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William Holderbaum and Stephen

Haben

Received: 20 August 2021

Accepted: 28 September 2021

Published: 1 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Counting Lab Ltd., Reading RG6 6BU, UK
2 Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK; grindrod@maths.ox.ac.uk
* Correspondence: colin@countinglab.co.uk

Abstract: We describe our approach to the Western Power Distribution (WPD) Presumed Open Data
(POD) 6 MWh battery storage capacity forecasting competition, in which we finished second. The
competition entails two distinct forecasting aims to maximise the daily evening peak reduction and
using as much solar photovoltaic energy as possible. For the latter, we combine a Bayesian (MCMC)
linear regression model with an average generation distribution. For the former, we introduce a new
error metric that allows even a simple weighted average combined with a simple linear regression
model to score very well using the competition performance metric.

Keywords: forecasting; battery storage; error metrics; loss function

1. Introduction

The Western Power Distribution (WPD) Presumed Open Data (POD) 6MWh battery
storage capacity forecasting competition ran from 28 January 2021 through 18 March
2021. The competition entails prescribing battery charging and discharging profiles for the
upcoming week:

1. battery charging profile—For each half hour before 3:30 pm for each day of the
upcoming week, prescribe how much charge the battery will take (up to a maximum
of 2.5 MW over that half hour); and

2. a battery discharging profile—For each half hour from 3:30 pm until 9 pm for each
day of the upcoming week, prescribe how much the battery will discharge (up to a
maximum of 2.5 MW over that half hour).

The battery can charge up to a maximum of 6MWh in total. To optimise their score,
the entrant needs to align the charging profile as much as possible with electricity genera-
tion from a solar farm; and align the discharging profile so that the peak demand from the
substation (after 3:30 pm) each day is minimised.

The motivation behind the competition is to help understand the role batteries can
play in improving efficiency and reliability of the electricity grid and prevent expensive
network reinforcement. Firstly to determine how well batteries can use energy generation
from solar farms rather than that energy being directly fed into the grid (less efficient) and
the batteries charging from the grid (extra demand on the grid). Secondly to determine
how much peak energy reduction can be made on the substation by discharging a battery
at pre-scheduled times.

Competition Details

The Western Power Distribution Presumed Open Data (WPD-POD) challenge was
launched on 12 February 2021 with four competition phases—submission deadlines of 25
February 2021, 4 March 2021, 11 March 2021, and 18 March 2021. Over those periods, more-
and-more of the full dataset was gradually released to entrants. In each phase, entrants had
to produce charging and discharging profiles for the battery for the week after the end of
the latest dataset release. The first forecast week was the week beginning 16 October 2018
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and data was provided from 3 November 2017 up to 15 October 2018. The second forecast
week was the week beginning 10 March 2019. The third was for the pre-Christmas week of
18 December 2019 through 24 December 2019. The final forecasting week with the most
amount of available data to train on was the week beginning 3 July 2020, during which
time the UK was in lockdown due to the Covid-19 pandemic with the UK having entered
lockdown on 26 March 2020. During this time people were restricted from going out of
their homes without valid reasons.

These same four weeks are used in this paper to illustrate the results from our approach
and compared to several relevant benchmark approaches.

Competition entrants were allowed to charge the battery any time up to 3:30 pm UTC,
producing a charging profile for the 31 half-hours from midnight, up to a maximum of
6 MWh charged per day. The charge had to be consumed (discharged after 3:30 pm) in the
day so that the next day the battery started empty again. The charging profile is rewarded
if it coincides with solar radiation, so that as much of the battery charge comes from solar as
possible. The charging score for day d, Pd is given by the fraction of the charging specified
that could be achieved by solar:

Pd =
∑ t=31

t=1 min{Pd,t, Bd,t}
∑ t=31

t=1 Bd,t
(1)

where Bd,t is the charging profile specified at the half-hour time period t and Pd,t is the total
power generated by solar over the time period t.

