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Abstract: Environmental problems of urban and rural areas are now high on the agenda of industri-
alized countries, becoming a key challenge for regional-level policymaking. The mutual influence of
population growth, economic and technological development, and the anthropogenic pressure on
the environment is still insufficiently studied in many countries, including Russia. In this paper, this
relationship is studied for the municipalities of Angara–Yenisey Siberia using an ensemble of the
STIRPAT-like regression models, adapted according to the available data. We found that population
size and gross municipal product were positively associated with pollutant emissions (p < 0.01), while
energy efficiency had no significant impact on air pollution. In addition to the poor national data
quality and completeness issues, which can distort statistical conclusions, the cause of the observed
lack of spatial correlation between energy efficiency and air pollutant emissions may be path depen-
dence and an insufficient pace of transition to a greener economy. This leaves room for institutional
transformations aimed at intensifying energy efficiency to reduce the environmental burden.

Keywords: air pollution; emissions; economic growth; energy intensity; industrial pollution; STIR-
PAT model; municipality; Angara–Yenisey Siberia; Russia

1. Introduction

Today’s global society places a high demand on minimizing air pollution, placing the
reduction of industrial emissions at the top of the planet’s sustainable development agenda.
As the economic growth of resource-rich countries is usually associated with intensive air
pollution caused by different types of energy consumption, reducing the environmental
impact of production should become one of the main tasks of national policymaking.

However, even in countries with pronounced environmental agendas and massive
ecologically driven investments, such as China, there are many unsolved issues which
hinder the mitigation of habitat degradation [1–3]. Other developing countries face the
same problems while being less capable of solving them [4–9]. As a result, emissions are
still growing in most countries, both in absolute and per capita terms, resulting in various
adverse effects.

In recent years, the literature on establishing diverse interlinkages between air pol-
lution, economic growth, and social development of territories became more focused on
regional- and local-scale studies rather than cross-country comparisons. The growing inter-
est in ecological topics drives the development of data collection and methods for testing
various hypotheses, such as the negative impact of air pollution on housing prices [10,11],
effects of urban planning quality on the local environmental conditions [12–14], the pres-
ence of decoupling between energy consumption and economic growth [15–17], and
so forth.

There are several methodological frameworks to detect patterns of mutual impacts
between economic development and environmental quality, such as the environmental
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Kuznets curve (EKC) and the IPAT model. The idea of EKC, first introduced by Grossman
and Krueger [18,19], is that the relation between per capita income and pollution emissions
can be described with an inverse U-shaped curve: increase of income drives new emissions
before reaching a point where the trend inverts to a decline in pollution. An important
practical implication of this idea is that a period of rapid economic growth and intensive
environmental pollution in developing countries will be succeeded by a relief of environ-
mental pressure, as national income reaches a threshold level. Few empirical studies of
cross-country and cross-regional comparisons support EKC-like hypotheses [20–24]. The
IPAT approach, developed from a discussion between Commoner, Ehrlich, and Holdren in
the early 1970s [25,26], studies the human impact on the environment (I) as a mathematical
function of population (P), affluence (A), and technology (T). Dietz and Rosa suggested
a stochastic version of IPAT, then called STIRPAT (Stochastic Impacts by Regression on
Population, Influence and Technology) [27]. STIRPAT allows the empirical application of
the IPAT concept to test hypotheses about the contribution of different structures of growth
factors to environmental pressures [15,28–32]. In past years, evidence also emerged that
merging both IPAT and EKC concepts is beneficial to better understand the genuine effects
of economic and social development for the state of the environment [33,34].

Russia is a promising case study of economic drivers of environmental pollution, as it
is a resource-abundant country with huge territory and notable environmental pressure in
most industrial centers. According to the State report on the state and protection of the
environment by the Ministry of Natural Resources and Ecology, in 2019 air pollution was
“high” and “very high” in 40 out of 250 Russian cities, where the regular environmental
monitoring system was in operation. Most cities were affected by the emissions of specific
pollutants: particulate matter (209), nitrogen dioxide (231), nitrogen oxide (136), sulfur
dioxide (225), carbon monoxide (208), benzapyrene (174), and formaldehyde (150). The
highest level of air pollution was reported for 18 Russian cities geographically located
in industrially developed areas in Siberia and the Russian Far East, specifically in the
Angara–Yenisey rivers basin (15).

