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Abstract: Accurate estimation of the state of charge (SOC) of lithium batteries is paramount to
ensuring consistent battery pack operation. To improve SOC estimation accuracy and suppress
colored noise in the system, a fractional order model based on an unscented Kalman filter and an
H-infinity filter (FOUHIF) estimation algorithm was proposed. Firstly, the discrete state equation of a
lithium battery was derived, as per the theory of fractional calculus. Then, the HPPC experiment
and the PSO algorithm were used to identify the internal parameters of the second order RC and
fractional order models, respectively. As discovered during working tests, the parameters identified
via the fractional order model proved to be more accurate. Furthermore, the feasibility of using the
FOUHIF algorithm was evaluated under the conditions of NEDC and UDDS, with obvious colored
noise. Compared with the fractional order unscented Kalman filter (FOUKF) and integer order
unscented Kalman filter (UKF) algorithms, the FOUHIF algorithm showed significant improvement
in both the accuracy and robustness of the estimation, with maximum errors of 1.86% and 1.61%
under the two working conditions, and a terminal voltage prediction error of no more than 5.29 mV.

Keywords: lithium ion battery; fractional order model; SOC estimation

1. Introduction

Currently, the traditional automobile industry is one of the main contributors to
the global greenhouse effect and oil crisis, and consequently the development of new
electric vehicles is evolving. To this end, many automobile companies have transformed
themselves and issued a timetable for ending the sale of traditional fuel vehicles. The new
vehicle models are mainly battery electric vehicles (BEV), hybrid electric vehicles (HEV)
and plug-in hybrid electric vehicles (PHEV). The main types of power batteries currently
available for electric vehicles include lead-acid, nickel-chromium, nickel-hydrogen, and
lithium-ion batteries. Between them, lithium-ion batteries have the highest specific energy
and volumetric specific energy, in addition to a long service life [1,2]. SOC is an important
lithium battery parameter and an accurate SOC estimation can help improve the service
life and battery safety.

There are four methods employed in SOC estimation. Firstly, there is the Coulomb
counting method. Although the calculation is simple, there are also obvious drawbacks.
For example, it is difficult to determine the initial calculated value, so it is generally used
in combination with an open-circuit integral method. However, before using this method,
the lithium battery needs to be left to set for a long time and the current sensor may
also show errors. When mixed with noise from the external environment, the current
error accumulation will continue to increase [3]. The second method is through empirical
value-based estimation, represented by neural networks, fuzzy algorithms, and support
vector equipment. The neural network requires a large amount of training data in the early
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stages to explore the relationship between various parameters in the nonlinear system
with high estimative accuracy. However, this method also has distinct shortcomings,
namely, the primary task of inputting a large amount of training data into the system
means that the estimation cannot be made in real time, and so this method has poor
adaptability as realistically it can only be used in a training environment. Furthermore,
fuzzy algorithms also need to process a large amount of data in the early stages, which is
difficult to implement in an embedded system [4]. Marvin Messing et al. took the internal
parameters of a battery model as the input values of a neural network. The experimental
results showed that the SOC estimation was relatively ideal [5]. Yin et al. adopted a PSO
algorithm to optimize the weight and threshold of the neural network, and subsequently
used a SA algorithm to optimize the PSO algorithm. The experimental results revealed that
the PSO algorithm was optimized for both accuracy and arithmetic speed [6]. Darsana Saji
et al. solved the problem of error accumulation by using a combination of the coulomb
counting method and the fuzzy algorithm, achieving high robustness and improved
estimation accuracy [7]. The third method is an estimation process based on the battery
characterization parameters. It is mainly used in laboratory environments to identify the
relationship between the parameters (including the open-circuit voltage and remaining
capacity) and the SOC of the lithium battery. This method is convenient and accurate,
but not suitable for practical application. Liu et al. estimated the SOC by using battery
characterization parameters such as the rebound voltage and temperature in combination
with a neural network. The results demonstrated that the estimated SOC values in this
method were highly accurate and consistent under various working conditions [8].

The fourth approach is an estimation method that combines filtering theory with an
equivalent circuit model, and is currently the most popular and reliable method [9,10].
The common filtering algorithms include the Kalman filter algorithm [11], H infinite filter
algorithm [12] and so on. The main advantage with these algorithms is that it is not
necessary to stage the battery for long periods or to train the data before use. Moreover,
real-time correction can be made in the case of errors in the theoretical and measured
values to conclusively estimate an accurate SOC. Amongst the filtering algorithms, the
unscented Kalman filter (UKF) algorithm develops quickly, and its UT transformation link
can usually be improved by obtaining more accurate values of the estimated parameter. H.
Aung et al. adopted an improved square root UKF algorithm, where the arithmetic speed
was improved by reducing the amount of sigma points [13]. Another research focus of the
UKF algorithm is its noise covariance matrix, with relevant theories showing that UKF
noise should be assumed in advance. Accordingly, Peng [14] and Sun [15] used an adaptive
UKF algorithm to estimate the SOC of lithium batteries, and adjusted the noise covariance
matrix in real time, which contributed to the fast convergence of the algorithm. In the
process of SOC estimation, the largest problem often comes from colored noise interference.
The main filtering algorithms suitable for colored noise estimation include the H infinity
algorithm [16]. Liu et al. proposed an adaptive H-infinity algorithm, which could not only
help to filter out colored noise but also solved the problem of the inaccurate initial values
of the noise covariance matrix. Moreover, the estimation accuracy was improved [17]. Liu
et al. used a method combining the UKF algorithm with an H-infinity algorithm, where
the UKF algorithm was used to linearize the nonlinear system. The experimental results
proved that this combined method could compensate for sensor errors [18].