For discharging, entrants were asked to produce a profile over the 11 half-hours
from 3:30 pm UTC onwards until 9 pm UTC. The sum of the discharge over those 11
half-hours needs to match the sum of the charge, typically the maximum allowed value of
6 MWh. The battery then theoretically discharges to the consumers alleviating demand
on the substation. The aim is to produce a discharge profile from the battery to reduce
the late-afternoon/early-evening peak demand on the substation as much as possible.
The discharging score for day d, is given by the percentage peak reduction after 3:30 pm:

Rd = 100×

 max
t∈{32,...,42}

(Sd,t)− max
t∈{32,...,42}

(Sd,t − Bd,t)

max
t∈{32,...,42}

(Sd,t)

 (2)

where Bd,t is the discharging profile and Sd,t is the substation demand at time t on day d.
The overall competition score for day d is given by:

νd = Rd × (2Pd + 1) (3)

and then this is averaged over the forecast week to produce the score for that phase.
The competition data is real-world. There are the usual missing values, spuri-

ous values, and adjustments for British Summer Time, school holidays, to consider.
Along with this, weather forecasts are hourly from multiple weather stations while charg-
ing/discharging profiles need to be half-hourly. In addition, one of the forecast weeks
was the lead-up to Christmas. Another was forecasting during the COVID-19 induced
lockdown. These are real-world scenarios that need addressing. While handling these
are not the focus of this paper, it is worth pointing out that simpler, open methods, such
as the ones presented here, make it easier to adjust for a lack of historical data, such as
what to do when Christmas day is on a Wednesday for the first time in years, or when a
pandemic strikes.

There were 55 teams in the competition from 72 different organisations across 15 coun-
tries including 30 universities. We finished second overall in the competition based largely
on the approach discussed here, finishing 4th, 6th, 5th and 4th respectively in Task Weeks
1, 2, 3 and 4.
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2. Data Provided

Data from around the town of Plymouth in Devon, United Kingdom, were released
periodically over the course of the competition. This included electricity consumption data
from 3rd November 2017 through to the day before the date of the task week (when the
battery profiles are for), with the last competition task to provide charging and discharging
profiles for the week commencing 3 July 2020. It also included data (irradiance, power
output and panel temperature) from a solar site near the substation from 3 November
2017 up to the day before the date of the task week. In addition, weather reanalysis data
(temperature and solar luminosity) at 6 close-by locations were provided from 1 January
2015 through to the end of the task week. Other well-published data, such as school
and bank holidays, dates of Covid-19-related lockdowns were also permitted to be used.
The data can be obtained from: https://doi.org/10.5281/zenodo.5500457 (accessed on 1
October 2021) and used under the Western Power Distribution Open Data License therein.

3. Materials and Methods
3.1. Approach

Given the independence of the charging and discharging profile times and scoring,
we treat each separately. The four forecasting weeks from the competition will serve
as a benchmark for the method described here. Here we describe the methods both for
providing a charging profile for the battery and a discharge profile. These are treated as
two completely separate challenges. Note that the Task 4 challenge week had the most
available data and this is the week that is generally illustrated in the description here.
However, the method is equally applied to all previous challenge weeks albeit with less
data to calibrate.

3.2. Forecasting Battery Charging Profiles

The aim here is to schedule a battery charging profile to align with photovoltaic
(PV) generation at a local 5MW solar farm. Depending on the time of year, there may be
insufficient energy from the solar farm to fully charge the battery and therefore additional
charge will be required from the grid. For the purposes of the competition, the charging
schedule needs to be pre-defined. Although, the option was left open, it proved always
beneficial to fully charge the battery whether using solar or charging from the grid. Thus
between the hours of midnight and 3:30 pm, we needed to fully charge the 6 MWh battery.

There are two primary sources of data for producing the charging profiles. First there
are the historic PV data (irradiance, power and panel temperature). Secondly, there are the
weather reanalsyis (akin to weather forecast) that includes forecast solar luminosity and
temperature at the site, both historically and for the forecast task week. With this in mind,
we took two approaches. One was to directly use the historic data to make an estimate.
The second was to use the forecast solar luminosity to produce an estimate. The former has
the advantage that it is not affected by inaccuracies in the forecast; while the latter has the
advantage of likely being more accurate due to being based on a forecast.