It is worth mentioning that the quality of official data on air pollution is usually
controversial [35–38], so we assume that all the figures from state sources are the lower
estimates of the factual levels of corresponding indicators. Meanwhile, the data from non-
governmental sources such as IQ Air (https://www.iqair.com/ (accessed on 15 July 2021))
and similar independent air quality monitoring projects should also be used with care in
respect to the unknown accuracy and credibility of primary measurements and probable
overestimation of the results [39].

Recently, some studies of interactions between carbon emissions and energy use, real
income, and education in Russia using the EKC approach have emerged [40]. Unfortunately,
regional- and municipal-scale studies of ecological and economic issues are still rare [41–44],
despite their obvious relevance for understanding the current state of the problem and
efficient policymaking. Local-level studies are of crucial importance for large countries
such as Russia, because of their pronounced spatial heterogeneity.

The lack of consistent and reliable data is a known problem when dealing with
statistical studies in Russia [6,45,46]. However, the situation with environmental Russian
statistical data is relatively more complicated, especially when downscaling studies to the
regional or municipal level. Publicly available municipal statistical datasets are represented
by a much smaller nomenclature of observed indicators, with shorter and often inconsistent
time series.

Many EKC and IPAT studies primarily test greenhouse gas emissions data to identify
decoupling with the level of economic development [47–50]. However, Russia still lacks
public data on greenhouse gas emissions by region or municipality, so such studies are
virtually impossible without relying on alternative sources such as independent satellite
monitoring data. On the contrary, the monitoring of air pollutant emissions, including in a
cross-section down to individual municipalities, has been carried out for two decades.

https://www.iqair.com/
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In this paper, we study the key drivers of environmental pollution in the regions of
the Angara–Yenisey macroeconomic region using the common methods of basic statistical
analysis and STIRPAT methodology.

2. Materials and Methods
2.1. Study Area

This study focused on the Angara–Yenisey macroeconomic region, an uncommon
geographical ensemble of four Russian regions based on the river basin approach [51],
including Krasnoyarsk Krai, Irkutsk Oblast, Tyva Republic, and the Republic of Khakassia.

At a sub-regional scale, Russian regions are divided into municipalities, which may
be rural (rayons) or urban (goroda, poselki gorodskogo tipa, gorodskiye okruga) areas. In the
Russian language there is no distinguishment between the terms “town” and “city”, so
in this paper we use the term “city” in all cases when a settlement has a status of gorod
or gorodskoy okrug. Historically, a city in Russia is a human settlement with more than
12,000 inhabitants, mostly employed in agriculture. During the last decades, a few cities
substantially depopulated (e.g., Igarka, a small but important local transport hub in the
north of Krasnoyarsk Krai, has lost 80% of its population since 1989) but kept the official
status of a city.

The main parameters of the studied regions are summarized in Table 1. It is evident
that the most economically developed region is Krasnoyarsk Krai, which generates four
times more economic activity (measured through the gross regional domestic product,
GRDP) than the Tyva Republic, the poorest subject of the sample and indeed the whole
country. However, the air pollutant emissions are not proportional to the economic activity
across the regions. Generally, the considered regions are cases of acute heterogeneity of the
main macro-level indicators.

Table 1. Main characteristics of the ensemble of studied regions. Source: Rosstat, Russian Federation State report on the
state and protection of the environment 2019.

Region Area,
1000 sq. km

Population, 1000
Persons

GRDP
Per Capita, 1000

RUB

No. of Municipal
Areas/Cities

Air Pollutant
Emissions from

Stationary
Sources Per

Capita, t

Krasnoyarsk Krai 2366.8 2875.3 793.0 44/17 806.5
Irkutsk Oblast 774.8 2401.0 580.1 32/10 267.0

Republic of
Khakassia 61.6 536.8 438.3 8/5 199.3

Tyva Republic 168.6 323.1 212.9 17/2 12.4

Trends in the aggregate emissions of pollutants into the atmosphere at the municipality
level in the regions under consideration are shown in Figure 1. There is a pronounced
tendency of a substantial decrease in annual air emissions for most parts of the southern
regions (−95% to −50% percent) while the northern regions suffer from a dramatic growth
of air pollution load (up to 20 times in Taymyrskiy, Evenkiyski, and Severo-Eniseysk
rayons). This is due to the intensive development of new mineral deposits, such as Vankor
and Yurubchen oil and gas fields.