Presently, equivalent circuit models are normally divided into integer order models
and fractional order models. The contents of the previous paragraph all relate to integer
order models. Compared with integer order models, fractional order equivalent circuit
lithium battery models can more comprehensively depict the internal chemical reaction
mechanism of the battery, resulting in improved SOC estimation accuracy [19,20]. Mu
et al. established a fractional order model which is simplified to be similar to the Thevenin
model, and on this basis a fractional order UKF technology was derived [21]. Additionally,
Chen et al. established a fractional second-order RC equivalent circuit model, and based
on this model, a fractional order UKF technology was developed [22]. In terms of updating
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the covariance matrix, the technology developed by reference [22] is different from that
derived by reference [21], but is more effective.

In view of the obvious advantages of the fractional order model over the integer order
model, a fractional order lithium battery model based on the FOUHIF estimation algorithm
is proposed in this paper. The specific layout of this paper is as follows: Section 2 gives
a detailed introduction to the fractional order lithium battery model; Section 3 describes
the identification of the internal parameters of integer order battery and fractional order
battery models, and compares their respective effects; Section 4 initially introduces and
analyzes the UKF and H infinity (HIF) algorithms, then proposes a fractional order model-
based unscented and H-infinity (FOUHIF) estimation algorithm; Section 5 describes the
experiment carried out under complex working conditions and compares the performances
of the FOUHIF algorithm, the fractional order unscented Kalman filter (FOUKF) algorithm,
and the integer-order unscented Kalman filter (UKF) algorithm.

2. Lithium Battery Modeling

In reference [23], a new linear capacitance model was proposed based on Curie’s
empirical law. Curie’s empirical law states that when a DC voltage U is applied to two ends
of a capacitor at the initial moment, the current generated by the capacitor complies with
the relationship equation i(t) = U/(h1tn), where, h1 and n are constants, and 0 < n < 1.
This law is an empirical relationship. The newly proposed capacitance model can be
summarized as follows: i(t) = C dnu(t)

dtn , 0 < n < 1, t > 0, and it was revealed that there is
no constant capacitance in practical engineering. These theories also imply that the essence
of capacitance is fractional order.

In engineering, the complex chemical reaction mechanism in lithium batteries is
often depicted by establishing an equivalent battery circuit model for simplicity’s sake to
clarify physical meaning and for online use. The main equivalent circuit models are the
Rint, Thevenin, PNGV, and multi-order RC models. However, they all have a common
drawback. That is, integer order models cannot depict the charge transfer reaction between
the electrolyte and the solid-phase interface layer or the electrochemical process of the
electric-double-layer effect. This implies that test results obtained over multiple testing
cycles under working conditions severely deviate from the true value. Consequently, in this
research, the second order RC model was improved into a fractional order model that can
depict the reaction mechanism more realistically. The improved model is shown in Figure 1,
where R0 is the ohmic internal resistance of the battery, which reflects its ohmic polarization
characteristics; the fractional order links formed by the constant phase elements CPE1 and
R1 describe the charge transfer process and the electric-double-layer effect in the battery
electrochemical processes; the fractional order links formed by the constant phase elements
CPE2 and R2 describe the transfer reaction behavior between the electrolyte and the solid
phase interface during the battery electrochemical processes.
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Figure 1. Fractional order model structure of the battery. 
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There are three common definitions of fractional calculus: the Riemann–Liouville (RL)
definition, the Caputo (CP) definition, and the Grünwald–Letnikov (GL) definition [24].
Since the GL definition is concise and clear, it is more appropriate for engineering, and it
is also easily combined with the Kalman filter algorithm. Therefore, in this paper, the GL
definition is used to establish the fractional-order lithium battery model. The GL definition
is given as:

αDr
t f (t) = lim

h→0
h−r

[ t−a
h ]

∑
i=0

(−1)i
(

r
i

)
f (t− ih) (1)

αDr
t f (t) =


dr f (t)/dtr r > 0

1 r = 0∫ t
α f (t)(dt)−r

(2)

In the equation, αDr
t represents a continuous integral differential operator, where α,

t are the upper and lower limits of the integral, and r is the fractional order of each link.
The impedance of the two constant phase elements (CPEs) in the above figure is expressed
as Equation (3). In the equation, n1, n2 are the numbers of the orders of the polarization
capacity and the diffusion capacity.{

ZCPE1(jw) = 1
[C1(jw)]n1

ZCPE2(jw) = 1
[C2(jw)]n2

(3)

The following equations are obtained in combination with the above figures and the
Thevenin theorem:

Dn1U1(t) = −
1

R1CCPE1
U1(t) +

1
CCPE1

I(t) (4)

Dn2U2(t) = −
1

R2CCPE2
U2(t) +

1
CCPE2

I(t) (5)

The measurement equation is:

U0 = UOCV −UR −U1 −U2 (6)

According to the above equation, the state-space equation of the continuous fractional
order model can be obtained as:


dα

dtα U1
dβ

dtβ U2
dSOC

dt
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 − 1
R1C1

0 0
0 − 1

R2C2
0

0 0 0


 U2

U1
SOC

+


1

C1
1

C2η
QN

I

U = Uoc −U1 −U2 − IR0

(7)

In the equation,

A1 =

 − 1
R1C1

− 1
R2C2

0

, B1 =


1

C1
1

C2η
QN

 (8)

After discretization of the above equation, according to the GL definition equation of
fractional calculus, the state equation of the fractional model can be obtained as follows: xk+1 = Tn

s Axk + Tn
s Buk +

Lm
∑

i=1
(−1)iγixk+1−i + Tn

s wk

y = Cxk + vk

(9)
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In the equation, the matrices A, B and the Newton binomial coefficients are:

A = diag
{
(∆t)n1 , (∆t)n2 , ∆t

}
A1 + diag{n1, n2, 1}

= diag
{
− ∆tn1

R1C1
− ∆tn2

R2C2
1
} (10)

B = diag
{
(∆t)n1 , (∆t)n2 , ∆t

}
B1

=
[

∆tn1
C1

∆tn2
C2

− ηk−1∆t
QN

]T (11)

γi =

(
n
i

)
= diag

[ (
1
i

) (
n1
i

) (
n2
i

) ]
,
(

n
i

)
=

{
1 i = 0

n(n−1)...(n−i+1)
i!

i > 0 (12)

Memory length is determined in a simplified form Lm; if f (t) < M and the precision
is ξ, then:

Lm ≥
(

M
ξ|Γ(1− i)|

)1/i
(13)

3. Identification of Internal Parameters of the Battery Model

After an equivalent circuit model of the lithium battery was established, it was nec-
essary to identify the model’s internal parameters. For the widely used second order RC
model, the parameters to be identified include the open-circuit voltage, ohmic internal
resistance, polarization capacity, and resistance, that is θ =

[
R0 R1 R2 C1 C2

]
.

Since the open-circuit voltage cannot be measured directly under normal circumstances,
the terminal voltage of a lithium battery staged for a length of time is regarded as the open-
circuit voltage; and the electrochemical model proposed by G.L Plett was used to fit the
open-circuit voltage and SOC. This electrochemical model mainly combines the Shepherd,
Unnewehr, and Nernst models, and is expressed as Equation (14). In the equation, U is the
terminal voltage of the battery; R0 is the ohmic internal resistance of the battery; ik is the
discharge current; zk is the SOC at the moment of k; and k0 ∼ k4 is the fitting coefficient.

U = k0 − R0ik −
k1

zk
+ k2zk + k3 ln(zk) + k4 ln(1− zk) (14)

To verify the superiority of the fractional order model, the hybrid pulse power charac-
terization (HPPC) experimental method and the PSO algorithm were used to identify the
internal parameters of the second order RC and fractional order RC models, respectively,
and a comparison was made via the identification results. In addition to the above two
methods, genetic algorithms and ant colony algorithms can also identify lithium battery
parameters. The main challenge is to balance exploration and exploitation in the algorithm
process [25].

Firstly, an HPPC experiment was conducted to identify the offline parameters of the
second order RC model. The results reveal that in the case of pulse-driven high current
discharge, an instant drop in the terminal voltage of the battery occurs, as shown in Figure 2.
Capacitance characteristics show that the capacitor is turned on in this process, and the
bypass polarization resistance is short-circuited. Therefore, it must be the battery ohmic
internal resistance that causes the instant voltage drop during pulse discharge. The voltage
change curve in this process is shown in section AB of Figure 2 and was calculated as per
Equation (15).

R0 = (U0 −Uc)/I (15)
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Figure 2. Single pulse discharge current and voltage curve.

Upon canceling the pulse discharge current, the terminal voltage of the battery in-
stantly increases. Since the voltage of the capacitor cannot suddenly change, the battery
ohmic internal resistance remains the reason for the instant voltage rise when the battery is
left standing still before the battery terminal voltage starts to rise slowly. This process is
mainly due to the zero-input response of the RC link. The voltage change curve is shown
in section DE of the figure. The battery output is calculated as per Equation (16).

UOC(SOC)−Ut = U1(0)e
− ∆t

R1C1 + U2(0)e
− ∆t

R2C2 (16)

In the equation, U1(0) and U2(0) are the voltage values of R1C1 and R2C2 at the
moment after discharging is stopped. During pulse discharge, the two RC links can be
regarded as zero-state responses. The voltage change curve in this process is presented
in section BC of Figure 2, and the battery output in this process is calculated as per
Equation (17). The parameters of the battery model can be calculated by substituting
Equation (17) with the time constant calculated as per Equation (16).

UOC(SOC)−Ut = IR0 + IR1(1− e−
∆t

R1C1 ) + IR2(1− e−
∆t

R2C2 ) (17)

Next, a particle swarm optimization (PSO) algorithm was used to identify the parame-
ters of the fractional order model. The parameters to be identified are
θ =

[
R0 R1 R2 C1 C2 n1 n2

]
. Compared with the integer order model, there

are two more capacitor orders. This algorithm is an immediate search algorithm based on
group collaboration, which is easier to implement than the other algorithms. The fitness
function is continuously optimized by updating the speed and position of particles in the
space. When the fitness function is optimal, its position is also at the optimum. The fitness
function is the minimum Euclidean norm between the terminal voltage Û(t) estimated by
the fractional order model of the lithium battery, and the actual measured terminal voltage
U(t). The process of using the PSO algorithm to identify the capacitor order is illustrated
in Figure 3.

J = min
∫ +∞

0
‖U(t)− Û(t)‖

2
dt (18)
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4. Algorithm for Estimating the SOC of Lithium Battery
4.1. UKF Algorithm

The internal parameters of the lithium battery system are nonlinear and vary with
time. The widely used expanded Kalman filter (EKF) algorithm is applicable to this kind
of nonlinear system. The main idea involves carrying out a Taylor expansion of the state-
space equation; therefore, it is necessary to calculate the Jacobian matrix if this algorithm is
adopted. However, it suffers from a high computation burden. Meanwhile, the high second-
and above orders are omitted in the Taylor expansion. This may cause an accumulation of
errors in the estimation, resulting in inaccurate results.

