solution. Here piecewise linear
approximation method is used to model wind power. The multi-area dynamic economic
emission dispatch (MADEED) of the complex system comprises a cascaded hydro system,
uncertain wind power and thermal generator system investigated in reference [25]. Here
Weibull pdf is used for wind power calculation.

CEED of a grid comprising of wind and PV generation systems is presented in [26].
Here, a linear relationship between day-ahead forecasted output power by wind and PV
system with operation and maintenance cost is used to model the objective function. Opti-
mal generation scheduling of a hybrid generation system comprised of thermal, wind and
solar has been investigated in reference [27]. Here Weibull pdf and bimodal distribution are
separately used to handle the uncertainty associated with wind speed and solar irradiation.
The scenario-tree technique was used to model the uncertainties associated with solar
radiation, wind speed and load demand [28]. This approach is found to be effective while
handling uncertainties but requires heavy calculation. An optimal generation scheduling
strategy with total contributions of wind farms, solar parks and thermal plants for eco-
nomic benefit and environmental impact is presented in reference [29]. Here uncertainty
associated with wind, solar power and few coal units is described by fuzzy numbers.

The techno-economic analysis under distinct scenarios has been investigated with
different combinations of renewable energy resources. Results show that integrating
multiple RER and its appropriate scheduling helps minimize cost and emission [30]. A
detailed review of various computation methods for planning a hybrid renewable system is
presented in reference [31]. Inspired by distinct work carried out by various researchers, in
this paper, a novel optimization method incepted in 2020, Equilibrium Optimizer (EO) [32],
inspired by dynamic and equilibrium states of physics, is used to solve the complex multi-
objective problem with and without integration of RES. The schematic diagram of the
proposed model is shown in Figure 1.
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Figure 1. The grid with RES under deregulated environment.

The main contribution in the paper is as follows: (i) Equilibrium Optimizer (EO) is
implemented to solve the multi-objective problem in a dynamic environment, (ii) impact of
RER integration was analyzed in terms of reduction in operational cost and emission (iii)
fuzzy-min ranking method is used to aggregate two conflicting objectives and finally, (iv)
profit achieved by the reduction in operational cost due to RER integration were analyzed.

The remaining paper organization is as follows: problem formulation is given in
Section 2, the optimization method is described in Section 3, results and discussion are
presented in Section 4 and the conclusions are summarized in Section 5.

2. Formulation of the Profit-Based Multi-Objective Scheduling Problem
2.1. Objective Function I: Profit Maximization

The difference between revenue (RV) collected from the sale of electricity and the total
cost of electrical power generation (TC) is taken as profit [33]. The objective is to maximize
the profit defined as (1):

Max(Pro f it) = Max (RV − TC) (1)

where,

RV =
24

∑
t=1

(
NT

∑
j=1

Gthjt +
NS

∑
k=1

Gskt +
NW

∑
l=1

Gwlt

)
.SPt (2)

TC =
24

∑
t=1

(
NT

∑
j=1

C(Gth)jt +
NS

∑
k=1

C(Gs)kt +
NW

∑
l=1

C(Gw)lt

)
(3)

The first part of (3) is the generation cost of thermal units defined in (4) as:

C(Gth)jt =
(

aj × Gth2
jt + bj × Gthjt + cj

)
(4)

where Gthjt is generated power by jth thermal unit at tth time interval, aj, bj, cj are fuel
coefficients of jth thermal unit, SPt is the selling price at tth time interval, NT, NS and NW,
are the number of thermal, solar and wind units present in the hybrid system [34]. Total
24-time steps representing 24 h in a day are considered.

The second part represents the generation cost of the solar PV system. Solar power
output depends on incident solar radiation (Rt) and the difference of ambient (θamb) and
reference temperature (θre f ). Therefore, it increases the uncertainty in computing the
availability of the solar power output. Thus, underestimation and overestimation cost is
added here to balance the variation due to uncertainty.

The solar power output of kth plant at time t, (Gskt) is given as [34]:

Gskt = Pr
{(

1 +
(

θamb − θre f

)
ξ
)
× (Rt/1000)

}
(5)
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Total solar cost function at any time t is calculated as [34]:
NS

∑
k=1

C(Gskt) =
NS

∑
k=1

(DCs × Gskt) +
NS

∑
k=1

kp(Gsavkt − Gskt) +
NS

∑
k=1

kr(Gskt − Gsavkt) (6)

where,

kp × (Gsavkt − Gskt) = kp ×
Pr∫

Gskt

(s− Gskt) fs(s)ds (7)

kr × (Gskt − Gsavkt) = kr ×
Gskt∫
0

(Gskt − s) fs(s)ds (8)

kp, kr represents the penalty cost factor for overestimation and underestimation, Gskt, Gsavkt
are the generated and available power for kth solar plant at tth time, respectively, and fS(s) is
probability density function (pd f ) of solar power.

The third part of (3) represents the cost due to wind power integration. Wind power
depends on wind velocity, and at any given location, it is observed to follow the Weibull
probability distribution [35], as shown in Figure 2. The random wind speed variable can be
computed using the Weibull pd f as:

fv(v) =
(

k
c

)(v
c

)k−1
e−(vc)k

0 < v < ∞ (9)

Figure 2. The Weibull probability distribution for wind velocity.