The significant emission reductions in the central and northwestern regions also have
an explanation. After the collapse of the Soviet Union, the main driver of the spatial
development of Russia was the shift from the east and the periphery to the west and
towards Moscow, the biggest city in the country and its capital [52,53]. A similar trend
is observed at the intra-regional level, where there is a shift of economic activity and
population towards the central cities. The gradual slowdown of industrialization and
technological modernization of existing production chains in peripheral areas led to a
decrease in the emission of air pollutants.
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Figure 1. Percentage change in the total emissions of air pollutants across the municipalities of the Angara–Yenisey
microregion between 2010 and 2020. Source: Rosstat data. Made using QGIS version 3.16 [54]. Administrative boundaries
are retrieved from GADM project (https://gadm.org (accessed on 25 July 2021)) and then updated by the authors to comply
with the current administrative division of northern territories of Krasnoyarsk Krai.

2.2. Data

We used the data from Rosstat (The Federal Statistics Service of the Russian Fed-
eration), which provides the database of municipal indicators (https://www.gks.ru/
dbscripts/munst/ (accessed on 1 August 2021)). To the best of our knowledge, this is the
only source of systematic data on the development of the Russian provinces and cities. For
some indicators, the dataset contains observations since 2007, however because of the large
number of data omissions and unexplained fluctuations of some rows, it was not possible
to compile complete and consistent time series for panel data analysis.

The Russian statistical and hydrometeorological services operate the following list of
main air pollutants that are reported in the public datasets: solid particulate matter, sulfur
dioxide (SO2), nitrogen oxides (NOx), hydrocarbons (CxHy), volatile organic compounds
(VOCs), and “other” pollutants. The concentrations and emissions of particulate matter are
usually given as a composite indicator without highlighting PM2.5 and PM10, which is a
common worldwide practice.

The misreporting of environmental data is a common phenomenon and is widely
studied in China [35,55]. Despite there being no statistically grounded evidence of system-
atic distortions of the official Russian environmental data, we assumed that the available
data may also be affected by various kinds of intentional or accidental errors [46].

Outliers were manually detected and replaced with averages from the corresponding
time series. Missing values were restored using simple linear trends.

https://gadm.org
https://www.gks.ru/dbscripts/munst/
https://www.gks.ru/dbscripts/munst/
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2.3. Methods

The original IPAT model is described with a trivial equation [25,26]:

Ii = Pi Ai Ti. (1)

It establishes a connection between environmental impact (Ii); population (Pi); per
capita economic activity, or affluence (Ai); and the impact per unit economic activity, or
technology (Ti) subject to i and is an index of observation. The first idea was to use this
equation to express Ti and then calculate its value through other known terms.

Dietz and Rosa [27] extended the IPAT to allow empirical studies based on retrospec-
tive statistical data. The expression for their STIRPAT model is the following:

Ii = a Pb
i Ac

i Td
i ei, (2)

where ei is a residual term. This formulation allows a simple linearization, and so it can be
further used as a linear regression equation:

ln(Ii) = a + b ln(Pi) + c ln(Ai) + d ln(Ti) + ei. (3)

Although most recent STIRPAT applications use the panel data to explore both the
spatial and temporal heterogeneity of the pressure of social and economic development on
the environment (e.g., [15,28,56–58]), the original works by York, Dietz, and Rosa [27,31]
were made using static cross-sectional samples. We use this approach and Formula (3) as a
general form of regression due to the lack of available data for some critical variables.

To control for heteroscedasticity, we use the standard error estimators by MacKinnon
and White [59]:

Var (e) =
n

n − k
diag

(
êi

2
)

, (4)

where n stands for the number of observations, k is the number of parameters to estimate,
and êi denotes the estimated value of residual for the ith observation.

Due to data availability, we suggest using the proxies given in Table 2 for the corre-
sponding components of the STIRPAT equation.

Table 2. Definitions of variables for STIRPAT analysis. Source: compiled by the authors using the data available from
Rosstat (https://www.gks.ru/dbscripts/munst/ (accessed on 15 July 15 2021)).

