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Abstract: In this paper, a study of the vibrations that appear in the transmission shafts of an adder
gearbox used for a heavy truck is made. The truck has two engines on only one chassis and the power
offered by these engines is summated and transmitted to the truck or the working machine. This type
of transmission is used for oil production installation for the army. During the transportation of the
installation to the workplace, only one engine is running, after mounting installation, both engines are
running. This paper studies the vibrations of the adder gearbox, a complex construction, subjected
to multiple operating requirements. In this regard, the authors first performed accuracy (accuracy)
tests of the VIC 3D system on an original experimental mini-stand. Measurements performed on
a mini disc demonstrated the validity and accuracy of the method, even if the cameras used were
not high resolution. The authors applied the same principle in the case of the adder box from the
truck, obtaining useful results for those in the field. The experimental method uses the facilities of
a contactless optical measurement method (VIC-3D), which provides a high-accuracy quantitative
linear and angular vibration analysis. The VIC measurement method offers, based on a frontal
viewing of the disk during the resonance phenomenon and by simple calculus on the monitored
linear displacements, the corresponding angular amplitude.

Keywords: housing; mechanical transmission; heavy truck; VIC; adder gearbox; video image correlation

1. Introduction

Oil drilling rigs are complex assemblies intended mainly for the controlled penetra-
tion of the terrestrial layers under which the hydrocarbon reserves are accumulated. A
secondary objective of these installations is the repair of the wells. The mechanical stresses
that occur during the digging of the wells are particularly high, due both to the resistance
of the layers of soil and hard rocks, and the length of the columns of the drilling pipes. The
optimal solution to meet these goals was to build a truck with two engines (Figures 1 and 2).
During transport one of the motors works and during the operation of the drilling rig both
motors work, to obtain the necessary higher power. The adder box, which equips these
installations, whose experimental study is made in the work, is a complex mechanical
assembly, which must work accurately and safely, in the conditions of high efficiency and
a low-cost price. Consequently, modeling is needed that leads to a leveling of operation
practically identical to the real phenomena. At the same time, the sizing of all components
must be ensured at the degree of safety and economy required by the profile market.

There is a lot of research on the common problems that arise in these heavy vehicle
transmissions. The main problem that has to be studied very carefully is the problem
of vibrations, which leads, implicitly, to the problem of noise produced by such a trans-
mission [1,2]. Any defect, even minor, that can occur in one of the engines has to be
eliminated [3]. To reduce maintenance costs, careful monitoring is always desired. The
conclusions that will be presented in this paper show that the vibrations of the compo-
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nents of a transmission are extremely important for the early detection of possible defects.
Deviations from normal behavior must be identified in advance.
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Figure 2. The adder and distribution box.

If we analyze the vibrations that occur in a gearbox, we find that there are two
types of vibrations important for applications. These two types of vibrations are due
to two types of excitation sources. The first type is due to the internal excitation of the
gears and the second type is represented by the external one due to the motor torque.
There are established models for the study of vibrations that occur in such systems [4]
using multibody dynamic systems. In the mentioned work, the elastic deformation of the
wheelset and the deformation of the gearbox housing are taken into account. The software
used to perform the numerical calculations is MATLAB/Simulink and non-experimental
measurements confirmed the accuracy of the model.
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A gearbox or an adder gearbox that equips a heavy truck is a massive aggregate,
with a major impact on both the operation and the price of the vehicle as a whole. The
vibrations generated by such an aggregate will determine the conformity of the truck and
the durability of the transmission. This paper [5] aims to improve the design of this unit
and reduce weight, in addition to adequate vibration behavior. A dynamic model [6] for
the gearbox is proposed to provide data for the designers for the realization of a properly
functioning product with a low-cost price. The results are validated by experimental tests.
As mentioned earlier, vibration is one of the main problems and causes of noise in the
case of gearboxes [7]. This is the reason why there are numerous researchers in the field,
who have proposed different models to study these vibrations. The results obtained on
account of these models were verified experimentally [8,9]. Thus, they established the
equations of motion for the dynamic analysis [10,11] and the finite element method was
used intensively [12,13]. As a consequence, the use of modal analysis in vibration analysis
is widely presented [14,15]. Interesting models are presented in [16,17]. The involvement
of active control in problem-solving is addressed in [18,19].