Wind power (Gw) at different velocities is calculated as:

Gw =


0 f or 0 ≤ v < vci

Wr
(

v−vci
vr−vci

)
f or vci ≤ v < vr

Wr f or vr ≤ v < vco
0 f or v > vco

(10)

where, v, vci, vco and vr, are the wind velocity at any instant, cut-in speed, cut-out speed
and rated wind turbine speed in m/s, respectively. Wr is the rated power of wind turbine in
MW [36]. The wind speed cost has three terms; the first term is a fixed cost term while the
second and third terms arise due to the uncertainty involved with wind power generation.

After including the over and under estimation costs, the total cost of lth wind plant at
time t can be mathematically expressed as:

NW

∑
l=1

C(Gwlt) =
NW

∑
l=1

(DCw × Gwlt) +
NW

∑
l=1

kp(Gwavlt − Gwlt) +
NW

∑
l=1

kr(Gwlt − Gwavlt) (11)

The second and third terms in (11) represent the penalty cost due to underestimation
and reserve cost due to overestimation and are expressed as (12) and (13), respectively.
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kp × (Gwavlt − Gwlt) = kp ×
Wr∫

Gwlt

(w− Gwlt) fW(w) (12)

kr × (Gwlt − Gwavlt) = kr ×
Gwlt∫
0

(Gwlt − w) fW(w)dw (13)

2.2. Objective Function II: Emission Minimization

The total emission (TE) emitted from the thermal power plant [37] can be symbolically
represented as:

Min(TE) = Min
{
∑NT

j=1 E(Gth)
}

(14)

where,
E(Gth)j =

(
αj × Gth2

j + β j × Gthj + γj

)
(15)

Here αj, β j, γj are the emission coefficients of jth thermal unit.

2.3. Objective Function III: Simultaneous Optimization of Profit and Emission

The multi-objective problem of optimization of profit and emission can be formulated as:

Min
{(

1
Pro f it

)
, TE

}
= u

∑24
t=1

(
∑NT

j=1 Gthjt+∑NS
k=1 Gskt+∑NW

l=1 Gwlt

)
.SPt−∑24

t=1

(
∑NT

j=1 C(Gth)jt+∑NS
k=1 C(Gs)kt+∑NW

l=1 C(Gw)lt

)+
(1− u).pp f . ∑NT

j=1 E(Gth)
(16)

where pp f is the price penalty factor which is assumed to be 1 for simplicity and u is
the weight factor. Maximization of profit is an objective function I and minimization of total
emission is objective function II. Profit and cost of generation are two cornerstones of the
electrical market. A decrease in the cost of generation will increase profit. This reciprocal
relation between cost and profit is modelled as objective function III or simultaneous
optimization of profit and emission.

It is subjected to the following operational constraints:

2.3.1. Real Power Balance: Power Demand at Any Instant (t) Must Be Equal to the Sum of
the Power Output of Associated Generation Units

PD(t) =
NT

∑
j=1

Gthj +
2NS

∑
k=1

Gsk +
NW

∑
l=1

Gwl (17)

2.3.2. Generation Limit: The Power Produced by Each Thermal, Wind and the Solar Unit
Must Always Be between Their Respective Specified Bounds, as Given by

Gthmin
j ≤ Gthj ≤ Gthmax

j (18)

Gsmin
k ≤ Gsk ≤ Gsmax

k (19)

Gwmin
l ≤ Gwl ≤ Gwmax

l (20)

2.3.3. Ramp-Rate Limit Constraints: The Thermal Units Have Limited Ramping (Up as
Well as Down) Capacity, and Therefore the Output of a Unit between two Consecutive
Time-Intervals Must Obey the Inequality Constraint Given by

Gthjt − Gthj(t−1) ≤ URj (21)

Gthj(t−1) − Gthjt ≤ DRj (22)

Here, URj, DRj are the up and down rates of the jth thermal unit.
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Combining the ramp rate limits of generating units given by (21) and (22) with
the thermal generation limits provided by (18), the modified binding constraints can be
written as:

Max
(

Gthmin
j , Gthj(t−1) − DRj

)
≤ Gthjt ≤ Min

(
Gthmin

j , Gthj(t−1) + URj

)
(23)

2.4. Ranking Approach

The fuzzy-min ranking method is used to aggregate two conflicting objectives: profit
and emission [38]. Linear membership function, µi,r (rth is the objective function for the ith

solution) is described for each objective function in (24) as [22].

µi,r =


1 i f Fi,r ≤ Fmin

r
Fmax

r −Fi,r
Fmax

r −Fmin
r

i f Fmin
r ≤ Fi,r ≤ Fmax

r

0 i f Fi,r ≥ Fmax
r

(24)

For ith solution with n number of objectives, the rank is computed as:

f uzzy_ranki = min(µi,r) f or r = 1, 2 . . . .n (25)

The solution with the maximum value of f uzzy_rank for ∀r is considered as the best
compromise solution.

3. Equilibrium Optimization

Equilibrium Optimization is a physics-based algorithm that follows the concept of
dynamic mass balance is given control space. The first-order differential equation, which
relates the mass-generated in a dynamic system with mass entering and mass leaving the
system, can be expressed as:

V
dC
dt

= QCeq −QC+ G (26)

where, C is the concentration in volume (V), V dC
dt is the rate of change in mass, Q is the flow

rate, Ceq is the concentration at equilibrium state and G represents the rate of generation
of mass. The equilibrium state is supposed to be achieved whenever V dC

dt reaches zero.