There are two possible regimes. One is where we expect there to be sufficient solar
radiation to fully charge the battery from solar. In which case, the challenge becomes
minimising the risk that we ask for more energy to charge the battery at any given half-
hour than is provided by PV. The second is when we expect PV to be insufficient to
fully charge the battery and the challenge becomes maximising the available solar–that
is, providing a charging profile that, for each half-hour, is always at least as much as the
available solar. Throughout the competition it was generally obvious which regime the
task fell under given the solar forecast. For example, for Task 3 (w/c 18 December 2019)
there was never enough solar to fully charge the battery in a day on solar energy alone.
While for Task 4 (w/c 3 July 2020) solar energy was plentiful. For Tasks 1 and 2 it depended
on the individual day and the solar forecast over the course of that day.

The first step was to combine the six weather station solar luminosity forecasts into a
single estimate Lt. We did this by optimising the combination that minimises the standard

https://doi.org/10.5281/zenodo.5500457
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error of a single linear regression fit, forced through the origin, between Lt and Pt across
all available training data points, where Pt is the solar output of the farm. For the Task 4
week (with maximum data), this provides a prior estimate of the regression fit: Pt =
(0.00968± 0.0000165)Lt with standard error 0.407. Allowing the fit to cross the axis provides
a fit of Pt = (0.009612± 0.000096)Lt + (0.0137± 0.00223) and standard error of 0.406. We
then extracted the periods around the same time of year as the forecast week (3 July 2020–9
July 2020) when the position of the sun in the sky will be roughly similar. For this we used
the 3 weeks from 26 June through till 16 July from both 2018 and 2019 and the week prior
to the forecast (26 June 2020–2 July 2020). Thus we had 49 days of data. For other challenge
weeks we chose suitable sets of 49 days of data that were around the same time of year as
the challenge week. For each half-hour of the day we ran a Bayesian linear regression [1]
using Markov Chain Monte Carlo (MCMC) [2] for 10,000 steps with a beta distribution
prior(for Task 4) of α ∼ N (0, 0.00223) and β ∼ N (0.00968, 0.0000165). As an example,
the first 500 steps across all half-hours produced the distribution of intercepts and slopes
values in Figure 1.

Figure 1. The posterior distributions of the linear regression fitting parameters for PV power genera-
tion against forecast solar luminosity for Task 4.

As an example, Figure 2 shows how the value of the slope changes over each step of
the MCMC algorithm starting at its prior value. This results in the fits shown in Figure 3.
As can be seen, there is a spread in the fits.

Figure 2. The value of the slope changes with each step of the MCMC.



Energies 2021, 14, 6274 5 of 11

Figure 3. Various fits to the data including the prior simple model fitted to the full data, a best
fit to the 49 data points of close periods and the minimum and maximum slope results from the
MCMC posterior.

Depending on whether we expect to exceed the 6 MWh full capacity of the battery,
either the minimum or maximum slope estimated value for each half hour was chosen
to provide the MCMC estimates of the PV generation. For the forecast week in Task 4 in
the UK summer solar energy is plentiful and therefore the minimum values were chosen.
For Task 3 in the UK winter there is never sufficient solar energy to fully charge the
battery in a day and the maximal possible estimate from the solar forecast fit was used.
The secondary solar generation model took, for each half hour of the day, a simple mean
of the 49 data points to provide a 49-point average energy output and a 49-point average
(reanalysed forecasted) solar luminosity. The two models were combined by taking the
49-point average energy output result and then applying an adjustment based on the
difference between the forecast solar luminosity and the average solar luminosity (from
the 49 data points). If we expected to have plentiful solar over the day (e.g., Task 4) then
the adjustment could only be downwards. Where there was expected to be insufficient
solar (e.g., Task 3) , the adjustment could only be upwards. The adjustment made is to
multiple the MCMC slope (either minimum or maximum) by the difference in forecasted
solar luminosity and the 49-point average solar luminosity. The forecast energy outputs
over the charging period were then normalised to sum to 12 MW.

Three other models are compared. One is the 49-point average energy output. Another
is a simple linear regression fit of the energy output to the solar luminosity forecast and
the third is the competition benchmark which was to take the current week actual energy
output as forecast for the following week. Each of these are normalised so the output over
the charging period sums to 12 MW.

