
energies

Review

A Review on the Dispersion and Distribution Characteristics of
Pollutants in Street Canyons and Improvement Measures

Weixun Lv, Yan Wu * and Jianbin Zang

����������
�������

Citation: Lv, W.; Wu, Y.; Zang, J. A

Review on the Dispersion and

Distribution Characteristics of

Pollutants in Street Canyons and

Improvement Measures. Energies

2021, 14, 6155. https://doi.org/

10.3390/en14196155

Academic Editor: Eugenio Meloni

Received: 25 July 2021

Accepted: 23 September 2021

Published: 27 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Mechanical Engineering, Tongji University, Shanghai 200092, China; weixun_lv@163.com (W.L.);
98798@tongji.edu.cn (J.Z.)
* Correspondence: yan.wu@tongji.edu.cn

Abstract: The air quality in a street canyon seriously affects the exposure level of pollutants for
pedestrians and is directly related to the indoor air quality (IAQ) of surrounding buildings. In
order to improve the street canyon environment, it is necessary to clarify the distribution and
dispersion characteristics of pollutants. Through field tests, wind tunnel experiments, and numerical
simulation, the current research studied the nature of pollutants in street canyons and provided some
improvement measures. This paper comprehensively introduces the characteristics of pollutants in
street canyons and reviews past studies on the following parts: (a) the dispersion principle and main
impact factors of pollutants in street canyons, (b) the spatial and temporal distribution of pollutants
in street canyons, (c) the relationship between pollutants in street canyons and indoor air quality,
and (d) improvement measures of the street canyon environment. The dispersion of pollutants is
dominated by the air exchange between the street canyon and the upper atmosphere, which is
strengthened when the wind speed is high or when the temperature in the street canyon is obviously
higher than the surrounding area. The heat island effect is beneficial for pollutant dispersion, while
the inversion layer has a negative influence. Dense buildings mean lower pollutant diffusion capacity,
which causes pollutants to easily gather. Pollutants tend to accumulate on the leeward side of
buildings. The concentration of pollutants decreases with the increase of height and drops to the
background level at a height of several hundred meters. The temporal distribution of pollutants
in street canyons varies in diurnal, weekly, and annual periods, and the concentration peaks in
the winter morning and summer evening. Besides, pollutants in street canyons have a significant
influence on IAQ. To improve the street canyon environment, green belts and other facilities should
be reasonably set up in the streets. Future research should pay attention to comprehensive test
data, solving disagreement conclusions, and quantitative evaluation of the various impact factors on
pollutants, etc.

Keywords: street canyon; distribution of pollutants; indoor air quality; airflow; improving measures

1. Introduction

With the continuous development of cities and the rapid increase of the urban pop-
ulation, the air pollution problem in cities has become increasingly prominent, and the
improvement of the dwelling environment has become a hot topic at present. Many studies
have shown that air pollutants are closely related to human health and many common
diseases. For example, particles absorbed by blood vessels can cause changes in human
functions and lead to diseases such as myocardial infarction and arrhythmia [1,2]. Daily
cardiovascular mortality and respiratory mortality are positively correlated with the con-
centration of PM2.5 and PM10 [3]. Besides, high concentrations of gaseous pollutants such
as ozone, carbon monoxide, nitrogen dioxide, and sulfur dioxide can cause problems such
as low fertility, respiratory diseases, and nervous system weakness [4–6]. According to a
World Health Organization survey, environmental outdoor air pollution was estimated to
cause 4.2 million premature death worldwide in 2016, which was 3.7 million in 2012. Air
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pollution has long been a major environmental problem affecting public health in many
countries.

As one of the areas where people stay for the longest time, streets are directly con-
nected with the atmosphere and affected by air pollutants. Attributed to dense buildings,
the environmental characters of urban streets can be similar to natural canyons, which are
called street canyons. The flow regime in the street canyon is strongly influenced by the
dimensions of the street; Figure 1 shows three typical flow regimes (i.e., isolated roughness
flow, wake interface flow, and skimming flow) in a street canyon under different aspect
ratios (AR, ratio of building height to street width), and the skimming flow under a high
AR value is the most representative and the worst condition in street canyon [7–9]. Usually,
wind speed in the street canyon is low [10]; as a result, the influence of thermal buoyancy
caused by temperature differences is obvious [11]. An urban heat island is the most obvious
thermal character in the street canyon, which causes the temperature inside the street to
be higher than the background temperature above [12,13]. Because of dense buildings,
solar radiation remains trapped in the street after multiple reflections, forming an unstable
temperature distribution [14,15].
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Influenced by various flow regimes, temperature distributions mentioned above, and
other factors such as architectural layout, the problem of pollutants becomes more serious
and complicated in the street canyon, causing pollutants in the street canyon to show
different distribution characteristics with time and space changes [16,17]. Traffic pollutants
are one of the most important sources of pollutants in street canyons [18]; according to
an investigation by the environmental protection department, the contribution rate of
motor vehicle emissions to atmospheric pollutants such as CO and NOX exceeds 50% [19],
which has a particularly obvious impact on the street canyon environment. According
to the report, traffic pollutants such as PM10, carbon dioxide, and organic matter often
exceed the safety limits recommended by local or WHO standards [20,21]. In addition,
building emissions and industrial waste gas have contributed to the deterioration of the
street canyon environment.