The derivative dC
dt , can be solved as a function of

(
Q
V

)
. The ratio Q

V = µ is called the
turnover rate.

Equation (26) can be rearranged and written as:

dC
µCeq − µC+ G

V
= dt (27)

and,
C∫

Co

(
dC

µCeq − µC+ G
V

)
=
∫ t

to
dt (28)

The final concentration update equation after rearranging and integrating becomes [32]:

C = Ceq +
(
Co −Ceq

)
F +

G
µV

(1−F ) (29)

where,
F = exp{−µ(t− to)} (30)

Equation (29) provides the search mechanism for finding an optimal solution during
the optimization process of EO. Here Ceq, is a solution that is selected randomly from a pool
consisting of 3 to 5 best solutions collected after solving the problem for different conditions.
The second term

(
Co −Ceq

)
is the difference in the position of a solution and the randomly

selected equilibrium state. This term provides direct search and persuades particles to
conduct a global search and explore the solution space extensively and effectively. The
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third term
{
G

µV (1−F )
}

is the term associated with the generation rate and turnover
rate. This term improves/updates the solution through exploitation; hence the steps are
small, resulting in small changes to fine-tune the solution; however, sometimes, it allows
exploration. EO follows five steps during the optimization process described as follows:

3.1. Initialization

The initialization procedure in EO is similar to other population-based metaheuristics.
The initial population is created by randomly generating concentrations within the mini-
mum and maximum limits for each dimension of the vector. The ith population vector can
be constructed as follows:

Cinitial
i = Cmin + rand(Cmax −Cmin) (31)

Here Cmax and Cmin, represents vectors representing maximum and minimum con-
centrations of the different dimensions of the solution vector. The generated particles
(solutions) are evaluated, and their fitness value is determined. Then the equilibrium pool
is set up by using 3 to 5 best solutions.

3.2. Equilibrium Pool and Candidates

The equilibrium state is the global best solution of the problem, which is obtained
after convergence. The equilibrium pool is created by storing the best solutions of runs
conducted under different conditions. The arithmetic mean of these best solutions is also
stored in the pool as shown:

→
Ceq,pool =

{→
Ceq,1,

→
Ceq,2,

→
Ceq,3,

→
Ceq,4,

→
Ceq,ave

}
(32)

For updating the position of a particle using (29), one of these best solutions from
(32) is randomly selected. The probability of selection is uniform for all equilibrium
concentrations of the pool. Suppose there are 5 candidate solutions as shown above. In that
case, the new solution will be generated by exploration if any of the first four equilibrium
states/solutions in the pool are selected for the position update mechanism. On the other
hand, if the fifth candidate is chosen for position update, then exploitation is carried out to
generate a new solution/state.

3.3. Exponential Term

The third term in the concentration update Equation (29) is the exponential term (F ).
This term is designed to provide an effective balance between exploration and exploitation
in the EO algorithm.

→
F = exp

(
−→µ (t− t0)

)
(33)

The turnover rate (µ) is a random number ranging from 0 to 1. Time is represented by
t, which decreases with iteration, as expressed below.

t =
(

1− Iter
Max_iter

)a2× Iter
Max_iter

(34)

→
t0 =

1
→
µ

ln
{
−a1sign

(→
r − 0.5

[
1− e−

→
µ t
])

+ t
}

(35)

Substituting of (35) in (33) gives the final expression for the exponential term (F )
presented in Equation (36). The plot of F for four different combinations of a1 and a2
is shown in Figure 3. The exponential term (F ) variation with iteration can be seen to
decrease (in both directions) and finally converge to zero for all four combination cases.
The nature of variation indicates the effectiveness of this term in conducting exploration
and exploitation.

→
F = a1sign

(→
r − 0.5

)[
e−
→
µ t − 1

]
(36)
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Figure 3. Variation of the exponential term for different combinations of a1 and a2.

In EO exploration and exploitation are controlled by the constants a1 and a2, respec-
tively. Other than these two, the term sign

(→
r − 0.5

)
affects the direction of exploration

and exploitation during the search.

3.4. Generation Rate

This term constitutes the third term of the concentration update equation given by
(29). The generation rate ensures the convergence of the algorithm to the optimal global

solution (
→
G ) which facilitates smooth convergence by tuning the solutions using small

updates. By modeling the generation rate using an exponential decay term of the first order
and assuming the decay constant to be equal to the turnover rate [32], the generation rate
can be expressed to be decreasing from an initial value (G0) as:

→
G =

→
G0e−

→
µ (t−t0) =

→
G0
→
F (37)

→
G0 =

→
λ

( →
Ceq −

→
µ
→
C
)

(38)

The generation rate control parameter (λ) decides what role will be played by the
generation rate term in updating the particle position in (29). This parameter is designed
to controls the exploitation and exploration of the particle as follows:

→
λ =

{
0.5r1 r2 > ρ

0 r1 < ρ
(39)

The probability of using the generation rate term by the particle while updating its
concentration using (29) is also determined by the generation probability expressed by (ρ).