In contrast, the UKF algorithm used for this kind of nonlinear system can approximate
the probability density distribution of random variables instead of directly approximating
the linearization of the nonlinear system. Compared with EKF, UKF can retain high order
information, with an expected value accuracy and covariance reaching the third order
approximation. Moreover, without the need for a differentiable model and calculation of
the Jacobian matrix, UKF is easier to implement in hardware.

As the core of the UKF algorithm, the unscented transformation (UT) can be regarded
as a Monte Carlo algorithm, whereby the approximations of the mean and covariance are
obtained by constructing sigma points. UT is generally divided into the general, simple,
and spherical types. If the model pursues fewer calculations, then the simple type should
be used. If the model has a large number of dimensions, then it is necessary to use the
spherical type, as the simple type may result in unstable values.

The UT can be explained mathematically as follows, whereby the second-order statis-
tics are x and the nonlinear function is f :

y = f (x) , µx = E(x) , Cx = Cov(x) (19)

The UT can be expressed as follows:[
µ̂y, Ĉyx, Ĉy

]
= UT( f , µx, Cx) (20)
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Mathematically, UT can be equivalently expressed in an approximate integration
format. ∫

Rn
h(z)ϕx(z)dz (21)

In the equation, ϕx is the probability density function of x. When calculating the
expected value y of µ̂y, h is equal to f (i.e., h = f ).

Currently, there are many types of UKF algorithms. In this paper, the following type
is introduced:

Given that the nonlinear system model is{
xk = f (xk−1, uk) + wk

yk = h(xk, uk) + vk
(22)

(1) the initial value of the state observer is set.

x̂+0 = E(x0), P+
0 = E[(x0 − x̂+0 )(x0 − x̂+0 )

T
] (23)

(2) the sigma point and the corresponding weight are calculated in a general UT
format. Here, Pk−1 should be processed first, via the Cholesky decomposition.

Pk−1 = Sk−1(Sk−1)
T (24)

wm
0 = λ

L+λ

wc
0 = λ

L+λ + (1− α2 + β)

wm
i = wc

i =
λ

2(L+λ)
, i = 1, . . . , 2L

x̂(0)k−1 = x̂+k−1

x̂(i)k−1 = x̂+k−1 + (
√
(L + λ)Pk−1), i = 1, . . . , L

x̂(i)k−1 = x̂+k−1 − (
√
(L + λ)Pk−1), i = L + 1, . . . , 2L

(25)

(3) Time updating
x̂(i)k = f (x̂(i)k−1, uk−1) (26)

x̂−k = ∑2L
i=0 wm

i x̂(i)k (27)

P−k = ∑2L
i=0 wc

i (x̂(i)k − x̂−k )(x̂(i)k − x̂−k )
T
+ Qk (28)

(4) Measurement updating
ŷi

k = h(x̂(i)k , uk) (29)

ŷk = ∑2L
i=0 wm

i ŷi
k (30)

Pyy,k = ∑2L
i=0 wc

i (ŷ
i
k − ŷk)(ŷi

k − ŷk)
T
+ Rk (31)

Pxy,k = ∑2L
i=0 wc

i (x̂(i)k − x̂−k )(ŷ
i
k − ŷk)

T
(32)

Kk = Pxy,k(Pyy,k)
−1 (33)

x̂+k = x̂−k + Kk(yk − ŷk) (34)

P+
k = P−k − KkPyy,kKT

k (35)

In summary, the following problems are encountered. Firstly, the covariance matrix
Pk−1 must be positive definite and symmetric in order to conduct the Cholesky decomposi-
tion. However, in actual calculations, due to the loss of precision and the inversion link in
the algorithm, the covariance matrix Pk−1 cannot constantly remain symmetric and positive
definite. Furthermore, the more estimation parameters that are involved, the more likely it
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is to be non-positive definite, resulting in the failure of the algorithm. Secondly, in the UKF
algorithm, the UT link is removed, and the remaining steps still fall within the standard
KF framework. The UKF algorithm has the same requirements for system noise as the KF
algorithm. Namely, the noise probability distribution is known, and it is considered that
the state noises wk and vk are uncorrelated Gaussian white noises that conform to a normal
distribution. However, the real noise is often colored noise, so the UKF algorithm itself still
has certain limitations.

4.2. H-Infinity Filter (HIF) Algorithm

In the battery management system (BMS), the noise generated by a multitude of factors
cannot be approximated to zero-mean uncorrelated white noise. Therefore, the use of UKF
or KF alone can cause divergences or invalid estimation results. The colored noise of BMS is
mainly caused by two factors. First is the noise generated by sensors. The main sensors in
BMS include voltage, current, and temperature sensors. Due to the manufacturing process
and design of circuitry, accuracy loss and electromagnetic interference are caused, and
the noise generated cannot be regarded as zero-mean uncorrelated white noise. Second is
the error of the noise covariance matrix. Sudden changes and a large range of change in
electrical currents will affect the calculation of the mean noise value, and will further affect
the calculation of the covariance matrix. It is also hard to determine the error generated at
this time.

In order to filter out uncertain noise, the H∞ filter (HIF) algorithm is introduced
here. Firstly, the cost function shown by Equation (36) is given below, where yk − ŷk is the
estimation error, x0 − x̂0 is the error in the initial value, and Sk represents the designer’s
degree of interest in each state being evaluated.

J =

N−1
∑

k=0
‖yk − ŷk‖

2

Sk

‖x0 − x̂0‖2
P−1

0
+

N−1
∑

k=0
(‖wk‖2

Q−1
k

+ ‖vk‖2
R−1

k
)

(36)

For any form of noise in the system, the purpose of the cost function is to calculate the
accuracy of the estimated object, which is controlled within a certain range of proportions.
According to game theory, in the KF algorithm, natural noise is idealized, and the noise
that is treated as white noise is never changed. In contrast, in the HIF algorithm, natural
noise is assumed as the worst condition.