3.3. Forecasting Battery Discharge Profiles

A common quote in problem-solving classes, often misattributed to Einstein is “If
I had only one hour to solve a problem, I would spend up to two-thirds of that hour in
attempting to define what the problem is.” All too often, however, we forget these wise
words and march straight in with attempting to find the “optimal” forecast without taking
the time to define what we mean by optimal. So while others, such as [3], who finished
a very respectable third, took a more traditional approach to forecasting attempting to
optimise standard error metrics, such as Root-Mean-Squared-Error (RMSE) and Mean-
Absolute-Percentage-Error (MAPE), we first focused on choosing the appropriate error
metric for the problem.
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3.3.1. Example Motivation

Consider the two forecasts in Figure 4. The forecast in the left panel does a better job
of matching the actual electricrity demand and consequently produces smaller standard
error metrics. The forecast in the right panel, however, does a better job of matching the
shape of the actual demand profile during the late afternoon-evening peaks even though
it consistently under-forecasts during that period by exactly 0.5MW each half-hour. As a
result of this, the corresponding battery discharge profile results in a better average peak
reduction. Remember that this is the goal of forecasting here–to maximise the average daily
peak reduction. See Table 1.

Figure 4. Two example electricity demand forecasts (units in MW) with data points for every half-
hour of 3 days (144 in total). The forecast in the panel on the left has lower standard error metrics
and is generally considered better for many applications. However, in our case of battery discharge
scheduling, the forecast in the panel on the right is actually better. This is because it better follows the
shape of the profile during the 3 afternoon peak times (shown between the vertical bars). The results
can be seen in Table 1.

Table 1. Error metrics from Forecast 1 and Forecast 2. RMSE and ADPR units are in MW and MAPE
is a percentage. ADPR is the Average Daily Peak Reduction.

Error Metric Forecast 1 Forecast 2 Optimal

RMSE—lower is better 0.24 0.47 0
MAPE—lower is better 8.58 17.12 0
ADPR—higher is better 1.21 1.56 1.56

The idea of using an error metric that befits the problem is not new and others have
introduced their own metrics for various other problems being studied [4–11]. However,
the field is still dominated by the top four metrics of RMSE, MAPE, MAE and MSE [12,13].

Here we do not propose to displace any of the standard error measures, but simply
to point out, and emphasise, that the error measure being used needs to suit the problem
being addressed. For the problem specified here, an improvement to the forecast translates
as an improvement to the battery discharge profile and thus increased average daily
peak reduction.

3.3.2. Deriving the Optimal Discharge Profile

The aim is to produce a discharge profile for each day—a distribution over the 11
discharge half-hour periods that sums to the capacity of the battery. The capacity of the
battery is 6MWh which equates to 12 MW per half-hour. Provided all 11 periods are
sufficiently close in forecast demand then it is trivial to produce an optimal discharge
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profile for that forecast. Indeed, the forecasted optimal post-discharge peak (maximum
substation demand), M̂ can be derived by:

M̂ = Favg −
12
11

(4)

where

Favg =
∑ t=42

t=32Ft

11
(5)

and where Ft is the forecast for half-hour period t in the day with t = 32 corresponding
to 3:30 pm and t = 42 corresponding to 9 pm. This gives the evening peak period we
are tasked with reducing. The optimal discharge for this forecast to associate with each
half-hour is therefore given by

Bt = Ft − M̂ (6)

which will bring the forecast grid consumption (original demand minus battery discharge)
down to M̂ for all half hours between 3:30 pm and 9 pm. Where the forecast demands are
not sufficiently close, this may result in an invalid negative discharge amount. In which
case, a short iterative routine can exclude those periods that would become negative and
the 11 in the above equations is replaced by the number of qualifying periods to ensure
Bt ≥ 0. The actual peak that occurs is then given by

M = max
t∈{32,...,42}

(At − Bt) (7)

where At is the actual demand that would have occurred before any discharging. It is M
that we are trying to minimise.