Here r1 and r2 are uniformly distributed random numbers in [0, 1]. If the first condition
in (39) is true, then the generation rate parameter will be small, and the update step size
will be small, causing exploitation. But if the second condition is true, then the particle is
updated without any contribution from the generation rate term as (λ) and (G) both become
zero. Experiments have shown that when (ρ) is set at 0.5, the search undergoes balanced
exploitation and exploration. As the generation probability ρ is increased beyond 0.5,
exploration increases, and as ρ is decreased below 0.5, exploitation is observed to increase.

3.5. Particle’s Memory Saving

In random operator-based optimization algorithms, some kind of memory mechanism
must be used to avoid losing a better solution during the process. EO also has a procedure
somewhat similar to the pbest in PSO, where the best position and corresponding fitness
of each particle are stored and updated whenever there is an improvement in subsequent
iterations. The flow chart of EO is shown in Figure 4.
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Figure 4. Flow chart of Equilibrium Optimization.

3.6. Steps for Implementation of EO for Profit Based Generation Scheduling

Step 1: Define population size, the maximum number of iterations and the number of
runs for the algorithm.

Step 2: Initialize the population within lower and upper concentration limits following
(31) and check the constraints (18)–(20) and (23).

Step 3: Select the equilibrium candidates from the initial population assign a1, a2, ρ
and evaluate the values of each equilibrium candidate.

Step 4: Compare the fitness of equilibrium candidates with that of each particle in the
updated population. Replace the equilibrium candidate and corresponding fitness value
with that of the particle from the population, if fitness is better.

Step 5: Continue step 4 in loops equal to the number of particles in the population. At

the end of the loop, one will acquire the Equilibrium pool
→
Ceq,pool as in (32)

Step 6: Accomplish memory saving
Step 7: Construct ‘t’ as per (34)
Step 8: Run a loop equal to the number of particles in the population and randomly

choose one candidate from the equilibrium pool (vector).

Step 9: Construct
→
µ , r1,

→
F ,

→
G ,
→
G0,

→
λ using (36)–(39)

Step 10: Update concentrations using (29) till the number of iterations is less than the
maximum number of iterations. After the loop is finished, the final concentrations are the
power output for the thermal generators for the given time period of 24 h.

Step 11: Apply a Fuzzy selection mechanism to find out the best compromise solution
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Step 12: Store the best compromise solution.

4. Results and Discussion

The performance of the EO algorithm is tested on standard test cases under dynamic
constraints [38–40]. Impact on operational cost and emission due to RER integration are
also investigated here. The objective function is written in MATLAB R2013a environment
and executed on Intel core i7 processor with 2 GB RAM and 3.40 GHz speed.

4.1. Description of Test Cases

Test Case 1 has six thermal power generating unit system. Its selling cost, minimum
and maximum power limits and cost/emission coefficients are listed in Table A1 [40], along
with power demand and hourly selling prices on a particular day.

Test Case 2 is a modified test case created by adding two solar PV units to test
case 1. The data of solar plants are listed in Table A2. Its data related to radiation and
corresponding temperature are shown in Figure 5.

Figure 5. Solar PV data of Temperature (◦C) and Radiation (W/m2).

Test Case 3 is also a modified test case obtained by the addition of two wind generators
to test case 1. The data for wind generators are listed in Table A2.

Test Case 4 is a hybrid thermal-wind-solar PV system that integrates two wind gener-
ators and two solar PV systems with thermal units of Test case 3, Test case 2 and Test case 1,
respectively.

4.2. Effect of Number of Particles

To analyze optimal particle size (NP), experiments are conducted on Test Case 1
with different values of NP. Its effect on optimal generation cost is plotted in Figure 6.
Here, it is observed that with an NP of 200, the mean operation cost is the lowest. By
increasing NP beyond it, no significant change was observed; however, computational time
increases. Hence, a particle size of 200 is considered for further analysis of the problem. The
performance of EO is also validated by the comparison of results obtained by simulation
of two well-established algorithms: particle swarm optimization (PSO) and artificial bee
colony (ABC) algorithm, keeping the same population size. The statistical results in terms of
operational cost are tabulated in Table 1 over 30 repeated runs. The cost convergence curve
of the three algorithms is compared in Figure 7. The above two results show the superiority
of EO over the other two in terms of better search capability and fast convergence.
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Figure 6. Effect of Number of particles (NP).

Table 1. Comparison of EO with ABC and PSO for Test Case 1.

Method Parameters Min Cost
($)

Mean Cost
($)

Max Cost
($) SD CPU Time/Iter.

(s)

PSO c1 = c2 = 2.1 wmin = 0.4
wmax = 0.9

309,125.58 309,133.97 309,170.86 5.3818 0.0215

ABC Limit=100 309,126.34 309,154.07 309,164.77 10.05 0.0203
EO a1=2, a2=1, ρ=0.5 309,117.20 309,125.54 309,139.91 0.9103 0.0188
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4.3. Effect of Control Parameters on the Performance of EO

EO has three control parameters:

• constants a1 and a2 which control the exploration and exploitation, and
• generation probability (ρ) decides whether exploration or exploitation of search space

will occur.

To analyze the impact of the above three control parameters, various tests are con-
ducted on Test Case 4 with the variation of parameters in the prescribed range, and obtained
results are tabulated in Tables 2 and 3. In Table 2, the value of ρ is kept at 0.5, and results are
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computed for different combinations of constants a1 and a2. Here, it is observed that best
results are obtained when a1 = 2 and a2 = 1. Further ρ is varied from 0.1 to 0.9, keeping
a1 = 2 and a2 = 1 fixed and obtained simulation results are summarised in Table 3. It is
evident that the best result, with the highest profit and lowest emission content, is obtained
with ρ = 0.5 where the exploration and exploitation have an equal chance of occurrence.
Therefore, these combinations of control parameters are considered for further analysis.