The goal of this is to minimize the estimation error yk − ŷk, and to further obtain the
smallest cost function, J. To facilitate the setting of the performance boundary to minimize
cost function J, the following equations were used:

J <
1
γ

(37)

After rearranging the above two equations, the following equation was obtained:

J = −1
θ
‖x0 − x̂0‖2

P−1
0

+
N−1

∑
k=0

[
‖xk − x̂0‖2

−
Sk

− 1
θ
(‖wk‖2

Q−1
k

+ ‖yk − Ckxk − Dkuk‖2
R−1

k
)

]
(38)

Based on the above equation, the minimization of the cost function was transformed
into the following minimax equation:

J = min
∧
xk

max
wk ,zk ,x0

J (39)

The goal of the calculation results was to make the cost function J lower than 1/γ.
The following is a brief introduction to the iteration process of the HIF algorithm:

(1) Initialization:
x0, P0, S0, Q0, R0 (40)
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(2) Updating the prior states estimation:

x̂−k+1 = f (x̂+k , uk) (41)

(3) Updating the prior states error covariance:

P−k+1 = A1,kP+
k AT

1,k + Qk (42)

(4) Updating the symmetric positive definite matrix:

−
Sk = LT

k SkLk (43)

Correction of measured value.
(5) Updating gain matrix:

Kk+1 = Ak+1P−k+1(I − 1/γ
−
SkP−k+1 + CT

k+1R−1
k+1Ck+1P−k+1)

−1

CT
k+1R−1

k+1 (44)

(6) Updating the posteriori state value:

x̂+k+1 = x̂−k+1 + Kk+1(zk+1 − h(x̂−k+1, uk+1)) (45)

(7) Updating the posteriori variance:

P+
k+1 = A1,kP−k+1(I − 1/γSkP−k+1 + CT

k RT
k CkP−k+1)

−1
AT

1,k + Qk (46)

As discovered from the above process, it is possible to obtain the relationship between
the converted HIF and KF algorithms by changing the limiting factor, γ. When γ = 0, the
HIF algorithm becomes the KF algorithm. In other words, the KF algorithm is a special
iteration of the HIF algorithm with an infinite performance boundary. Moreover, there
are some limitations in the HIF algorithm. (1) In the HIF algorithm, there are no specific
measures for the linearization of the nonlinear system, and (2) although colored noise
can be filtered out in the HIF algorithm, the state noise variance and measurement noise
variance matrices should still be assumed in advance. The assumed value also has a direct
effect on the final estimation result, resulting in amplified or divergent errors.

4.3. Fractional Order Model-Based Unscented Kalman Filter and H-Infinity Filter (FOUHIF)
Estimation Algorithm

The internal chemical mechanism of lithium batteries is complex, and the parameters
have an extremely strong nonlinearity relationship. In addition, the noise probability
distribution of lithium batteries is unknown under different working conditions and
electrical currents. Based on the above-mentioned problems of lithium batteries and the
analysis formed in Chapter 4, a fractional order model-based unscented Kalman filter and
H-infinity filter (FOUHIF) estimation algorithm was proposed, with the UKF algorithm as
the main framework, and its UT change can improve estimation accuracy and speed. In
the FOUHIF algorithm, an HIF algorithm was incorporated to solve the problem where all
noise had to be assumed to be white noise in the UKF algorithm. Colored noise was filtered
out by minimizing the cost function. Meanwhile, in order to improve estimation accuracy,
the FOUHIF algorithm was combined with the lithium battery fractional order model.
Namely, the expected value and error covariance matrix of the priori state estimation value
were transformed into a fractional order format. Furthermore, some issues with the two
algorithms were also improved: firstly, the singular value decomposition of the covariance
matrix Pk was carried out to solve the original problem of an ill-conditioned matrix being
generated during the Cholesky decomposition. Secondly, a self-adaption method was used
to solve the problem of the uncertain initial values of the state noise covariance and the
measurement noise covariance matrices.
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If the SVD method is used, the decomposed matrix is neither required to be positive
definite nor required to be a square matrix. This means that any matrix is suitable for SVD
decomposition. Assuming that the matrix A is an m× n matrix, the SVD of matrix A is
defined as:

A = USVT ⇔ [U, S, V] = SVD(A) (47)

S =

[
∑ 0
0 0

]
m×n

, ∑ = diag(σ1, σ2, . . . , σn)

In the above two equations, matrices U and V are orthogonal matrices; the column
vector ui of U is the eigenvector of matrix AAT; the column vector vi of V is the eigenvector
of matrix ATA; σi is the singular value; and σ2

i is the eigenvalue of the matrix AAT.
The detailed steps of the FOUHIF algorithm are as follows:
(1) Initialization:

x̂+0 = E(x0), P+
0 = E[(x0 − x̂+0 )(x0 − x̂+0 )

T
] (48)

(2) Performing SVD on Pk,and calculating the sampling points and corresponding
weight values: [

u S v
]
= SVD(Pk) (49)

wm
0 = λ

L+λ

wc
0 = λ

L+λ + (1− α2 + β)

wm
i = wc

i =
λ

2(L+λ)
, i = 1, . . . , 2L

(50)


x̂(0)k−1 = x̂+k−1

x̂(i)k−1 = x̂+k−1 + (
√
(L + λ)S), i = 1, . . . , L

x̂(i)k−1 = x̂+k−1 − (
√
(L + λ)S), i = L + 1, . . . , 2L

(51)