If pollutants accumulate in street canyons for a long time and cannot be effectively
discharged, they seriously endanger public health over time. Besides, the environment of
the street canyon not only affects the pollutants exposure level of pedestrians but is also
closely related to indoor air quality [22]. The air exchange between indoor and outdoor



Energies 2021, 14, 6155 3 of 21

air flow can provide fresh air to rooms, but on the other hand, it can also intensify indoor
air pollution [23]. Therefore, research on the dispersion of pollutants in street canyons is
necessary to improve the environment of both pedestrians and inhabitants.

At present, many pieces of research on the pollutants in street canyons mainly focus
on one or some aspects, such as the influence of environmental wind speed on pollutant
dispersion, how to improve the street canyon environment, etc. However, a relevant review
with a comprehension introduction of the dispersion mechanism of pollutants, influencing
factors of distribution rules, improvement measures, etc., is notably absent. Therefore,
through sorting out and summarizing the previous studies, this paper comprehensively
analyzes the related problems of pollutants in the street canyon and their dispersion so as
to broaden the understanding of the street canyon microenvironment in typical cities and
provide a basis for efficient natural ventilation designs for buildings and the improvement
of street canyon air quality.

Reviews in this paper focus on the basic principle and the superficial phenomenon
caused by it, including the following four aspects: (1) the dispersion principle and factors
that affect the dispersion of pollutants; (2) temporal and spatial distribution characteristics
of pollutants in street canyons; (3) coupling between indoor and outdoor air quality;
(4) measures to promote the diffusion of pollutants and improve the environment in street
canyons.

2. Dispersion Principle and Impact Factors

The basic motivations of dispersion include forced convection, natural convection,
and gravity effect. In most cases, forced convection is the dominant driving force, but the
influence of other principles cannot be ignored, especially in the condition of low wind
speed.

The rate of air exchange between the canyon interior and the upper atmosphere
dominates the spread of air pollution in the street canyon [24,25], and the air exchange
process is mainly dominated by a vortex, and the generation and intensity of the vortex are
determined by the ambient wind speed [26,27]. Generally, with the increase of turbulence
intensity, the turbulence kinetic energy and diffusivity in street canyons also increase,
which lead to vortex enhancement and promote the effective dispersion of pollutants [28].
When the atmospheric background wind speed is high enough, the coupling between the
air inside the street and above is established, which is conducive to the effective dispersion
and discharge of pollutants in street canyons [29–31].

In addition to forced convection that is directly caused by air flow, natural convection
caused by temperature difference and the gravity effect of pollutants are also driving forces
to promote pollutant dispersion. When the street canyon ground and the building walls on
both sides are heated by solar radiation, thermally induced flow is formed in the canyon.
The combined action of natural convection and forced convection promotes the diversity
of airflow in street canyons, thus affecting the dispersion of pollutants [32,33]. Besides, the
influence of gravity changes for different kinds of pollutants, and in most cases, it plays a
negative role in inhibiting the effective dispersion of pollutants [34]. Especially for particles
of larger size and density, gravity makes it difficult for background wind above to carry
the pollutants away [35]; thus, the pollutants are accumulated for a long time or diffused
to downstream blocks.

In the street canyon environment, the dispersion of pollutants is affected by many
factors closely related to dispersion efficiency. This chapter focuses on four main factors,
including wind environment, temperature distribution, street layout, and pollutant types,
all of which are proven to be significant for the dispersion of pollutants in street canyons.

2.1. Wind Environment

Influenced by dense buildings and complex street layouts, airflow organization from
empty suburbs to the interior of the city undergoes drastic changes. The wind environment
in the city can be divided into two layers in the vertical direction [10], namely, “obstructed