Table 2. Best Compromise Solution with the variation of parameters a1, a2 for Test Case 4 (ρ = 0.5).

Parameters
Total Cost ($) Profit ($) Emission (Kg)

a1 a2

1 1 301,550.07 337,807.18 24,412.00
1 2 309,167.46 330,189.73 28,484.83
2 1 297,031.57 342,325.68 24,763.26
2 2 297,620.53 341,736.72 26,759.37

Table 3. Best Compromise Solution with variation of generation probability ‘ρ’ for Test Case 4 (a1 = 2
and a2 = 1).

ρ Total Cost ($) Profit ($) Emission (Kg)

a1 = 2, a2 = 1

0.1 298,680.22 340,677.03 28,639.24
0.2 298,215.49 341,141.76 27,678.89
0.3 298,261.84 341,095.41 27,217.14
0.4 298,310.80 341,046.45 28,180.66
0.5 297,031.57 342,325.68 24,763.26
0.6 297,845.79 341,511.46 27,399.93
0.7 297,553.80 341,803.45 26,343.26
0.8 297,624.74 341,732.51 26,728.33
0.9 298,367.13 340,990.12 26,233.64

4.4. Effect of RER Integration on Profit Maximization

The simulation results for different test cases under the scenario of cost minimiza-
tion/profit maximization given by (1) are shown in Figure 8. Comparing test case 1 and
test case 2 shows a reduction in power generation cost by 3883.3 $ (≈1.26%), and hence the
profit is increased by 3883.3 $ (≈1.18%). While comparison of test case 1 and test case 3, it
is observed that the reduction in power generation cost is found to be 13,461.09 $ (≈4.35%),
and hence the profit is increased by 13,461 $ (≈4.08%). Similarly, a comparison of test
case 1 and the hybrid test case 4, shows that the power generation cost is reduced by
14,285.21 $ (≈4.62%) and the profit increased by 14,285.18 $ (≈4.32%). Hence, it is clear
that the higher the integration of RER, the higher the profit even after the inclusion of cost
due to uncertainty.

Figure 8. Comparison of cost, profit and emission for profit maximization.
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The optimum generation schedule for test cases 1 and 4 are shown in Figures 9 and 10,
where operational constraints are fully satisfied. Profit and emission for these two cases
are compared and listed in Table 4.

Figure 9. Optimal generation schedule under the scenario of Cost minimization (Test Case 1).

Figure 10. Optimal generation schedule under the scenario of Cost minimization (Test Case 4).

Table 4. Cost, Selling price, Profit and Emission under the scenario of profit maximization.

ThC ($) WC ($) PVC ($) TC ($) SP ($) Profit ($) Emission (Kg)

Test Case 1 309,117.20 – – 309,117.20 639,357.25 330,240.05 31,581.41
Test Case 4 276,906.41 6290.20 11,635.38 294,831.99 639,357.25 344,525.26 28,422.29

4.5. Effect of RER Integration on Emission Minimization

For minimization of emission (14), all the test cases under consideration are carefully
analyzed to find the impact of the integration of (i) solar, (ii) wind and (iii) both solar and
wind resources. The objective is to determine the optimal schedule for all four test cases,
which will produce minimum emission content. The results for each test case are presented
in Figure 11.

Comparing test case 1 and case 2, the reduction in emission content is 2255.94 kg
(≈8.92%) due to the solar share of 975.71 MW (4%). While Comparing test case 1 and test
case 3, the reduction in emission content is 3216.74 kg (≈12.72%) due to 1463.08 MW (5%)
of wind share. Similarly, while comparing test case 1 and test case 4, emission reduction is
5524.63 kg (≈21.84%).

Comparing all the cases, it is observed that there is a significant reduction in pollution
by integration of RER.
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Figure 11. Comparison of cost, profit and emission under the scenario of emission minimization.

4.6. Effect of RER Integration for the Multiobjective Case

For the simultaneous optimization of profit and emission both, formulated in (16) with
the help of the fuzzy min approach (24), the best compromise solution is obtained. Pareto
front for all test cases obtained by EO is plotted and compared in Figure 12 and the top 10
optimal solutions and their fuzzy min rank are tabulated in Table 5. The best-compromised
solution with the highest fuzzy rank is indicated for each test case.

Figure 12. Pareto-front of all the non-dominated solutions obtained for different cases.
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Table 5. Top 10 optimal solutions and their fuzzy min rank.

