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Abstract: Estimation and correct determination of vitrinite equivalent reflectance in rock is crucial
for the assessment of the source rock in both conventional and unconventional hydrocarbon deposits.
These parameters can be determined in laboratories on rock samples. Laboratory measurements
provide only point information. However, the use of well logs could overcome discontinuities in the
data and provide parameters throughout a study interval. Attention has been paid to the estimation
of TOC based on well logs. Vitrinite equivalent reflectance estimation is less well discussed and most
papers reported cases with high TOC content in analyzed deposits. In this paper, the estimation
of improved Ro is presented using a calculated maturity indicator with well logs. As the organic
matter content is not high, additional steps were required for the calculation. To improve the quality
of the fit and to find similar intervals, the data were grouped using cluster and neural network
analysis. The next step was to use the resistivity log to improve the obtained maturity indicator. Due
to the changing properties of kerogen with the type and degree of thermal maturity, this approach
turned out to be reliable. The use of resistivity significantly increased the correlation coefficient and
reduced errors. The method was tested on two wells with different type and maturity of kerogen.
The obtained results are satisfactory, which makes it possible to use the method even in formations
with a low organic matter content.

Keywords: vitrinite equivalent reflectance; well logs; laboratory measurements; shale gas

1. Introduction

Estimation and correct determination of vitrinite reflectance (Ro) and the content of
total organic carbon (TOC) are the main steps in describing source rock in both conven-
tional and unconventional hydrocarbon deposits. Determination of these parameters using
laboratory measurements has been widely used in the petroleum industry [1]. Unfortu-
nately, this approach allows measurement and determination of parameters only from
geological samples that provide point information. The desire to obtain more continuous
information using laboratory measurements is associated with the need to collect and test
a large section of the core, which significantly affects both time and, above all, costs.

Well logs may assist in determining vitrinite reflectance as continuous information.
Moreover, various statistical methods, such as neural networks, unsupervised machine
learning, and multilinear regression provide an opportunity to combine several well logs
and laboratory data to obtain a more credible result in the form of different petrophysical
or geochemical parameters or lithology prediction [2–10]. Well logs enable the evaluation
of electrofacies, in which beds are characterized by similar parameters but are different
among other electrofacies. The most important well logs cover natural radioactivity (GR),
neutron porosity (NPHI), bulk density (RHOB), compressional slowness (DT), and electrical
resistivity logs (LLD, LLS). Some of the logs are significantly affected by the presence of
organic matter, such as sonic (increase), neutron (decrease), bulk density (decrease), and
electric resistivity (increase) logs. Hence, electrical resistivity logs appear to be very useful
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in improving the formation maturity factor. Kadkhodaiea and Rezaeea [11] used acoustic
and electrical resistivity logs in their studies to estimate the parameter and achieved
promising results. The main introduced factor of the mentioned method is ∆RRS, which
is defined as the separation between cumulative frequency values of resistivity ratio (RR)
and sonic log data. Moreover, a calibration chart was presented for Ro estimation based on
∆RRS data.

Currently, shale gas deposits in Poland are under intense consideration because of gas
saturation and perspectives in exploitation [12–19]. Hence, estimation of basic parameters,
such as Ro or TOC content in the shale gas formations based on well logs and laboratory
data become a key task for researchers [1,11,20–24].

The assessment of the thermal maturity of pre-Devonian shales is difficult due to
the lack of vitrinite macerals used in the basic petrographic method [25]. Such sediments
may contain organic matter with the optical properties of vitrinite but with a different
chemical composition (derived from other organic precursors). Moreover, in this type of
rocks, microfossils may appear—organoclasts (e.g., zoclasts) which also optically resemble
vitrinite (e.g., graptolites) [26,27]. The presence of bitumen and animal remains allow the
measurement of a parameter that is a substitute for vitrinite reflectance and, like it, can be
used to assess thermal maturity [28–33].