STIRPAT
Component Designation Variable Unit

Human impact
on the environment (I)

Emissions: Total Pollutants emitted into the atmosphere from
stationary sources—total 1000 t

Emissions: PM
Pollutants emitted into the atmosphere from

stationary sources—solid substances
(particulate matter)

1000 t

Emissions: Gas and liquid
Pollutants emitted into the atmosphere from

stationary sources—gaseous and
liquid substances

1000 t

Emissions: SO2
Pollutants emitted into the atmosphere from

stationary sources—sulfur dioxide 1000 t

Emissions: CO Pollutants emitted into the atmosphere from
stationary sources—carbon monoxide 1000 t

Emissions: NOx
Pollutants emitted into the atmosphere from

stationary sources—nitrogen oxides 1000 t

Emissions: CxHy
Pollutants emitted into the atmosphere from

stationary sources—hydrocarbons 1000 t

Emissions: VOCs
Pollutants emitted into the atmosphere from

stationary sources—volatile
organic compounds

1000 t

https://www.gks.ru/dbscripts/munst/
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Table 2. Cont.

STIRPAT
Component Designation Variable Unit

Population (P) Population Average annual permanent population 1000 persons

Affluence (A) Gross municipal product
Self-produced goods shipped, works

performed, and services rendered using
own resources

1,000,000 RUB

Technology (T) Energy intensity of GMP

Self-produced goods shipped, works
performed, and services rendered using own

resources (section D: electricity, gas and
steam supply; air conditioning)

1,000,000 RUB

Human impact on the environment (I) is proxied with eight available variables on air
pollutant emissions from stationary sources. These figures are not measured but reported
by all business entities. The quality and reliability of these data remain unclear because
they are not the subject of independent or state inspection.

Population (P) is the most trustworthy indicator, stating the number of all people who
are officially registered at their place of residence.

Affluence (A) and Technology (T) are measured using the same type of statistical
observations: the sum of all products shipped and services rendered at the territory. Energy
production formally includes air conditioning, which is not required for the sake of our
study. Since we do not know the actual production of air conditioning allocated to the
appropriate type of economic activity, we believe this indicator can be neglected.

3. Results

The main descriptive statistics are reported in Table 3.

Table 3. Summary statistics of the variables.

Variable Mean S.D. Median Min Max Skew Kurtosis

Emissions: Total 11.32 27.00 1.56 0.00 193.96 3.89 17.29

Emissions: PM 1.78 3.75 0.78 0.00 22.04 3.18 0.34

Emissions: Gas and liquid 9.54 24.68 1.19 0.00 171.93 3.98 17.88

Emissions: SO2 16.32 151.84 0.13 0.00 1675.0 10.70 113.97

Emissions: CO 4.66 13.70 0.73 0.00 77.46 4.02 15.74

Emissions: NOx 1.65 5.54 0.10 0.00 53.27 6.99 59.23

Emissions: CxHy 0.57 2.46 0.02 0.00 15.63 5.63 31.22

Emissions: VOCs 384.44 1499.94 33.03 0.02 13,123.44 6.75 49.37

Population 46,122.02 114,045.18 20,061.00 3355.00 1,087,714.00 7.16 57.58

Gross municipal product 28,860.99 89,310.00 2541.0 70.33 555,920.86 4.55 21.37

Energy production 2818.57 11,458.25 133.86 0.00 101,520.32 6.33 46.53

High values of skewness and kurtosis and sufficient range between means and medi-
ans indicate that the distributions of all the variables in the study are exponential, with a
shift of the top to the left relative to the median. Logarithms successfully convert distri-
butions to a normal law. The relatively small sample size does not allow grouping and
clustering of data to obtain more complex modeling results.

All the models were estimated using conventional ordinal least squares with standard
errors from (3) for all available air pollutant variables. Affluence and Technology were
finally recalculated per capita.

Table 4 shows the estimated results for the STIRPAT model.
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Table 4. Estimates of STIRPAT regression models. All the dependent variables and covariates are in natural logarithms.
Calculated by the authors using R with “sandwich” and “stargazer” packages [60–62].

Variable Total PM Gas and
Liquid SO2 CO NOx CxHy VOCs

Constant
−6.313 *** −10.430

*** −6.633 *** −15.937
*** −4.985 *** −9.972 *** −12.274

*** −5.137 ***

(1.264) (1.351) (1.284) (1.836) (1.710) (1.848) (4.311) (1.896)

Population (P) 0.817 *** 1.014 *** 0.830 *** 1.505 *** 0.586 *** 0.953*** 0.977 ** 1.011 ***
(0.116) (0.124) (0.118) (0.168) (0.157) (0.170) (0.393) (0.174)

Gross municipal product
per capita (A)