Test Case 1 Test Case 2

Profit Emission µ1 µ2 min (µ) Profit Emission µ1 µ2 min (µ)

328,508.692 27,878.429 0.705 0.712 0.705 329,500.761 26,224.344 0.725 0.672 0.672
328,312.919 27,759.219 0.684 0.725 0.684 329,502.218 26,226.754 0.725 0.672 0.672
328,312.663 27,759.160 0.684 0.725 0.684 329,503.106 26,227.526 0.725 0.672 0.672
328,311.440 27,758.630 0.684 0.725 0.684 327,594.083 24,734.770 0.524 0.825 0.524
329,335.245 28,738.401 0.792 0.616 0.616 327,593.259 24,733.423 0.524 0.825 0.524
329,336.053 28,739.487 0.792 0.616 0.616 327,591.770 24,732.427 0.524 0.826 0.524
329,336.009 28,739.710 0.792 0.616 0.616 330,805.950 28,204.049 0.862 0.468 0.468
327,479.749 27,313.518 0.596 0.775 0.596 330,805.924 28,204.710 0.862 0.468 0.468
327,478.885 27,312.756 0.596 0.775 0.596 330,805.931 28,205.116 0.862 0.468 0.468
327,478.002 27,312.382 0.596 0.775 0.596 330,689.142 28,348.341 0.849 0.454 0.454

Test Case 3 Test Case 4

Profit Emission µ1 µ2 min (µ) Profit Emission µ1 µ2 min (µ)

341,716.684 26,517.776 0.760 0.567 0.567 342,325.682 24,763.258 0.827 0.542 0.542
341,716.956 26,518.660 0.760 0.567 0.567 342,325.842 24,763.330 0.827 0.542 0.542
341,717.139 26,518.991 0.760 0.567 0.567 342,477.714 25,040.173 0.839 0.516 0.516
341,708.322 26,549.079 0.759 0.564 0.564 342,478.170 25,040.791 0.839 0.516 0.516
341,708.646 26,549.144 0.759 0.564 0.564 342,532.703 25,090.462 0.843 0.512 0.512
341,708.329 26,549.322 0.759 0.564 0.564 342,533.058 25,090.864 0.843 0.512 0.512
341,960.680 26,683.972 0.791 0.550 0.550 338,289.653 21,279.033 0.510 0.862 0.510
341,960.976 26,684.062 0.791 0.549 0.549 338,288.413 21,278.272 0.510 0.862 0.510
341,961.230 26,684.330 0.791 0.549 0.549 342,585.154 25,130.773 0.847 0.508 0.508
341,924.268 26,723.629 0.786 0.545 0.545 342,584.919 25,130.786 0.847 0.508 0.508

The optimal power generation schedule for test case 1 and hybrid thermal-wind-solar
PV system, i.e., test case 4 with cost, selling price, profit and corresponding emission are
listed in Tables 6 and 7. In addition, a comparison of cost, profit and emission for all four
cases is presented in Figure 13. Here it is seen that the cost is reduced by 992.07 $ (≈0.32%)
after integration of two solar units in test case 2. The cost was reduced by 13,207.97$
(≈4.25%) in test case 3 when two wind power units were added and by 13,816.99 $ (≈4.44%)
for test case 4 when two solar and wind units, respectively, were integrated with the existing
thermal system. The profit is found to increase by 992.07 $ (≈0.30%), 13,208$ (≈4.02%),
13,816.66 $ (≈4.21%), respectively, for test cases 2, 3 and 4.

The emission content is observed to reduce by 1654.09 kg (≈5.93%) in case 2, by
1360.65 kg (≈4.88%) in case 3, and by 3115.17 kg (≈11.17%) in case 4 with respect to test
case 1 where only thermal units are present.

Figure 13. Comparison of cost, profit and emission under the scenario of emission minimization.
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Table 6. Optimal generation schedule, cost, selling price and profit for Test Case 1 (Best Compromise Solution).

Hour P1
(MW)

P2
(MW)

P3
(MW)

P4
(MW)

P5
(MW)

P6
(MW) TC ($) SP ($) Profit

($)
Emission

(Kg)
1 267.18 116.94 189.30 137.60 125.15 118.82 11,431.4097 21,630.75 10,199.34 884.64
2 290.12 120.26 180.63 108.07 135.22 107.69 11,208.0562 20,724.00 9515.94 900.50
3 273.65 147.61 201.12 89.01 122.96 118.66 11,357.6823 21,537.80 10,180.12 920.34
4 258.12 147.41 159.08 113.96 146.97 104.46 11,145.9213 20,553.00 9407.08 831.10
5 282.57 118.86 190.11 87.82 156.66 98.97 11,113.801 21,505.00 10,391.20 894.89
6 268.65 134.94 188.96 131.20 133.12 106.13 11,506.8602 22,293.45 10,786.59 903.10
7 282.25 110.86 200.46 116.44 161.67 117.31 11,814.661 24,329.40 12,514.74 943.67
8 318.19 126.99 194.56 113.38 162.78 107.09 12,181.5529 25,830.73 13,649.18 1047.15
9 324.15 164.39 226.84 118.69 198.86 93.06 13,471.5765 27,936.05 14,464.47 1239.81