Energies 2021, 14, 6155 4 of 21

sublayer” and “free surface layer”. As shown in Figure 2, the “obstructed sublayer”, also
known as the “urban canopy layer”, refers to the area from the ground to the building
height; the “free surface layer”, also known as the “roughness sublayer”, refers to the area
above the roof of buildings.
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The airflow pattern of the canopy is affected by many factors, including air exchange
rate, street layout, building size, etc. [10]. Figure 3 shows that the values of wind speed
vary with height; whether the incoming wind is parallel to or oblique to the central axis
of the street, the wind speed inside the street canyon increases with height and is about
20–80% lower than the ambient wind speed. Generally speaking, the wind speed inside the
street canyon is often much lower than the atmospheric background wind speed, which
affects the effective dispersion of pollutants to some extent [37,38].
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Wind direction is a significant parameter affecting the air flow and dispersion of
pollutants in the street canyon, and the cases where ambient airflow is perpendicular to
the street axis (α = 90◦) are thought to be the worst condition for pollutant dispersion [39].
When the ambient airflow is parallel to the street axis (α = 0◦), the urban canopy layer
(UCL) ventilation capacity is the best [40]. However, other research revealed that when α is
equal to 30◦, the UCL ventilation is better than cases where α is equal to 0◦ and 15◦ [41,42].
Generally, for cases with parallel wind direction, the pollutant concentration in streets is
lowered, but the pollutant concentration on the windward side is increased. For cases
with perpendicular wind direction, the pollutant concentration in streets is heightened,
especially for leeward walls, while the pollutant concentration on the windward side is
reduced [42,43]. However, when there are some infrastructures in the street canyon, such
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as avenues of trees, the worst pollutant dispersion situation cases is formed in the cases of
oblique wind direction [43].

Due to the difference of the atmospheric background wind environment above the
street canyon, the air flow organization inside the street canyon is constantly changing,
thus affecting the air exchange between the street canyon and above (i.e., the main form of
pollutant dispersion) [44,45]. For any background wind directions, when the atmospheric
background wind speed above the street canyon is relatively low, the coupling of airflow
inside and above the street canyon disappears; thus, the pollutants cannot be diffused
effectively. The threshold of the background wind speed is closely related to the AR value
of the street canyon, which indicates that the ratio of the mean building height H to the
street width W represents the density of the street canyon. Many experimental tests and
numerical simulation studies show that [46,47]: the threshold of ambient wind speed tends
to increase with the increase of AR value.

2.2. Thermal Environment

Due to the absorption of solar radiation by the ground and the building surface, as
well as large-scale human activities in urban areas, the temperature distribution in the
street canyon often presents an unstable stratification phenomenon. Generally speaking,
air convection dominates the horizontal dispersion of pollutants, and its influence increases
significantly with the increase of surfaces and air temperature differences. Turbulent
factors mainly affect the vertical dispersion of pollutants, and their influence also increases
slightly with the increase of street canyon temperature differences [11]. Especially when the
background wind speed is low, the temperature difference between the air inside the street
canyon and different surfaces has a more significant impact on the airflow organization
and pollutant dispersion.

Generally, due to the hourly variation of the solar altitude angle, the temperature
distribution on the street canyon surface shows a non-uniform state most of the time.
Figure 4 shows that surface temperature changes for different places, the temperature
amplitude and difference during the day are greater than those at night, and the sunny
facade presents a higher temperature than the opposite wall. Besides, the temperature
difference between the area in direct sunlight and the shadowed area caused by the shelter
of the street canyon structures can often reach more than 10 ◦C, and may even reach
20–30 ◦C on hot and sunny summer [48]. Moreover, the sky view factor decreases with an
increase of the AR value, which produces more occlusion effects from solar radiation [49,50].

Natural convection caused by temperature differences produces buoyancy, causing
high-temperature air to float up and low-temperature air to sink. In the daytime, due
to the urban heat island effect, the surface temperature and air temperature inside the
street canyon are higher than the atmospheric background temperature above [13], which
facilitates the air exchange inside and above the street canyon and promotes the upward
dispersion of pollutants. At night, the upper air temperature rises due to the radiation in-
version formed by long wave radiation and urban heat rejection, forming an inversion layer.
The air temperature in the street canyon is lower than the atmospheric background tem-
perature above, thus inhibiting the air exchange between the street canyon and above [48],
resulting in the air quality in the street canyon in the early morning being worse than that
in the evening.

2.3. Street Layout

The three-dimensional landscape pattern of a city block is an important factor that
determines the air flow movement and the dispersion effect of air pollutants in the block
and affects the quality of the air environment inside the block [51]. Unreasonable spatial
arrangement and structure of urban streets and canyons often cause local air pollution.
High-density buildings reduce the abilities of urban ventilation and self-purification [52,53].
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From Sections 2.1 and 2.2 above, it can be seen that the AR value of the street canyon is
one of the main factors that affect airflow organization and temperature distribution, thus
affecting the dispersion of pollutants. In addition, relevant studies show that [54,55] the
dispersion of pollutants in street canyons is highly dependent on the spatial form of street
canyons. According to the composition of the spatial form of street canyons, the aspect
ratio (H/W), length-to-width ratio (L/W), and height ratio of buildings on both sides
(h2/h1) are the main factors that affect the air flow in street canyons and the dispersion
and dilution of pollutants. In addition, the roof form of the building, sky view factor (SVF),
ground vegetation, external environment, etc., all have certain influences on the dispersion
of pollutants in the street canyon [56,57].