The paper presents an expanded method for vitrinite equivalent reflectance based on
well logs and the use of advanced statistical methods. The method for evaluating the ther-
mal maturity of organic-rich shale from well logs is described in detail by Zhao et al. [34].
In this paper, a maturity indicator (Im) was defined, which refers to the kerogen element
composition and type. Moreover, the core of the paper is a petrophysical equation that
allows Im from well logs based on neutron log response to be obtained. The expanded
method assumes improvement of Im calculation by delivering electrofacies data from well
logs. Moreover, the improved maturity factor together with an electrical resistivity log
(LLD) is an input for vitrinite equivalent reflectance estimation. The proposed expanded
method is useful not only for formations characterized by a high total organic carbon
content but also for formations with low TOC content. It is one of the most significant
advantages of the described method.

2. Materials and Methods

The geological material consisted of Paleozoic core samples taken from two wells,
labelled A and B, in Poland (Eastern Europe). The wells are located on the Lublin Synclino-
rium (southeast Poland) (Figure 1) [15,35–40].

Probed rock samples were from a depth greater than 2800 m of the present deposition
and represent Silurian gas-bearing shales [41–43].

All plugs for the laboratory measurements were probed horizontally to the bedding.
The analyzed formation contained kerogen that, due to the values of the hydrogen and
oxygen index, could be read from the Van Krevelen diagrams [44,45]. The laboratory
measurement of reflectance was carried out on the basis of microscopic optical tests in
reflected light [46]. Measurements of the reflectance were performed on the material
represented by zooclasts—fragments of graptolites. Then, on the basis of the measurements,
the vitrinite equivalent reflectance was calculated. Total organic carbon content was
evaluated based on Rock-Eval pyrolysis [47].
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Figure 1. Oil and gas generation areas in the Silurian and Ordovician deposits [48] (modified).

The method in the presented work is based on the equation proposed by the study of
Zhao et al. [34] using the hydrogen index as a basis for estimating the thermal maturity of
organic-rich shales (Equation (1)).

Im =
VclΦcl −φΦ f − VkΦk

9TOCρb
, (1)

where Im—maturity indicator (unitless); Vcl—volume of clay in v/v; Vk—volume of kerogen
in v/v; Φcl , Φ f , Φk are hydrogen indices of clays, pore fluids, and kerogen; φ is porosity
v/v; TOC—total organic carbon in %wt; ρb—is the density of shale in g/cm3.

The basis of neutron log measurements in a rock formation is connected to the inter-
action between the neutron and hydrogen. This is due to the fact that hydrogen nuclei,
because of their mass, are effective in slowing down the fast neutrons. The rate of decelera-
tion of neutrons emitted by the tool is closely related to the number of hydrogen atoms in
the rock formation. Hydrogen atoms in a rock formation occur mainly in the fluids that
saturate the pore space. Therefore, the neutron tool is used to evaluate porosity [49,50].

Hydrogen atoms are also found in organic matter in rock. Their content varies
depending on the type and thermal maturity of the kerogen. As maturity increases, the
amount of hydrogen (H) and oxygen atoms (O) decreases. The type and maturity of the
kerogen can be determined using Van Krevelen diagrams [44,45]. Both the presence of
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H atoms and their variability depends on the degree of rock maturity, which affects the
neutron logs. This allows using the neutron index to determine the thermal maturity of
organic matter. The neutron porosity of clays is much higher than that of other minerals,
and the neutron porosity of the pore media is close to 100% (Table 1).

Table 1. Responses of thermal neutron log (DSN-II) of minerals.

Mineral Responses (p.u.)

Quartz −1
Dolomite 0.9

Calcite 0
Pyrite −1.7
Illite 9–10

Kaolinite 45
Chlorite Approximately 45
Kerogen 65

Therefore, the tool response in shale with organic matter can be simplified (Equation (2)):

ΦN = VclΦcl +φΦ f + VkΦk, (2)

where ΦN is neutron log response in clay formation.
The kerogen content can be determined from the organic carbon content using Equation (3):

Vk = κ ∗ TOC ∗ ρb
ρk

, (3)

where κ is a coefficient corresponding to the type and maturity of the kerogen, and ρk is
the density of kerogen in g/cm3.