3.3.3. Error Metric

We therefore need (At − Bt) to be consistent across t, taking the same value so as not
to waste any discharge energy that could be used to reduce the peak further. This means
that a necessary and sufficient condition for optimal discharge is:

At − Ft = C− Favg (8)

for any constant C. Therefore the discharge profile is optimised not only when Ft = At
but any time where At − Ft take the same value across the 11 half-hour periods. Thus it
is the error relative to each other across the 11 half-hour periods that governs optimality
rather than any absolute error. That is to say, if a forecast is exactly some constant too
high or too low across all 11 periods then the forecast still belongs to the equivalence class
of optimal solutions. Moreover, the accuracy of the forecast outside those 11 periods is
irrelevant. We can now see why Forecast 2 in Figure 4 provides optimal peak reduction
despite being inaccurate in the traditional sense. This motivates us to target a timeseries
shape error given by:

ε0 =

(
∑t [(Ft − F37)− (At − A37)]

2

11

)1/2

(9)

where the sum runs over t ∈ [32, 42]. This is the RMSE of the error defined by the difference
between the forecast difference at time t and at 6 pm (t = 37) and the actual difference
at time t and at 6 pm. Note that the actual time of 6 pm chosen to relate to is arbitrary
and any of the 11 times could be used. 6pm was chosen because the actual original peak
frequently occurs at 6pm. This is not the only error metric that could be chosen of course.
For example, the mean absolute timeseries shape error could be used. That is the MAPE
version of Equation (9) instead of the RMSE version. See [14] for a comparison of RMSE
and MAE errors. Targeting just this error would result in attempting just to fit forecasts
over the peak period. In practise, however, to help optimise fitting parameters and provide



Energies 2021, 14, 6274 8 of 11

realistic forecasts, it is useful to also fit an actual estimate in the more usual way since this
provide significantly more data points to fit. The actual error we use is:

ε = ∑
t

Ωt

(
Ψ[(Ft − F37)− (At − A37)]

2 + [(Ft − At)]
2
)

(10)

where Ψ is the relative weight to apply to the timeseries shape error relative to the con-
ventional error. ε is a combination of the timeseries shape error metric introduced in
Equation (9) combined with a traditional mean-squared error. We arbitrarily set Ψ = 10 to
give dominance to the timeseries shape error. Ωt is the weight to apply for half-hour time
t and we choose Ωt = 10 when it is inside the peak period t ∈ [32, 42] and 1 everywhere
else. There are 11 periods inside the peak and 37 outside, thus this choice of 10 effectively
means there is ≈3 times the emphasis on the peak periods than non-peak. The choise is
arbitrary but could be chosen by cross-validation techniques. Different weights could be
placed for the shape error and for the conventional error parts. However, whichever metric
is chosen, it is important that it penalises shape error. For more discussion on this, please
see the Discussion section at the end.

3.3.4. Forecasting

Having defined the error metric we now use a relatively simple forecasting technique.
The point here is to demonstrate the improvements that can be made by choosing an
appropriate error metric and choosing an approach (parameters) appropriate to that metric.
Given that even this simple approach allowed us to finish second in the competition, it
shows the importance of choosing an appropriate error metric. It is expected that more
sophisticated forecasting techniques aimed at optimising Equation (10) would produce
even better results. For completeness, the technique we used involves taking a weighted
average of the actual demand over the previous 6 weeks and adjusting for temperature T
and day d number. The parameters to optimise are: (i) the 6 weights ωw for previous weeks
w, a temperature coefficient ct for each of the 11 half-hour periods plus a single temperature
coefficient c0 outside those periods, and a coefficient α of the day number for 2 separate
time periods (α1 for the early part of the week t < 37 and α2 for the late part t ≥ 37) and a
separate day coefficient α0 for outside that period. The idea is that because we wanted to
optimise the timeseries shape error, we wanted as much flexibility in the relative half-hour
forecast thus having separate temperature coefficients for each half-hour. We used only
three coefficients for the day number because of low sensitivity to the parameter which
may have resulted in over-fitting if more had been used. Thus our forecast for time period
t on day d is gven by:

Fd,t =

{
∑−1

w=−6 ωw Ad+7w,t + ct(Td,t − Td+7w,t) + α1X1(t) + α2X2(t) for t ∈ [32, 42]

∑−1
w=−6 ωw Ad+7w,t + c0(Td,t − Td+7w,t) + α0 for t /∈ [32, 42]

(11)

Here, X1(t) = 1 if t ∈ [32, 36] and 0 otherwise. X2(t) = 1 if t ∈ [37, 42] and 0 otherwise.
Td,t is the forecast or reanalysis forecast temperature on day d and time t.