10 344.50 155.59 211.73 122.96 196.45 118.77 13,786.5861 30,475.00 16,688.41 1265.30
11 350.92 183.98 240.31 139.40 167.58 118.81 14,416.1753 32,607.14 18,190.97 1395.27
12 386.77 178.95 231.68 148.91 169.39 119.30 14,838.8277 37,420.49 22,581.67 1501.13
13 358.79 159.28 228.62 149.05 174.61 119.65 14,275.8021 35,342.99 21,067.19 1368.31
14 379.97 165.36 249.43 146.40 190.98 118.86 15,041.8218 35,778.61 20,736.78 1522.54
15 387.37 178.49 247.30 148.43 182.26 119.15 15,195.1235 31,890.75 16,695.63 1558.50
16 364.96 197.62 245.53 132.81 189.51 119.58 15,050.0093 31,000.00 15,949.99 1499.40
17 358.21 169.93 256.18 129.27 189.03 118.39 14,658.0997 28,754.55 14,096.45 1450.01
18 360.92 172.60 225.78 148.92 174.26 119.51 14,434.0764 27,465.70 13,031.62 1390.41
19 322.15 154.47 229.83 133.87 199.14 119.54 13,920.6668 26,714.95 12,794.28 1255.61
20 335.55 147.30 209.25 108.47 172.87 118.56 13,035.613 25,389.00 12,353.38 1174.63
21 296.40 167.11 206.24 121.43 142.45 89.38 12,187.7462 24,040.49 11,852.75 1055.36
22 275.73 153.09 199.98 95.28 164.90 95.01 11,732.3309 22,887.84 11,155.51 959.52
23 267.59 160.44 225.76 94.03 156.50 70.68 11,596.8066 21,937.49 10,340.69 996.03
24 295.98 99.08 185.82 115.74 144.14 119.23 11,447.352 21,312.00 9864.65 921.21

Total 7650.70 3631.54 5124.51 2951.15 3957.45 2656.65 310,848.56 639,357.25 328,508.69 27,878.43

Table 7. Optimal generation schedule, cost, selling price and profit for Test Case 4 (Best Compromise Solution).

A. Optimal Generation Schedule for Test Case 4 (Best Compromise Solution)

Hour P1 (MW) P2
(MW) P3 (MW) P4

(MW) P5 (MW) P6
(MW) TS (MW) Emission

(Kg)
WS

(MW)
PV Share

(MW)

1 326.45 101.35 186.46 98.17 150.86 91.71 955.00 991.51 0.00 0.00
2 303.95 107.68 198.92 101.68 128.74 101.03 942.00 947.51 0.00 0.00
3 281.69 119.22 232.89 81.07 143.44 94.68 953.00 975.98 0.00 0.00
4 258.20 135.39 186.99 102.72 149.44 88.95 921.69 849.56 8.31 0.00
5 268.76 145.56 193.86 86.33 139.38 80.16 914.06 882.95 20.31 2.63
6 292.74 121.33 177.03 93.73 132.47 101.55 918.84 885.64 32.31 13.85
7 291.77 131.62 183.65 96.06 121.16 90.69 914.93 900.13 44.31 30.76
8 298.97 120.68 193.18 90.61 119.46 80.31 903.21 916.65 56.31 63.48
9 324.98 125.01 202.09 118.72 136.55 88.13 995.48 1056.59 68.31 62.22

10 327.58 135.25 204.20 106.08 142.04 61.42 976.57 1070.75 80.31 93.12

11 352.28 112.17 217.72 103.03 122.32 74.72 982.24 1134.22 92.31 120.00
12 347.07 122.85 186.34 108.57 144.80 89.03 998.66 1086.44 104.31 120.00
13 314.33 127.82 176.08 116.53 143.55 76.50 954.81 975.73 116.31 118.88
14 335.61 146.32 213.07 112.85 143.72 79.95 1031.51 1143.19 120.00 99.49
15 322.65 155.12 241.44 96.25 142.49 99.82 1057.76 1180.47 120.00 85.24
16 334.44 157.54 226.78 108.63 139.08 86.81 1053.29 1185.25 120.00 76.71
17 342.95 162.21 186.79 125.49 159.30 78.16 1054.91 1161.91 120.00 56.09
18 351.52 163.81 180.67 101.87 156.07 102.82 1056.77 1161.48 120.00 26.23
19 306.51 160.14 194.76 120.31 150.81 101.95 1034.48 1057.68 120.00 6.52
20 331.46 140.31 196.15 92.82 129.68 81.58 972.00 1055.65 120.00 0.00
21 351.75 122.82 222.79 98.26 135.87 91.50 1023.00 1168.49 0.00 0.00
22 327.44 136.26 204.65 92.46 144.33 78.86 984.00 1066.00 0.00 0.00
23 302.88 129.99 188.70 97.67 170.58 85.18 975.00 980.05 0.00 0.00
24 265.65 140.16 211.95 95.83 154.01 92.41 960.00 929.40 0.00 0.00

Total 7561.66 3220.61 4807.17 2445.70 3400.14 2097.93 23,533.20 24,763.26 1463.08 975.72
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Table 7. Cont.

B. Cost, Selling Price and Profit for Test Case 4 (Best Compromise Solution)

Hour Th Cost ($) WC ($) PV Cost ($) TC ($) SP ($) Profit ($)