There is a strong positive correlation between the aspect ratio of the street canyon
and the concentration of pollutants in the street canyon; that is, the greater the aspect
ratio, the worse the pollutant dispersion capacity and the higher the concentration. The
ratio of length to width of the street canyon has the same effect on pollutant dispersion
as the ratio of height to width, which has a high positive correlation, too. Compared with
symmetrical street canyons, the ventilation volume, airflow, and pollutant diffusion law of
street canyons with variable height obviously change [58]. For upward street canyons (the
building height of the upwind is higher than that of the downwind), pollutants move to the
leeward and windward sides of the buildings and gather near the ground. In downward
street canyons, the concentration of pollutants near the top of the street canyons and the
leeward side of the building increases [59].

The influence of vegetation on pollutant dispersion in street canyons is mainly realized
in two aspects [60], including aerodynamic factors and deposition effects. The deposition
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effect can reduce pollutant concentration through filtration. Aerodynamic factors change
the airflow organization and reduce the air exchange inside and above the street canyon,
reducing the pollutant concentration near the windward wall and increasing the pollutant
concentration near the leeward wall.

2.4. Types of Pollutants

In the same street canyon environment, different pollutant types also show different
dispersion laws. According to reports, traffic pollutants such as PM2.5 and black carbon in
the street canyon are highly concentrated in the morning and evening peaks [61,62].

Due to the different physical properties (such as size and density) of different pollu-
tants, the influence of airflow organization and gravity is also different. Because of strong
turbulence and mixing, the concentration of submicron particles and gaseous pollutants in
street canyons is reduced by 80% at 25 m height [63]; under the influence of gravity, the
vertical stratification of the concentration of larger particles is more obvious [64].

There are complex connections among different pollutants, which affect their genera-
tion, dispersion, and distribution in the street canyon. Taking particulate matter and ozone
as an example, they interact with each other in many ways and are closely related [65,66].
On the one hand, particulate matter can cause pollutants such as ozone to gather near the
ground by changing the airflow shape and temperature distribution [67]. On the other
hand, particulate matter can also hinder the generation of ozone to some extent by absorb-
ing solar radiation and influencing the generation of ozone precursors [68,69]. Similarly,
ozone can change the formation and transformation of particulate matter by affecting the
oxidation of the atmosphere [68]. Therefore, the decrease of PM2.5 and other particulate
matter concentrations in the street canyon may lead to the increase of ozone concentration,
which in turn promotes the formation of particulate matter, forming a complex, unstable
relationship.

In addition to the impact factors mentioned above, other factors such as air hu-
midity [70] and surrounding industrial activities [71] also influence the distribution and
diffusion of pollutants in a street canyon.

3. Distribution of Pollutants

In the street canyon environment, the distribution characteristics of pollutants are
constantly changing with time and space and are influenced by many factors, such as
upstream buildings, street canyon width and thermal environment, symmetry, and so
on [72,73]. The distribution characteristics of pollutants are very important for a compre-
hensive understanding of pollutants in the street canyon and for proposing improvement
measures. For example, the air quality in the area near the wall on both sides of the
street canyon directly affects the indoor fresh air quality of buildings; the concentration
of pollutants at the height of pedestrians during rush hours has a great impact on human
health. This chapter mainly focuses on the spatial and temporal distribution characteristics
of pollutants in street canyons.

3.1. Spatial Distribution Differences

Generally, in the street canyon, the concentration of traffic pollutants on the leeward
side of the building is higher, and the concentrations on both sides decrease with the
increase in height [74–76], while concentrations decrease vertically along the height above
the ground on both sides of the canyon [77]. Research shows that the concentration of ultra-
fine particles (UFPs) and other major pollutants of vehicle emissions in street canyons is at a
high level near roads with heavy traffic, but due to dilution and reaction, the concentration
reaches the atmospheric background level at the height of several hundred meters [16].
Factors such as traffic volume, meteorological conditions, instability, and building size will
all affect the attenuation gradient [78–81]. Some studies show the spatial correlation under
different concentrations, especially the meteorological influence on pollutant diffusion
under different pollution sources [82,83].
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Conversely, pollution sources within about half a kilometer have a great influence on
the concentration of UFP and CO, which tend to keep low concentrations in the air [84].
Pollutants such as UFPs and NOx near highways accumulate for a long time, and the
concentration of pollutants within 100 m of the highways increases by more than 50%,
resulting in surrounding residents’ long-term exposure to high pollution levels [85].

With the progress of technology and the improvement of environmental quality re-
quirements, fixed position detectors have been proven to be largely insufficient to represent
the concentration of pollutants in street canyons. Therefore, more and more numerical
simulation and moving sampling methods are used for research [86]. Luz T et al. [87] used
portable devices to test the concentration of pollutants in the block under different condi-
tions and found that the concentration attenuates as the distance from the road increases,
and the attenuation varies with traffic volume and weather conditions. Figure 5 presents
the vertical profile of lung deposition surface area (LDSA: the concentration of aerosol
expected to be deposited in the lungs after inhalation based on the size of the particulates
in the aerosol) concentration in an urban street canyon in Helsinki, Finland. In the testing
process, an unmanned aerial system was used as a mobile measurement platform. The
results showed that the average LDSA concentration decreased from 60 mm2/cm3 mea-
sured near the ground to 36–40 mm2/cm3 measured near the roof of the street canyon and
further decreased to 16–26 mm2/cm3 measured at 50 m. In addition, the vertical section
above the roof level and the section measured in the street canyon show similar exponential
attenuation.
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3.2. Temporal Distribution Differences

The concentration distribution of pollutants in street canyons changes with time as
well as location, and its distribution characteristics are quite different in different time
periods of the day and different seasons of the year. The use of continuous monitors has
become increasingly widespread because they not only capture the properties of particles
with greater resolution but are also more economical.