(3) Update time: The state variables x̂+1 , . . . , x̂+k−1 are required to calculate the expected
value and the error covariance matrix of the priori state estimation variable; Equation
(9) is the nonlinear state transfer function (52), and the maximum difference between the
fractional order UKF and the integer order UKF is shown in Equations (52)–(54). The
detailed derivation process can be found in Reference [22].

x̂(i)k = f (x̂(i)k−1, uk−1) (52)

x̂−k = E

(
f (x̂(i)k−1, uk−1)−

k

∑
j=1

Kj x̂+k−j

)
=

2L

∑
i=0

wm
i x̂(i)k −

k

∑
j=1

Kj x̂+k−j (53)

P−k =
2L
∑

i=0
wc

i (x̂(i)k −
2L
∑

i=0
wm

i x̂(i)k )(x̂(i)k −
2L
∑

i=0
wm

i x̂(i)k )T

+
k
∑

j=1
(Kj x̂+k−j

2n
∑

i=0
w(c)

i (x̂(i)k −
2n
∑

i=0
w(m)

i x̂(i)k )T

+
K
∑

j=1

2n
∑

i=0
w(c)

i (x̂(i)k −
2n
∑

i=0
w(m)

i x̂(i)k )(x̂+k−j)
T(Kj)

T

+
k
∑

j=1
Kj x̂+k−j(x̂+k−j)

T(Kj)
T + Qk

(54)
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(4) Updating the measurements and calculating the predicted value ŷk of the output
and the covariance matrix Pyy,k and Pxy,k, where the nonlinear measurement function is
expressed by Equation (9):

ŷi
k = h(x̂(i)k , uk) (55)

ŷk =
2L

∑
i=0

wm
i ŷi

k (56)

Pyy,k = ∑2L
i=0 wc

i (ŷ
i
k − ŷk)(ŷi

k − ŷk)
T
+ Rk (57)

Pxy,k = ∑2L
i=0 wc

i (x̂(i)k − x̂−k )(ŷ
i
k − ŷk)

T
(58)

(5) The above steps are identical to those of the fractional order UKF algorithm.
Afterwards, the posteriori state estimation value was corrected:

Kk = Pxy,k(Pyy,k)
−1 (59)

x̂+k = x̂−k + Kk(yk − ŷk) (60)

P+
k = P−k −

[
Pxy,k P−k

]
R−e,k

[
Pxy,k P−k

]T (61)

Re,k =

[
R + Pyy,k (Pxy,k)

T

Pxy,k γ2 I + P−k

]
(62)

The specific derivation processes of Equations (61) and (62) can be seen in Refer-
ence [18]. In Reference [18], the range of γ2 based on the integer order battery model was
derived from the above two equations. In this paper, the range of γ2 based on the fractional
order battery model was derived from the above two equations.

According to the characteristics of the lithium battery state equation, the following
equation was obtained by substituting Equation (54) into Equation (61).

P+
k = P−k − γ2Pxy,kPxy,k − P−k RP−k (63)

By carrying out an inversion calculation on both sides of the equation and simplifying
it, the following equation was obtained:

(P+
k )
−1

= (P−k )
−1 − γ−2 I − (P−k )

−1Pxy,kR−1
[
(P−k )

−1Pxy,k

]T
(64)

Since P+
k is symmetrical and positive definite, the above equation should be greater

than 0. Hence:
(P−k )

−1 − (P−k )
−1Pxy,kR−1

[
(P−k )

−1Pxy,k

]T
> γ−2 I (65)

γ−2 can be regarded as the eigenvalue of the left side of the above equation, so:

γ2 > αmax{eig((P−k )
−1 − (P−k )

−1Pxy,kR−1
[
(P−k )

−1Pxy,k

]T
)
−1
} (66)

γ2 takes the largest eigenvalue, which can be calculated by the following equation:

γ2 = βmax{eig((P−k )
−1 − (P−k )

−1Pxy,kR−1
[
(P−k )

−1Pxy,k)
]T

)
−1
} (67)
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Thereby, Equations (61), (62), and (67) are applicable to both the integer order model
and the fractional order model. γ2 has the same function as the cost function in the HIF
algorithm. By adjusting γ2, it is possible to improve the robustness to colored noise and
correct the ill-conditioned matrix that is encountered when calculating the covariance
matrix. When γ2 tends to infinity, the FOUHF algorithm is equivalent to the FOUKF
algorithm, where β is not less than 1.

Next, a self-adaption algorithm was used to correct the noise covariance matrix Q and
matrix R.

∆Uk = Uk − [k0 + R0ik +
k1

zk
− k2zk − k3 ln(zk)− k4 ln(1− zk)] (68)

Fk ≈

k
∑

n=k−L+1
∆Un∆UT

n

L
(69)

Qk = KkFkKT
k (70)

Rk = Fk +
2nx

∑
i=0

wc
i (
∧
yi

k − ˆUk + ∆U)(
∧
yi

k −Uk + ∆U)

T

(71)

where ∆U is the terminal voltage error value output used by the model at time k, and Fk is
the approximate value of the terminal voltage error covariance used by the model at time k.

5. Experiment
5.1. Experiment Platform

In order to verify the effectiveness of the algorithm proposed in this paper, a lithium
battery test platform set was established for this experiment. This platform mainly consisted
of the following components: (1) an electric vehicle battery test system (EVTS) produced
by Arbin (USA) with a measurement accuracy of ±0.1%FSR, (2) a constant temperature
and moisture testing machine produced by Giant Force Company for controlling the
ambient temperature of the lithium battery, (3) an upper computer for collecting the
lithium battery parameters, (4) a battery pack composed of three ternary lithium batteries.
The specific parameters of the battery pack are shown in Table 1, and the physical diagram
of the experimental platform is shown in Figure 4. Figure 5 shows the flow of the PSO
identification algorithm and the FOUHIF algorithm.