1 11,313.10 26.59 0.00 11,339.69 21,630.75 10,291.06

2 11,163.59 26.59 0.00 11,190.18 20,724.00 9533.82

3 11,300.92 26.59 0.00 11,327.51 21,537.80 10,210.30

4 10,982.15 30.71 0.00 11,012.86 20,553.00 9540.14

5 10,848.76 55.33 7.55 10,911.64 21,504.92 10,593.28

6 10,907.79 102.07 141.28 11,151.14 22,293.51 11,142.37

7 10,840.90 157.43 354.88 11,353.21 24,329.42 12,976.21

8 10,666.11 214.29 757.03 11,637.43 25,830.68 14,193.25

9 11,798.47 271.29 741.92 12,811.68 27,936.16 15,124.48

10 11,535.66 328.29 1110.51 12,974.46 30,474.88 17,500.42

11 11,585.74 385.29 1507.91 13,478.94 32,607.17 19,128.22

12 11,834.05 442.29 1574.49 13,850.83 37,420.41 23,569.58

13 11,321.05 499.29 1417.69 13,238.03 35,342.89 22,104.87

14 12,224.89 516.83 1186.46 13,928.18 35,778.49 21,850.31

15 12,566.34 516.83 1016.51 14,099.68 31,890.71 17,791.02

16 12,496.84 516.83 914.82 13,928.49 30,999.90 17,071.41

17 12,556.04 516.83 549.59 13,622.46 28,754.62 15,132.16

18 12,588.57 516.83 300.88 13,406.28 27,465.67 14,059.40

19 12,338.22 516.83 53.85 12,908.90 26,715.04 13,806.14

20 11,488.50 516.83 0.00 12,005.33 25,389.00 13,383.67

21 12,101.88 26.59 0.00 12,128.47 24,040.50 11,912.03

22 11,634.79 26.59 0.00 11,661.38 22,887.84 11,226.46

23 11,583.47 26.59 0.00 11,610.06 21,937.50 10,327.44

24 11,428.16 26.59 0.00 11,454.75 21,312.00 9857.25

Total 279,105.98 6290.22 11,635.37 297,031.57 639,357.25 342,325.68

4.7. Analysis and Discussion

The EO algorithm is employed to analyze the optimal generation schedule for a hybrid
thermal-solar PV-wind system under the deregulated environment with the objective is to
maximize the profit of the operator and to minimize emission content for the given power
demand and tariff. The cost due to uncertainty of RER in meeting the load demand is also
included in the model. The effect of integrating solar and wind power units is studied under
(i) profit maximization, (ii) emission minimization and (iii) profit-emission optimization.

According to the results mentioned in Sections 4.4–4.6, it is observed that profit
increases when more and more renewable units are added to the thermal system. On the
other hand, emission content becomes reduced with the addition of more renewable units.
For the multiobjective profit-emission optimization case, the improvement in both profit
and emission can be seen to lie between the conditions (i) and (ii).

5. Conclusions

In this paper Equilibrium Optimization (EO) is applied for the solution of the optimal
generation schedule problem of a hybrid thermal-solar-wind test system such that the
profit is maximized and the pollution content becomes reduced. The practical constraints
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of non-convexity, non-linearity associated with the thermal unit, probabilistic terms due
to wind and solar system are included in the cost function and analyzed under dynamic
conditions. The performance of EO is also compared and validated with well-known PSO
and ABC algorithms.

The simulation results indicate that:

• The EO is not significantly dependent on algorithm-specific control parameters. The
results are found to vary in a very narrow band with variations in control parameters.

• As the population size increases, EO gives more promising results. However, an
increase in population size leads to increased computational time too.

• EO has a unique embedded mechanism for exploration and exploitation which leads
to the global best solution.

• The increase in profit and decrease in emission are computed for the integration of
solar, wind and wind-solar units in the existing thermal power generation system.

• It is verified that the higher the integration of RER, the greater is the profit, even after
including the uncertainty costs of the renewable energy in the model.

• EO is found to produce well-distributed Pareto-optimal solutions for the multiob-
jective problem. For all the tested cases it is observed that EO is capable of deal-
ing with complex operational constraints under the dynamic environment in an
efficient manner.

• The proposed work is beneficial for designing hybrid renewable power systems with
optimal capacities for given conditions to achieve desired profit and to reduce emission.
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Appendix A

Table A1. Cost and emission coefficients and generation limits of thermal units, power demand and respective market
selling price.

Unit ai($/MW2h) bi($/MWh) ci($/h) Pmin
(MW)

Pmax
(MW) αi(Kg/MW2h) βi(Kg/MWh) γi(Kg/h) UR

(MW/h)
DR

(MW/h)

1 0.007 7 240 100 500 0.00419 0.32767 13.8593 80 120
2 0.0095 10 200 50 200 0.00419 0.32767 13.8593 50 90
3 0.009 8 220 80 300 0.00683 −0.54551 40.2669 65 100
4 0.009 11 200 50 150 0.00683 −0.54551 40.2669 50 90
5 0.008 10.5 220 50 200 0.00461 −0.51116 42.8955 50 90
6 0.0075 12 190 50 120 0.00461 −0.51116 42.8955 50 90

Hour 1 2 3 4 5 6 7 8 9 10 11 12

PD
(MW) 955 942 953 930 935 963 989 1023 1126 1150 1201 1235

SP
($/MW) 22.65 22 22.6 22.1 23 23.15 24.6 25.25 24.81 26.5 27.15 30.3

Hour 13 14 15 16 17 18 19 20 21 22 23 24

PD
(MW) 1190 1251 1263 1250 1221 1202 1159 1092 1023 984 975 960

SP
($/MW) 29.7 28.6 25.25 24.8 23.55 22.85 23.05 23.25 23.5 23.26 22.5 22.2
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Table A2. Data for Solar PV units and wind farm.

Type of
System

No. of
Units

Rated
Power

(MW/Unit)
DC ($/MWh) kp kr k c Vci (m/s2) Vr (m/s2) Vco (m/s2)

Solar
PV 2 60 12

1.5 3
- - - - -

Wind 2 60 1.75 2 10 3 16 25
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