Yan C et al. [61] conducted 12-month monitoring of pollutants in a street canyon of
Hong Kong. With a high concentration on working days and low concentrations over the
weeks, the correlation between PM2.5 concentration and wind speed is poor. In contrast,
the concentration of PM10–2.5 depends on the wind speed and increases with an increase
in wind speed, with significant statistical significance. Kai F et al. [17] conducted vertical
resolution traffic emission measurements on different floors of a roadside building near the
inner ring viaduct in the center of Shanghai, China; the results show that due to vehicle
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activities and seasonal changes in meteorological factors, the concentration of pollutants in
street canyons is higher in the morning of winter and in the late afternoon of summer.

Figure 6 presents the temporal distribution of pollutant concentrations in a street
in Karlsruhe, Germany. The results show that the variation trends of the concentrations
of different pollutants are basically the same, and they reach the peak of the day in the
morning and evening, which are closely related to the increase of people and traffic flow.
The lowest concentration in a day usually occurs between 2:00 and 4:00 in the morning, and
the specific time depends on the type of pollutants. Besides, it is clear that the concentration
of pollutants on weekends is lower than that of weekdays, and the concentrations are the
highest in January, decrease to a certain extent in February, and remain at a relatively low
level in the other months.
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Woodrow P et al. [86] installed a portable instrument in a customized bicycle housing
and sampled the concentrations of UFPs, carbon monoxide (CO), and particulate matter
(PM10) in two small areas (<2.5 km) in South Auckland, New Zealand. The results show
that high traffic volume and low wind speed cause higher pollutant concentrations in
the morning and evening. On the whole, the concentration of particles and CO in the
streets where merchants gather is higher than that of roads with large traffic volumes.
Luz, T. et al. [87] used a mobile monitoring platform for testing. Their results show that
the PNC level is highest in winter, lowest in summer and autumn, the concentration on
weekdays and Saturdays is higher than that on Sundays, and the peak time in the morning
is higher than that later in the day. The spatial and temporal trends of nitric oxide, carbon
monoxide, and carbon bromide are similar, but the spatial and temporal trends of inhalable
particulate matter are different. The hourly, daily, and seasonal changes of PNC have the
same magnitude as the spatial changes.
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4. Relationship with Indoor Air Quality

There is a common misunderstanding that with the deterioration of atmosphere
quality, buildings become our shelter against pollutants. However, lots of researchers think
that ventilation capacity is the most effective method to guarantee indoor air quality (IAQ),
so IAQ is strongly dependent on the environment of the street canyon [90–92]. Especially
for buildings located in an area with serious outdoor air pollution, the coupling between
indoor and outdoor air does not effectively improve IAQ but instead even aggravates
indoor pollution in some cases [93].

4.1. I/O Ratio and Its Impact Factors

The value of the I/O ratio (indoor and outdoor pollutant concentration ratio) is widely
used to evaluate the relationship between indoor and outdoor air pollution. Research on
the I/O ratio can be traced back to 1965 [22]; Dutch researchers tested SO2 and cigarette
particles inside and outside 60 rooms in Rotterdam and pointed out that there are significant
differences between indoor and outdoor air quality in civil architectures for the first time.
After many years of relevant research, it has been found that there are many factors that
affect the I/O ratio, which can be mainly attributed to the following several aspects:

(1) Types of ventilation. The ventilation modes of buildings can be roughly divided
into three categories: mechanical ventilation, infiltration, and natural ventilation [94]. As
shown in Figure 7, all three modes introduce pollutants from outside to some extent.
Mechanical ventilation is often applied with a filter, but it cannot prevent pollutants from
entering the room completely [95,96]. Outdoor air penetrates into the room through gaps
when doors and windows are closed [97], which has little influence on IAQ compared with
the other two ventilation modes. Natural ventilation is one of the most economical and
environmentally friendly ways to improve thermal and humid conditions and air quality
and strengthens the coupling relationship between indoor and outdoor air flow [96–98].
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(2) Deposition rate of aerosol particles. When air flows through the building envelope,
pollutants are deposited on the face, and their distribution characteristics are changed, thus
affecting residents’ exposure to pollutants [99]. The deposition rate of aerosol is closely
related to the size of particles, for a particle with a small size, Brown dispersion is the
main factor to promote deposition, and small particles are more susceptible to changes
in airflow [100], while gravity is the dominant factor for large ones [94]. Moreover, the
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deposition rate is also influenced by airflow, ventilation modes, surface properties of the
building wall, etc. [99,101,102].