Using the hydrogen index equation for any mineral or rock can be presented in the
form of the Equation (4):

H = 9 ∗ χρ

M
, (4)

where H is the hydrogen index, χ is the number of hydrogen in each molecule, and M is
the molar mass we get the hydrogen index of the kerogen expressed as

Φk = 9ρk
χ

M
, (5)

thanks to which we obtain Equation (6):

κ
χ

M
=

VclΦcl +φΦ f + VkΦk

9TOCρb
, (6)

where the left part of the equation is called the maturity indicator κ χ
M , becoming the basis

of the method presented in Equation (1) [34].
However, the direct application of the discussed method to data from shale rocks

with a lower organic matter content does not always provide satisfactory results (very
low determination coefficient for the association between measured and calculated Ro).
In order to improve the obtained results, a number of data preparation procedures must be
carried out. Likewise, the transition from lab data to well logs requires a series of steps.
The developed scheme of the applied calculations and analyses is shown in Figure 2.
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Figure 2. Flowchart of analyses for continuous Ro estimation.

Clustering is a type of unsupervised machine learning method [51,52]. The method
is used to combine objects containing various features into homogeneous groups, called
clusters. The members of each group are similar within the cluster, but different from the
members of the other clusters. Among the methods of clustering can be distinguished:

• Hierarchical methods, showing the data structure and allowing for manual selection
of the number of clusters;

• Non-hierarchical methods, in which the number of clusters is selected before the
analysis and then the data are assigned to them, e.g., the k-means method.

Artificial neural networks can also be used to divide data into groups [53]. The self-
organizing networks proposed by Kohonen [53] are the most popular. SOM (self-organizing
maps) are capable of mapping high-dimensional data into clusters that are similar to each
other. SOM networks are a type of unsupervised network. This means that no output
examples are given for the input data during training. Training is a self-learning process,
and the networks consist of two layers: input and output.

The use of both cluster analysis and SOM to determine groups of data with similar
parameters (electrofacies) measured by well logs has been confirmed in previous studies.
Many researchers [54–56] have demonstrated the validity of using grouping methods in
organic rich shales formations.
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The transition from the domain of laboratory samples to continuous well logs mea-
surement requires the correct determination of the number of parameters necessary to
calculate the maturity index. One of them is to obtain a continuous TOC parameter. Various
methods for determining the TOC are available in the literature. The most popular are the
methods described by Schmoker [57] or Passey [58]. The use of empirical methods such
as regression or multiple regression also give interesting results [59]. By applying prior
cluster analysis, the calculation of the required parameters can be performed in detail.

Carrying out steps to prepare the data is not always sufficient, especially in very
heterogeneous rocks. Therefore, the determined maturity index can be improved with well
logs. For this purpose, instead of estimating vitrinite equivalent reflectance as a function of
the maturity index, multiple regression was performed (Equation (7)):

R0 = a1 ∗ IM + a2 ∗ LLD + b, (7)

where Ro is the vitrinite equivalent reflectance in %, Im is the maturity indicator (unit-
less), LLD is the electrical resistivity log in ohmm, and a1, a2, b are estimated regression
coefficients.

The use of a true electrical resistivity log seems to be justified due to the significant
influence of organic matter on this measurement. Organic matter presence significantly in-
creases the electrical resistivity response. This causes considerable difficulty in determining
parameters such as water saturation [60,61]. However, in the discussed work it becomes a
factor influencing the improvement of vitrinite equivalent reflectance estimation.

Several applications were used in the analysis: Statistica (StatSoft) and Techlog
(Schlumberger).

3. Results
3.1. Core Data Domain

According to Table 2, for the interval in which the vitrinite equivalent reflectance
was determined, it is clear that the TOC content is not high. The other samples on which
the Rock-Eval pyrolysis was performed also gave similar results. For well A, the average
TOC content was 0.45% (standard deviation SD = 0.44%), while for well B it was 0.49%
(SD = 0.79%). The low content of TOC made the application of the described method
more difficult due to the lower effect on well logs in the form of slight curves anomalies
Therefore, it was necessary to apply a series of steps that allowed the correct application of
the method.

Table 2. Ro, TOC, and petrophysical parameters of wells.