0.678 *** 0.476 *** 0.703 *** 0.559 *** 0.706 *** 0.917 *** 1.038 *** 0.869 ***
(0.065) (0.070) (0.066) (0.095) (0.088) (0.095) (0.254) (0.099)

Energy intensity of GMP (T) −0.042 −0.063 −0.033 −0.067 −0.049 −0.064 0.191 0.006
(0.044) (0.047) (0.044) (0.064) (0.059) (0.064) (0.191) (0.065)

Observations 113 113 114 113 114 114 76 107
R2 0.664 0.573 0.672 0.576 0.485 0.603 0.334 0.594

AIC 346.9 361.8 353.3 431.2 418.6 436.4 404.2 411.5

Note: *** p < 0.01, ** p < 0.05, * p < 0.1 Standard errors are provided in parentheses.

The estimated models are of high quality, with R2 varying between 0.485 and 0.672.
The model for CxHy is an exception (R2 = 0.334); it is not a predominant pollutant and the
data contains many missing or zero values. VIF tests showed no multicollinearity (values
not reported).

Two components of the STIRPAT equation, Population (P) and Production per capita
(A), are statistically significant with p < 0.01 for all cases. Meanwhile, Energy production
per capita is not significant for all cases.

All presented models have stable values of parameter estimates and standard errors.
Population size has an elasticity of influence on emissions of corresponding pollutants in
the range from 0.586 for CO to 1.505 for SO2. Here, the high value for SO2 emissions is
characteristic of production processes in metallurgy, for example, in the Norilsk industrial
region in the northern region of Krasnoyarsk Krai. Gross municipal product (A) is also
described by a rather weak scatter of estimates of elasticities of its effect on ecological load:
from 0.476 for particulate matter to 1.038 for CxHy, with an average of 0.678 for all types of
pollutants. Analysis of the coefficients allows us to draw conclusions about the robustness
of the obtained results across all types of pollutants, as they converge to narrow bands
around their means: 0.96 ± 0.16 for Population, 0.74 ± 0.15 for GMP, and −0.02 ± 0.05 for
Energy intensity.

The signs for both Population and GMP are positive in all models, indicating an
apparent direct relationship between the relevant factors and the dependent variables—
that is, an increase in population and economic growth leads to an increase in emissions. It
is important to note that regression model parameter estimates for aggregate emissions are
approximately equal to medians among estimates for individual pollutant components.

We conclude that the estimated models are robust, considering the limitations regard-
ing the quality and completeness of the data as well as the impossibility of using time
series for the analysis.

4. Discussion

Our analysis shows that a STIRPAT-like form of statistical influence of population size,
gross municipal product, and energy intensity of the economy on air pollutant emissions
is partially fulfilled for the municipalities of Angara–Yenisey Siberia. While the first two
factors directly impact on atmospheric emissions, energy efficiency cannot be considered a
significant driver for their reduction based on these results.

We identify at least two reasons for this lack of spatial correlation between energy
intensity and air pollutant emissions. First, the known limitations of the analysis performed,
related to the unclear quality of the data used, as well as their apparent inadequacy for
panel studies. In addition to the lack of observations proper for certain indicators for some
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years for some municipalities, the sets of indicators themselves are scarce and often do not
allow us to select the data suitable for testing meaningful hypotheses.

Secondly, if the conclusions drawn from our models hold in future studies (including
on broader data sets), it can be assumed that such decoupling takes place in practice. On the
one hand, this contradicts many previous studies in other countries and regions, which have
shown a full implementation of the IPAT identity or STIRPAT model. However, it is highly
likely that for the regions of Siberia and other resource territories of Russia this situation
is typical due to path dependence and the lack of qualitative changes in the greening of
the economy and social sphere. This conclusion is in agreement, for example, with the
work of Zabelina [44], which shows the decoupling between the ecological and economic
development of the cross-border regions of Siberia and the Far East. It is important to
note that our work cannot contribute to the broader literature on decoupling, as it only
considers a static spatial context of the problem. An extension of the dataset is needed to
provide a more sophisticated and robust analysis.

In any case, there remains an ample space for new institutional transformations aimed
at intensifying energy efficiency to reduce the environmental burden. This is especially
important for depopulating Siberian cities and rural areas, where the quality of life is
already low compared to the large developed cities of the central part of the country, where
a large number of capable young people move.

The results of this study provide a basis for the continuation and expansion of work
on testing various EKC- and STIRPAT-like hypotheses at the regional and municipal levels
in Russia.
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