(3) Penetration factor. The penetration factor refers to the ability of outdoor pollutants
to permeate the indoor environment [99]. For buildings with natural ventilation through
doors and windows, the penetration factor is equal to 1 [94]. If doors and windows of
the building are closed, the ventilation is conducted through the gaps in the enclosure
structure, and the penetration is influenced by the air exchange rate, size of particles, the
roughness of the wall surface [103,104], etc. When using mechanical ventilation, in order
to reduce the influence of penetration, some measures such as an ozone filter or air cleaner
can be used [105,106].

4.2. Research Findings

The coupling between IAQ and street canyon is not a fixed, simple linear relation-
ship but is influenced by many factors, including street layout, types of ventilation, the
microclimate of the street canyon, and so on.

Table 1 shows the vertical variation of VOC concentration in high-rise and low-rise
apartments through an on-site test; the influence of outdoor is quite different. On the
whole, the content of indoor VOCs on the lower floor is significantly higher than that on
the higher floor, and the outdoor VOC concentration is significantly lower than indoors
regardless of the height of the floor.

Table 1. Indoor and outdoor VOCs concentration (µg/m3) of different floors at daytime and night [103].

VOC Floor
Daytime Night

Outdoor Indoor I/O Outdoor Indoor I/O

MTBE
Low 4.5 5.5 1.22 6.1 6.8 1.11
High 4.0 4.3 1.08 5.1 5.7 1.12

Benzene
Low 6.2 6.3 1.02 7.7 13.6 1.77
High 3.5 5.3 1.51 4.8 11.6 2.42

Toluene
Low 25.9 40.2 1.55 36.9 57.4 1.56
High 19.8 30.4 1.54 24.8 44.5 1.79

Ethylbenzene Low 4.4 4.6 1.05 4.3 6.1 1.42
High 3.4 5.1 1.50 3.7 8.0 2.16

Figure 8 displays the I/O ratios of PM10, PM2.5, and PM1 at different locations; it is
clear that the concentration of indoor particles is significantly lower than that of outdoor
particles most of the time [107], which is contrary to the data in Table 1, and different kinds
of pollutants show various characteristics of I/O ratios. Figure 8 shows that the I/O ratio
of PM2.5 is usually the highest, the I/O ratio of PM1 is the second-highest, and the I/O
ratio of PM10 is the lowest, and this law changes in different test conditions. Some filed
measurement results indicated that the I/O ratios of fine particles are lower than that of
course particles [108], while other research found that the I/O ratios of fine particles are
higher than [102] or almost equal to [109] that of course particles. As a result, there is no
clear regulation or common conclusion about the relationship between I/O ratios and
pollutant categories.
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The characteristics of the microenvironment have a significant influence on the air ex-
change and pollutants’ transportation between an inside room and the street canyon [111,112].
Generally, high wind speeds and indoor–outdoor temperature differences are beneficial
for the reduction of pollutants’ concentration indoors [113]. Additionally, the I/O ratios
of particles of different sizes, especially fine ones, reduce in the afternoon [114], which is
partly attributed to the increase of temperature and the decrease of relative humidity.

5. Improving Measures

Pollutants in the street canyon, mainly from traffic emissions, seriously affect people’s
health. Therefore, it is very important to take corresponding intervention measures to
improve air quality and prevent a series of health problems related to street canyon
pollution. Generally speaking, measures such as local planning, clean air areas, reduction of
public transport emissions, and improvement of public awareness can be taken to improve
the air quality in street canyons [115]. Due to the diversity of the street canyon environment
and the numerous influencing factors of pollutant dispersion, a single intervention measure
may not have an obvious improvement effect, and a variety of measures need to be
reasonably used together to produce obvious changes.

5.1. Planning and Layout

First of all, governments and regional organizations should give full consideration
to air pollution in urban planning, especially the long-term pollution caused by motor
traffic [116]. On the one hand, residential areas should be built as far away from roads as
possible, and the location and design of new buildings and facilities should be appropriately
away from motor traffic, which encourages pollution to build up and increase exposure [9].
However, this kind of urban planning will cause inconvenience in people’s daily life. On
the other hand, the impact of air pollution on vulnerable groups should be minimized; for
example, schools, nurseries, and nursing homes should not be built in neighborhoods with
high pollution levels. Special attention needs to be paid to people with low socioeconomic
status because they are particularly vulnerable to the adverse effects of air pollution [117].
According to statistics, people in the poorest areas of London are, on average, more
vulnerable to air pollution than people in relatively rich areas [115]. Besides, adding
facilities such as wind catchers is a benefit for the air quality in a street canyon, which can
reduce the concentration of pollutants by 70% [118].