WELL DEPTH (m) Ro(%) TOC (%) Clay (wt%) Porosity (%)

WELL A

X413.01 1.37 0.63 47.2 5.32
X446.74 1.47 0.38 62.4 3.96
X459.30 1.46 0.54 56.0 4.17
X463.37 1.51 0.55 57.4 6.97
X470.97 1.46 0.72 54.6 4.88
X476.22 1.41 0.43 51.5 3.84
X562.91 1.53 0.55 53.8 6.46
X590.20 1.48 0.93 53.5 5.68
X623.14 1.67 0.62 49.3 6.00
X642.08 1.56 0.93 57.8 4.13
X665.13 1.60 0.81 50.3 3.85
average 1.50 0.64 54.0 5.02

WELL B

X603.00 2.09 0.26 59.5 7.75
X614.53 2.18 0.15 61.1 8.56
X819.00 1.82 0.43 32.5 0.73
X829.02 1.81 0.71 43.5 1.83
X831.71 1.93 0.64 43.1 1.47
X161.00 2.14 1.29 46.6 2.58
X283.54 2.43 0.14 28.4 0.36
average 2.06 0.52 45.0 3.36
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The application of Equation (1) requires the determination of the type of kerogen in
both wells. The appropriate graphs were used for this purpose. Based on them, especially
in the case of well B, we observed the inert kerogen (Figures 3 and 4).
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The application of the above Formula (1) for laboratory samples of the Upper Silurian
from well A and the Lower Silurian from well B did not bring the expected results. The
relationship between maturity indicator and vitrinite equivalent reflectance was R2 = 0.27
for well A and R2 = 0.44 for well B. Such a low fit did not allow the equation to be directly
applied to the rest of the data.

3.2. Well Log Domain

The basic problem that could have caused the poor results was the significant depth in-
terval between the samples and the heterogeneity of the rock formation. Therefore, the first
step before calculating the continuous parameters from well logs was the determination of
electrofacies.

For this purpose, cluster analysis was applied using the k-means algorithm and
artificial neural networks—self-organizing maps (SOM). The following logs were used for
the analysis: GR (natural gamma-ray), LLD (deep resistivity), LLS (shallow resistivity),
NPHI (neutron porosity), RHOB (bulk density), and DT (compressional slowness). The
results obtained with the use of both tools were convergent, allowing the determination of
intervals with similar parameters. The Upper Silurian interval in well A was divided into
five different clusters, while in the B well a total of three clusters (Figure 5) were separated
in the Upper and Lower Silurian rocks.
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density log, DT (µs/m)—compressional wave slowness log.

The next step necessary to determine the continuous parameters was to calculate the
porosity and clay volume. For this purpose, standard petrophysical interpretation proce-
dures were applied on the well logs. Another equally important step was the determination
of the total organic carbon content.

The TOC was calculated (Table 3) using linear regression between the TOC measured
in the laboratory and the acoustic log (travel transit time, compressional slowness, DT).
Satisfactory results were obtained by narrowing the interval to the previously designated
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classes. For the A well, the measure of matching R2 was 0.71, while for the B well it was
0.85 (Figure 6).

Table 3. Statistics of measured and calculated TOC.

WELL TOC Measured (%) TOC Calculated (%)

Average Min Max Average Min Max

Well A 0.51 ± 0.17 0.09 0.93 0.53 ± 0.16 0.13 1.12
Well B 0.56 ± 0.85 0.02 11.5 0.49 ± 0.77 0 11.23
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Evaluated continuous parameters allowed calculation of the maturity indicator. The
result was then compared with the results from the Ro measurements in order to find the
relationship that would be useful in the calculation of the continuous vitrinite equivalent
reflectance (Figures 7 and 8). In the case of the A well, the result was R2 = 0.77, while for
the B well, R2 = 0.54.
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The use of, inter alia, cluster analysis increased the result. However, it was still not
fully satisfactory, especially in the case of well B. Therefore, in order to improve the result,
multiple regression was performed using the electrical resistivity log (LLD) (Equation (6)).
The use of the LLD log as a supportive measurement significantly improved the adjust-
ment to vitrinite equivalent reflectance (Table 4, Figures 6 and 7). The obtained matches
allowed for continuous estimation of vitrinite equivalent reflectance in the previously
designated clusters.