Table 1. Battery parameters.

Name of Parameter Value

Nominal capacity 27 Ah
Nominal voltage 3.7 V

Charging cut-off voltage 4.2 V
Discharging cut-off voltage 2.75 V

Size 17 × 90 × 200 mm
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Figure 4. Lithium-ion battery test platform. Figure 4. Lithium-ion battery test platform.

5.2. Identification of the Parameters of Lithium Battery Model

The function relationship between OCV and SOC was calculated before carrying out
the parameter identification and SOC estimation. The experimental temperature was set at
25 ◦C to measure the charge and discharge curves of the lithium battery and to calculate
the mean value. Then, by fitting based on Equation (14), the OCV–SOC curve of the battery
was obtained, as shown in Figure 6.

The accuracy of the identified internal parameters of the equivalent circuit model has
a direct effect on the estimation of the SOC. Meanwhile, in order to prove the superiority
of the fractional order model, the HPPC experiment method and the PSO algorithm
introduced in Chapter 3 were taken to identify the internal parameters of the second order
RC and fractional order models. Then, a comparison was made on the operating effects
of the parameters identified by the two methods under the working conditions of HPPC.
Table 2 illustrates the results identified by the two types of models. It was revealed that the
fractional order model and the integer order model have fairly different parameters; the
two capacitor orders in the fractional order model were 0.91 and 0.82 respectively, which
is consistent with the conclusion made in reference [23]. Namely, the lower the loss, the
closer the order is to 1. Figure 7a,b demonstrate the current and voltage curves under the
working conditions of HPPC, and Figure 8a presents a comparison between the actual
value of the terminal voltage and the estimated value of the terminal voltage, which were
obtained from the fractional order and integer order RC models. The graph in Figure 8b
represents the error in the terminal voltage estimated by the two types of models. As can
be seen in Figure 8 and Table 3, compared with the integer order model, the depiction of
lithium batteries by the fractional order model is more accurate, because the mean absolute
error (MAE) was reduced from 1.66% to 1.39%. Meanwhile, the stability index (RSME) of
the estimated terminal voltage decreased from 2.28% to 1.75%.
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Table 2. Identification results of battery parameters.

R0(mΩ) R1(mΩ) R2(mΩ) C1(F) C2(F) n1 n2

Two-order 6 2.6 3.5 12,470 26,981 - -
Fractional-order 6 1.7 1.2 17,283 60,181 0.91 0.82

Table 3. Statistical data of terminal voltages under HPPC cycles.

RMSE(%) MAE(%)

Two-order 2.28 1.66
Fractional-order 1.75 1.39
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It can be seen from the identification results that the parameters of the fractional
order equivalent circuit model are significantly different from those of the integer order
equivalent circuit model. This is especially the case for the capacitance value. The main
reason for this is that the integer order equivalent circuit model is too simple, and only
reflects the ohmic, concentration, and electrochemical polarization in the lithium battery.
Meanwhile, the fractional order model not only reflects the three chemical reactions, but
also reflects the double electric layer effect, and the transfer reaction between the electrolyte
and solid phase interface.

5.3. Verification of SOC under the Working Condition of NEDC

In order to verify the accuracy and robustness of the algorithm proposed in this
research, the working conditions for the complicated New European Driving Cycle (NEDC)
were selected when running tests on the battery. Under these working conditions, the
electric current fluctuated greatly, making it more suitable for testing the performance of
the algorithm at filtering colored noise. In the meantime, considering that the initial value
of the SOC cannot be determined in actual engineering applications, it was necessary to
evaluate whether or not the SOC could be quickly corrected in the algorithm when the
initial value of the SOC was inaccurate. Therefore, in this research, the initial value of the
SOC was set at 70%, the initial error was artificially set at 30%, and the memory length of
the fractional order model was set at 70.

Figure 9a,b show the current and voltage under the NEDC working conditions.
Figure 10a illustrates the SOC values of the battery estimated by FOUHIF, FOUKF, and the
UKF algorithm, respectively, under the NEDC working conditions. Figure 10b presents
the errors in SOC estimated by the three algorithms. As can be observed in these figures,
FOUHIF had the highest robustness and greatest estimation effect; the UKF algorithm had
the worst estimation effect under these working conditions; and in the FOUHIF algorithm,
the root-mean-square error (RSME), mean absolute error (MAE), and maximum absolute
error (ME) were reduced to 0.94, 0.78, and 1.86% respectively. Furthermore, the maximum
error in the estimated SOC value appears at the 13,686th second. This reflects an improve-
ment in SOC estimation accuracy and improved robustness. Figure 10c demonstrates the
terminal voltage values estimated by the three algorithms. The voltage predicted by the
three algorithms can track the measured value quickly. However, the maximum absolute
error in the terminal voltage predicted by the FOUHIF algorithm was only 5.29 mV. the
specific results are shown in Figure 10d. Table 4 shows the SOC estimation errors of the
three algorithms under the NEDC condition.
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Table 4. Statistical data of SOC under NEDC cycles.