The parameters are then optimised to minimise Equation (10) using generalised re-
duced gradient v2 [15], although any reasonable optimiser would be suitable. In practise,
we did not have a single temperature estimate and therefore needed to generate one from
6 local weather stations. We produced a linear combination of these as the estimate for
the temperature with the coefficients summing to unity. Thus there were 5 parameters
to determine temperature. To reduce the number of parameters we assumed the weekly
weights ωw form a simple power law ωw = (7 + w)r, for w ∈ {−1,−2,−3,−4,−5,−6}
where r is an index to be fitted. The actual weights applied to the previous weeks are
normalised by the sum of the weights. Thus we ended up with 5 weather station tem-
perature coefficients +1 weekly weight index +12 temperature coefficients per half-hour
+3 day coefficients = 21 parameters. We compare our results to three models. The first
“RMSE Multiple Parameters (RMSE-MP)” has the same parameters, borrowing the ideas
behind optimising the relative demand with the parameters to optimise differences over



Energies 2021, 14, 6274 9 of 11

the discharge period. However, instead of optimising to minimise Equation (10) during
the calibration period, it is optimised to minimise the standard RMSE error during the
calibration period. The second “RMSE Simple (RMSE-S)” comparison model has a single
temperature coefficient and a single day coefficient applied to all times. Both these com-
parison models are optimised for standard RMSE. The final model “Benchmark model” is
simply forecasting the next week as the actual demand from the current week. This was
the benchmark used in the competition.

4. Results
4.1. Charging Profiles

As can be seen in Table 2, our model performs the best out of those considered, which
we believe is due to taking account of both uncertainty in the solar luminosity as well as
uncertainty in the relationship between luminosity forecast and solar panel energy output.
What is also interesting is how well the 49-point average model performs outperforming a
regression model. The 49-point average model simply takes an average of historic solar
panel energy output around the time of year. It ignores any solar luminosity forecasts. This
suggests that either the solar luminosity forecasts are quite poor and/or that they have to
be used with a great deal of caution.

Table 2. Percentage charge dervied from PV based on charging profiles from four different models.
Our model is based on combining an average for the time of year with a Bayesian regression of the
forecast solar luminosity.

W/c Our Model 49-pt Average Regression Benchmark

16 October 2018 89.89% 89.81% 88.12% 86.95%
10 March 2019 77.36% 76.05% 78.01% 71.03%
18 December 2019 43.24% 43.28% 42.60% 40.10%
3 July 2020 96.73% 96.69% 96.08% 94.32%
Average 76.80% 76.46% 76.20% 73.10%

4.2. Discharging Profiles

From Table 3, we can see that our model that aims to minimise ε outperforms all three
other models considered in all cases apart from one occurrence in Task 2 where the RMSE-S
model performs best. There are considerable fluctuations in demand at this granularity and
so it is always possible for one model to outperform another on an individual week just by
chance. The RMSE-MP model that minimises the RMSE error but has the same parameters
to fit as our model also performs well except in the Task 1 week. This suggests choosing the
appropriate parameters to optimise is important. However, it is consistently outperformed
by our model suggesting choosing the best metric to optimise is also important, particularly
when it comes to squeezing the last piece of available accuracy.

Table 3. The average daily peak reduction in MW achieved by the four forecast models. The greater
the peak reduction the better. Presented are the results for each of the 4 task weeks averaged over the
7 days in those task weeks. In addition, the average result across those 4 task weeks is provided. Also
presented are the “In-sample” calibration model peak reduction averaged over the 35 days closest to
the task week and while some of those days are quite distant from the task week and are in-sample
they do provide an average result across more days and so are more robust.