Table 4. Statistics of measured and calculated Ro.

WELL Ro Measured (%) Ro Calculated (%)

Average Min Max Average Min Max

Well A 1.47 ± 0.12 1.20 1.67 1.48 ± 0.06 1.29 1.72
Well B 2.09 ± 0.17 1.82 2.18 2.04 ± 0.08 1.69 2.28

The last step was the application of the obtained Equations (8) and (9) to calculate
vitrinite equivalent reflectance in selected electrofacies and to present the results with well
logs (Figures 9 and 10).

R0WELL−A = 0.2153 ∗ IM + 0.0007 ∗ LLD + 0.985, (8)

R0WELL−B = 0.0785 ∗ IM + 0.0008 ∗ LLD + 2.0937, (9)
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clusters computed with k-mean algorithm; SOM-5 clusters computed with self-organizing map.
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4. Discussion

The conducted analyses confirmed the validity of using the Ro determination method
based on the maturity indicator. The obtained results are consistent with the research
carried out by Zhao et al. [34]. Similar to the work of the above-mentioned authors, in one
of the wells, the vitrinite equivalent reflectance increases with the growth of the maturity
indicator, while in the other well the opposite is true. It is related to the different degree
of thermal maturity of the organic matter. Undoubtedly, it is influenced by the different
temperature and depth of burial, which are factors that significantly affect the degree of
transformation of organic matter [62].

In contrast with the research by Zhao et al. [34], the research area is not that rich in
organic matter. The TOC contents in the analyzed formation are significantly lower. This
undoubtedly had an impact on the measurements taken. However, the application of the
procedure, especially the use of cluster analysis, allowed satisfactory results to be obtained.

The problem of vitrinite equivalent reflectance estimation was also discussed in the
work by Waliczek et al. [63]. The research on rock samples concerned the estimation
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of Ro depending on Tmax temperature value. The developed method could probably
complement the methodology used by the authors. In the study by Waliczek et al., the
obtained R2 for the estimated and measured Ro matches in the range of 0.7–0.87 depending
on the type of kerogen.

As their research and research by Yang et al. [64] have shown, kerogen resistivity also
depends on sample type and maturity, which results in the fact that the electrical resistivity
log can be successfully used to estimate, among other values, Ro.

This is confirmed by own research. The use of the LLD log significantly increased
the matching of the maturity indicator and Ro. Importantly, apart from an increase in the
measure of fit R2, a decrease in the RMSE error was also observed. In the case of the A well,
the RMSE error decreased from 0.04 to 0.03, while for the B well, it decreased from 0.11
to 0.09. R2 and RMSE values provide the possibility of comparing the models and building
credible associations. Satisfactory values of R2 and RMSE is subjective and depends on
the formation heterogeneity and interpreter experience. For a complex reservoir, even
R2 above 0.7 is suitable. The repeatability of gaining a high R2 fit and improvement of
RMSE value in both wells provide a chance of obtaining similar results in other wells and
reservoirs. The presented approach can be easily used for continuous Ro estimation.

5. Conclusions

The article presents a method for determining vitrinite equivalent reflectance based
on well logs. During the research, we concluded the following:

• The parameter Im can be successfully used to estimate Ro in formations with a lower
TOC content, provided that additional steps are used in its calculation, among other
things, through the use of electrofacies.

• The use of cluster analysis and neural networks can be successfully used in the
determination of electrofacies. The results obtained by both methods were similar.

• The use of resistivity log significantly improved the adjustment of the Im to Ro param-
eter. In the case of well A, the R2 coefficient increased from 0.77 to 0.94, and in the case
of well B, it increased from 0.52 to 0.82. Importantly, the calculated RMSE error also
decreased.

• The methodology used was applied to two different wells. In both cases, the calculated
parameters were improved. The trend shift between the measured parameters is due
to the different types of kerogen in the formation.
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41. Porębski, S.J.; Podhalańska, T. Ordovician–silurian lithostratigraphy of the east european craton in Poland. Ann. Soc. Geol. Pol.
2019, 89, 95–104. [CrossRef]
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