RSME (%) MAE (%) ME (%)

FOUHIF 0.94 0.78 1.86
FOUKF 1.29 1.10 2.53

UKF 1.57 1.33 2.91

The main factors that significantly affected the measurement uncertainty of the lithium
battery SOC are the uncertainty caused by the measurement repeatability of the terminal
voltage and the measurement error of the battery cycle test equipment itself, as evaluated
by class A and class B, respectively. Under the NEDC working conditions, the uncertainty
analysis of the three estimation methods was conducted to select the time period when the
battery was standing, ranging from 11,711 to 11,741 s. First, the functional relationship
between the measured voltage UOCV of battery and the estimated SOC value was fitted,
thus obtaining Formula (72). Second, Formula (73) was used to calculate the standard
uncertainties ux of the directly measured value UOCV . Formula (74) is the propagation
formula between the directly measured voltage UOCV and the indirectly measured SOC
value. Third, the propagation formula was used to calculate the standard uncertainties
of the indirectly measured SOC value. Therefore, the uncertainty components of the
UKF, FOUKF and FOUHIF estimation methods caused by repeated measurements were
6.0 × 10−4, 9.8 × 10−5 and 5.3 × 10−6, respectively. Fourth, Formula (75) was used to
calculate the uncertainties caused by the error of the instruments where, ∆x is the limit
error. It was assumed that the error was normally distributed and that k =

√
3. Therefore,

the uncertainties caused by equipment indication errors were 5.7× 10−3, 4.9× 10−3, and
4.1× 10−4, respectively. Finally, Formula (76) was used to calculate the combined standard
uncertainties of the estimated SOC value; the standard uncertainties of the three methods
were 5.8× 10−3, 4.9× 10−3 and 4.1× 10−4. For the selected measurement time interval, the
measurement results of the three measurement methods were 0.605± 0.0058, 0.602± 0.0049
and 0.600± 0.00041, respectively. Therefore, in terms of uncertainty, the FOUHIF algorithm
had the highest reliability when analyzing the three measurement methods.

SOC = f (Uocv) (72)

ux =

∑ (xu −
−
x)

2

n− 1

1/2

(73)

uy,1 =

∣∣∣∣ ∂SOC
∂UOCV

∣∣∣∣ux (74)

uy,2 =
∆x
k

(75)

uc =
√

u2
y,1 + u2

y,2 (76)

5.4. Verification of SOC under the Working Condition of UDDS

In order to further verify the robustness and universality of the FOUHIF algorithm,
lithium batteries were also tested under UDDS working conditions, and an estimation was
made on the SOC of the battery by the aforementioned three algorithms. The initial value
of SOC was set as 0.5, and the initial error was set as 50%.



Energies 2021, 14, 6307 20 of 23

The current and voltage tested under the UDDS working conditions are shown in
Figure 11a,b. As can be seen, these working conditions are very complicated, allowing
the robustness of the algorithm to be better tested. Figure 12a,b illustrate the estimation
effects of the three algorithms under these working conditions. The results indicate that
the robustness and estimation accuracy of the FOUHIF algorithm are the best, with RSME,
MAE, and ME reduced to 0.97, 0.74 and 1.61%, respectively. The maximum error in the
SOC estimated by this algorithm occurred at the 22,463th second. Figure 12c,d illustrate the
terminal voltage values and their errors predicted by the three algorithms. As revealed from
the experiments, the FOUHIF algorithm had the best evaluation effect, with a maximum
absolute error in the estimated terminal voltage of just 4.94 mV. Table 5 shows the error of
SOC estimation by three algorithms under UDDS condition.
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Table 5. Statistical data of terminal voltages under UDDS cycles.

RSME (10%) MAE (10%) ME (10%)

FOUHIF 0.97 0.73 1.61
FOUKF 1.73 0.96 1.94

UKF 1.94 1.23 2.22

Under the UDDS working conditions, the uncertainty analysis of the three estimation
methods was conducted to select the time period when the battery was standing, ranging
from 30,147 to 30,500 s. The uncertainty components of the UKF, FOUKF and FOUHIF
estimation methods caused by repeated measurements were 1.3× 10−3, 7.9× 10−4 and
1.2× 10−4, respectively. The uncertainties caused by equipment indication errors were
7.2× 10−4, 4.8× 10−4 and 4.1× 10−4, respectively. The standard uncertainties of the three
methods were 1.5× 10−3, 9.2× 10−3 and 1.6× 10−4. For the selected measurement time
interval, the measurement results of the three measurement methods were 0.898± 0.0015,
0.908± 0.00092 and 0.904± 0.00016, respectively. Therefore, in terms of uncertainty, the
FOUHIF algorithm had the highest reliability when analyzing the three measurement
methods.
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6. Conclusions

In this paper, by using the fractional order battery model as the core component, an
analysis was made on the advantages of several models from the perspectives of electro-
chemistry and mathematical modeling. The results revealed that the internal chemical
reaction process of lithium batteries depicted by the fractional order model is more compre-
hensive. On this basis, the FOUHIF algorithm was proposed as a method for estimating the
SOC. In this algorithm, estimation accuracy and speed could be improved by using UT, and
colored noise could be filtered out using a cost function. Furthermore, the parameters of
the second order RC model and the fractional order model were separately identified, and
the terminal voltage estimation effects of the two types of models were tested under HPPC
working conditions. The experimental results show that the terminal voltage estimated
by the fractional order model was more accurate, with absolute error kept within 5 mV.
Following this, the estimation effect of the FOUHIF algorithm was verified under NEDC
and UDDS working conditions. At the same time, with the error of the initial value of the
SOC artificially set as 30% and 50%, the estimation result of this algorithm was improved
significantly, compared with those of the FOUKF and UKF algorithms under the same
experimental conditions. Under the two working conditions, the maximum absolute error
in the estimated value of the SOC was reduced to 1.86% and 1.61%, with the error of the
estimated terminal voltage kept within the range of 0–5.29 mV. The experimental results
revealed that the FOUHIF algorithm had high robustness and estimation accuracy.
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