Secondly, the street layout has a great influence on the dispersion efficiency of pol-
lutants, so a reasonable street layout is needed to avoid the long-term accumulation of
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pollutants in street canyons on the premise of meeting basic needs. The rationality of the
street canyon layout is mainly based on the following considerations [119–124]:

(1) The ratio of the height to width values of the street canyon. In the street canyons
with different aspect ratios, the distribution trend of different physical parameters is
different, but generally speaking, when the aspect ratio is larger, the pollutants are more
difficult to be diluted, and the concentration of pollutants in the street canyons is higher.
Therefore, in the street layout, besides considering that high-rise buildings can meet more
occupancy, it is also necessary to ensure that the ratio of building height to street width is
within a relatively reasonable range.

(2) The ratio of the length to width values of the street canyon. Similar to the ratio of
the height to width value of the street canyon, when the ratio of the length to width value
is larger, the pollutant dispersion capacity of the street canyon is poorer, and the pollutant
concentration is higher. Therefore, the streets should not be designed to be too long in the
planning process. Crossroads should be set up reasonably to ensure the width of basic
streets, preventing pollutants from accumulating in the street canyons for a long time.

(3) Symmetry of the street canyon. When there are multi-story buildings on both
sides, the determinant and staggered street canyons are most unfavorable to the dilution
of pollutants when the building heights of the upper and lower reaches are 7/3 and 7/2,
respectively. Compared with the most unfavorable proportion of street canyons, the air
quality improvement rate of the upper stepped street canyon is higher than that of the lower
stepped street canyon. Therefore, in urban planning, the most unfavorable proportion and
lower stepped street canyons should be avoided as much as possible.

(4) Space between buildings. Upstream buildings have a great influence on the
blocking effect of street canyon inflow and the distribution characteristics of pollutants, and
the degree of influence is closely related to the distance between the upstream buildings.
The results show that the concentration of pollutants in street canyons first increases and
then decreases with the increase of the spacing and reaches the maximum value when the
spacing is 90 m. Therefore, the appropriate building spacing should be selected in urban
planning, and the smaller the spacing within a certain range, the better the dispersion of
pollutants.

(5) Orientation of buildings. The angle between buildings and regional mainstream
wind direction has a great influence on airflow and ventilation, and appropriate orientation
can reduce the air pollution residual time by more than 50%, which is a vital parameter for
evaluating the air quality and pollution dispersion.

5.2. Greening Facilities

Green infrastructures in the street canyon environment are considered as an effective
air quality improvement measure, which helps to improve the sustainability of the city
and cope with the growing urban population [125,126]. Generally speaking, roadside trees,
vegetation barriers, green walls, and green roofs are all common green facilities [127]. On
the one hand, green vegetation acts as a porous medium, affecting the local dispersion of
pollutants, and is conducive to the deposition and filtration of pollutants in the air [128,129];
on the other hand, green facilities can also alleviate the urban heat island effect and climate
change and reduce energy consumption and noise pollution [130–132].

According to statistics, compared with a scheme without green walls, air pollutants
with green walls can be reduced by as much as 95%, and for street canyons with green
roofs, the reduction of pollutants can also reach 2–52% [133,134]. Compared with trees and
vegetation barriers, green walls and green roofs (Figure 9) have a weaker ability to remove
pollutants; however, they have relatively lower space requirements and can become part
of the building’s surface and structure, and are therefore better means to improve street
canyon pollution.

However, there are also some disputes about the feasibility of using urban vegetation
to alleviate street canyon pollution. Although the concentration of pollutants is reduced
by the deposition effect on the surface of the vegetation, it should also be noted that trees
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themselves are obstacles to airflow and reduce the air exchange with the atmosphere above
the roof [135]. Therefore, in some cases, vegetation causes an increase in the local pollutant
concentration in street canyons [136]. Through a combination of numerical simulation and
wind tunnel tests, Li et al. [60] found that aerodynamics and sedimentation effects are the
main principles of vegetation to purify the air and increase pollution, respectively, and the
main influencing factors are the leaf area density, dimensionless resistance coefficient, and
sedimentation speed. Therefore, greening measures cannot be blindly taken to improve
the street canyon environment and need to be analyzed according to the actual situation;
otherwise, they may have the opposite effect [137].
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Considering the best local air quality near the pollution sources, urban trees should
be planted far away from pollution sources to avoid their blocking effect on air circulation.
Contrarily, in order to obtain the best overall air quality, trees should be planted as close to
the pollution source as possible because the ability of trees to remove pollutants increases
with an increase in pollutant concentration [138]. Because vegetations have both positive
and negative effects on the diffusion of pollutants, it is necessary to consider multi-scale
factors and combine different measures when increasing green settings.

5.3. Other Measures

In addition to the street canyon planning layout and greening measures mentioned
above, the street canyon environment can be improved in many ways. Table 2 shows some
commonly used measures that have proven to be effective by many practices and studies.

Table 2. Some other methods to improve street canyon environment.