Task Week W/c Our Model RMSE-MP RMSE-S Benchmark

In-sample last 35 days 1.511 1.507 1.504 1.492
1 16 October 2018 1.478 1.376 1.359 1.436
2 10 March 2019 1.440 1.438 1.455 1.406
3 18 December 2019 1.366 1.360 1.331 1.305
4 3 July 2020 1.303 1.299 1.273 1.259
Average all 4 weeks 1.397 1.368 1.354 1.351
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5. Discussion

Forecasting PV generation in the unpredictable UK weather is clearly challenging and
at least in the forecast week here, a simple average over similar times of year outperforms
a regression model based on the forecast luminosity. This suggests that the forecast
luminosity cannot be completely relied upon when producing forecasts of PV generation.
The discharge results show the importance of choosing an appropriate error metric. Once
the error metric is established, choosing an appropriate model (e.g., parameters) to optimise
the solution becomes more apparent. In this case, having defined the error metric, we then
designed the forecast model choosing parameters that can most influence the error metric
value. Had we approached the problem with a traditional error metric, then we would not
have chosen the parameters we did. Thus specifying an appropriate error metric not only
helps approximate optimal solutions directly but it also helps in defining the model to use
to approximate those optimal solutions and to optimise that model. There is considerable
freedom in choosing the exact nature of the error metric to use. For example, we use a
weighted RMSE-style combination of the timeseries shape error and conventional error.
However, a MAPE equivalent could also have been used and/or with different weightings.
One option would be to use cross-validation to identify an optimal choice of weighting and
metric form over the calibration period. Such an approach is not without dangers though
given the relatively limited amount of data to fit, the already large number of parameters
used and the fact that the forecasting period is not the same as the calibration period and
therefore one would expect different customer behaviour. The aim of this paper was to
draw the reader’s attention to the benefits of choosing a suitable error metric rather than
necessarily finding the absolute best charging/discharging profile possible. For that, there
are more sophisticated techniques that could be employed.

6. Conclusions

We believe that employing two key methods helped generate our excellent competition
performance. First, the combination of a Bayesian Linear Regression with an historical
average gave us an edge on the charging profile. Second, the introduction of a new
error metric designed to help forecasts for battery discharge allowed us to better optimise
the discharging profile. We recommend that once a forecasting problem is understood,
considerable effort should be made deciding the most appropriate error metric. The fact
that our approach is easy to understand makes it easier to make adjustments for festive
periods and previously unknown events such as lockdowns. Were a blackbox technique
employed, it may be difficult to know what and how much of the effects of, say the
lockdown, have already been accounted for.

The benefits to the power systems community are really two-fold.
One is the direct application of such forecasting techniques to deriving charging and

discharging profiles for large batteries that could be placed on the grid to reduce the strain
on substations by allowing customers to feed off the battery instead. The amount of peak
reduction that can be achieved is quite substantial and could substantially increase the life
expectancy of network assets. In addition, by using solar energy to charge batteries and
reducing peak demand reduces the amount of time that non-renewable resources need to
be used to fill the demand gap.

The second benefit is the challenge to the status quo of error metrics. That by reading
this paper, forecasters may start to think more about whether the error metric they are
trying to reduce is really the appropriate one for their particular problem. Perhaps more
effort needs to be placed on forecasting the peak; or perhaps it is about forecasting the
amount of peak demand rather than the exact timing. Either of these scenarios as well as
battery discharging profiles, could benefit from non-standard error metrics.

For simplicity the competition did not concern itself with the potential for additional
peak load in the morning. This allowed the battery charging and discharging challenges
to be completely separated. In practise, with the current setup the afternoon/evening
peak could easily be reduced to below the morning peak. Furthermore, charging the
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battery in the morning, could result in even higher morning peaks. For a practical solution,
the charging and discharging profiles need to be considered together. It would be easy
to extend the demand forecasting methods here to be for any period, even non-adjacent
ones, that might generate a peak rather than being restricted to just those 11 half-hours
between 3:30 pm and 9 pm. This becomes easier if the battery is charged outside those
hours, perhaps by wind energy. It becomes much more complex if for some half-hours the
battery is allowed to either charge or discharge and it would be necessary to understand
the relative importance of reducing peak demand versus capturing solar energy for storage.

Finally, the competition was also setup so that the charging/discharging profiles had
to be produced for the full week ahead. In practise, it should be possible to get daily
updates and therefore more reliable/up-to-date solar and temperature forecasts. It may
even be possible to have intraday updates to the charging/discharging profiles in which
case feedback from the current demand on the network and solar output could play a
significant role in providing even more effective profiles. By laying the solid groundwork
with an appropriate error metric allows various techniques to be explored in the most
relevant and practical way.
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