Measures Reasons Benefits References

Ameliorate sidewalks and
lanes planning

Sidewalks and bicycle lanes are
places where passersby are most

vulnerable to pollutants

By improving the facilities of sidewalks and
bicycle lanes, planning bicycle lanes in relatively

quiet areas with a good environment, and isolating
motor lanes from other roads by vegetation,

pedestrians’ exposure to pollutants can be reduced

[139,140]

Reduce the emission of traffic
pollutants

Exhaust from public
transportation and private cars is
the main source of pollutants in

street canyons

Through environmental protection reform in the
vehicle industry, the introduction of reasonable

transportation policies, and the encouragement of
low-carbon travel, energy can be saved while

improving the atmospheric environment

[141,142]

Raise public awareness
Participation of all people is one

of the most effective ways to
improve the environment

There are many measures that can be taken,
including publicizing air pollution and its

relationship with human health through the media;
showing enterprises and individuals how to

reduce pollution caused by themselves; in some
public places, such as hospitals, stations, shopping

malls, etc., an electronic screen can be set to
display air quality in real-time, and so on

[143,144]
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6. Summary and Conclusions

This paper reviews past studies on the spread of pollutants in street canyons. From
internal mechanisms to external phenomena, the dispersion characteristics of pollutants in
street canyons are summarized in this paper, from which several conclusions are achieved:

(1) Forced convection, natural convection, and gravity are the basic motivation of
pollutants’ dispersion, and forced convection is the dominant factor most of the time. When
the wind speed is high enough, the air inside and above street canyons can be effectively
exchanged, and the threshold of wind speed is positively correlated with the AR value.
The correlation between PM2.5 concentration and wind speed is poor, but the PM2.5–10
concentration shows a positive correlation with the wind speed. Air convection and
turbulent factors affect the horizontal and vertical dispersion, respectively, both of which
increase with an increase in temperature difference. The heat island effect is beneficial to
pollutant dispersion, while the inversion layer has a negative influence. As for the street
layout, the aspect ratios show a positive correlation with pollutant concentration. Due to
the physical properties of different pollutants, the gravity effects are variational.

(2) The spatial distribution characteristics of pollutants indicate that the concentration
of pollutants decreases with height, and pollutants tend to accumulate on the leeward side
of buildings and drop to the background level at a height of several hundred meters. The
temporal distribution of pollutants in street canyons varies by diurnal, weekly, and annual
periods and is affected by traffic volume, pedestrian flow, and environmental parameters.
The concentration on weekdays and Saturdays is higher than that on Sundays, and the peak
value of concentration appears in the morning and evening rush hours. In the daytime,
the higher temperature inside the street canyon facilitates the air exchange between the
street canyon and upper atmosphere and promotes the upward dispersion of pollutants.
At night, the inversion layer inhibits the air exchange between the street canyon and above,
resulting in the air quality in the early morning being worse than that in the evening. The
concentrations of pollutants in street canyons are higher in the morning of winter and in
the late afternoon of summer, and the highest concentration is in January.

(3) Through the indoor and outdoor air exchange, pollutants of the street canyon have
a significant influence on IAQ, which is evaluated by the I/O ratio and is mainly associated
with the microenvironment, ventilation modes, deposition rate, and penetration factor.
Typically, the I/O ratios of VOCs are greater than 1, while for six gaseous pollutants, the
values are less than 1. However, there is no clear regulation or common conclusion about
the I/O ratios for different pollutants categories in past studies.

(4) Measures such as local planning, clean air areas, reduction of public transport
emissions, and improvement of public awareness can be taken to improve the air quality
in street canyons. Residential areas, schools, hospitals, etc., should be far away from roads
with heavy traffic, and facilities such as wind catchers should be added to the street. Urban
greening that includes street trees, vegetation barriers, and green walls and roofs can reduce
air pollutants effectively due to the aerodynamic and deposition effects, but they may have
opposite effects as a result of the obstruction to airflow. Besides, a single intervention
measure may not have an obvious improvement effect, and varieties of measures need to
be reasonably used together to produce obvious changes.

However, there are also some shortcomings in the current research, and in order
to further grasp the characteristics of air pollutants in the street canyon, the following
suggestions are put forward for future research:

(1) More long-term, large-scale, and high-precision field measurements are needed,
establishing a complete systematic database about the parameters of the wind environ-
ment, thermal environment, and pollutants, which can provide an effective reference for
subsequent research such as numerical simulation and model experiments.

(2) Some results of the current research are not uniform, such as the fitting equations
between pollutant concentration and height, the relationship between particle diameter
and indoor–outdoor concentration, etc. Therefore, more research is needed to pay attention
to relevant aspects so as to deepen the understanding of street canyon pollutants.
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(3) There are many factors that have an impact on the dispersion of pollutants and
lack a relational expression that can fully reflect and quantify the effects of various factors,
which would be very beneficial to predict and evaluate the street valley environment.
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