Due to the time-variable character of the loads, produced in cylinders by the working
process, the crankshaft is subjected both to bending and torsional vibrations. The bending
vibrations (considering the relatively short distances between the crankshafts’ bearings) are
less dangerous than the torsional ones, where nearly the entire length of the crankshaft is
involved in this process (Figure 2). By superposing the torques offered by the cylinders of
the engine during a complete working cycle (720◦ rotation of the crankshaft), the end of the
crankshaft will obtain the resulted torque moment Mt with its fluctuation (between Mt,min
and Mt,max) and small shocks, which will finally produce the mentioned torsional vibration
of the crankshaft. In spite of that, the used flywheel and other damping devices can reduce
the effect of the torque moments’ fluctuation; in practice, they will also be observed. Their
final effect, the induced torsional vibrations, has to be reduced to obtain better reliability
and to protect the engines. When the obtained/generated frequencies during the working
process become equal with the crankshaft’s eigenfrequencies, the resonance phenomenon
will appear, which are very dangerous due to their unexpected high amplitudes. In this
case, the total angular displacements Φ of the crankshaft showed such non-acceptable
amplitudes. The vibrations are associated with very dangerous fatigue solicitations which
are, in the present case, some constant-sign types (between Mt,min and Mt,max, having
the same sign). Taking into consideration both of the above-mentioned effects it can be
concluded that a high-accuracy theoretical analysis (usually including a Finite Element
Method (FEM) simulation) carried out by an experimental investigation represents a great
challenge for the engine designers. From the author’s point of view, the experimental
investigations attract interest because they are useful tools in FEM validations, too. The
applied experimental method has to be high-accuracy, reproducible (without altering the
original phenomenon), and with accessible prices.

By utilizing such a complex experimental method, not only a high-fidelity monitoring
of the phenomenon (here, the torsional vibrations) with the corresponding frequencies but
also a high-accuracy evaluation of the amplitudes became possible. The usual stroboscope
is not able to offer this information.

Video Image Correlation (VIC) has proven to be an excellent method for analyzing
the deformations and stresses that occur in a structure and there is a rich literature that
develops the method and the range of applications [20–22].

The facilities of a contactless optical measurement method (VIC), in high-accuracy
quantitative linear and angular vibration analysis, are presented. The system is able to
substitute a high-performance stroboscope and to quantitatively evaluate the vibration
amplitudes. In this respect, the authors designed and tested an angular vibration sys-
tem. This consists of a small stepper motor, powered with alternating current (by small
shocks/impulses, using an asymmetric cyclic feeding) and a small plastic disk (a CD disk),
fixed on its shaft. Due to the non-uniformity power supply from the stepper motor, a reso-
nance phenomenon will occur in the plastic disk, which leads to high angular amplitudes.
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The VIC measurement method offers, based on a frontal viewing of the disk during the
resonance phenomenon and by simple calculus on the monitored linear displacements, the
corresponding angular amplitude. The software enables a quantitative evaluation of these
angular vibrations (their amplitude, respectively, their precise frequency). Similarly, the
phenomenon can be observed at the crankshaft (where the rotary speed is not perfectly uni-
form, requiring a flywheel and supplementary damping device). In the authors’ opinion,
the VIC-3D could be used as a powerful, relatively cheap, simple, and also high-accuracy
investigation tool in the analysis of the torsional vibrations in combustion engines [23–25].

2. Materials and Methods

In the following, the authors illustrate the advantages of such an adequate experi-
mental investigation system, namely the Video Image Correlation (VIC), known also as
Digital Image Correlation (DIC), which represents a very powerful full-field contactless
optical method. Its 3D version (VIC-3D v7) [26–29], used in the 3D displacement field’s
high-accuracy evaluation, is suitable not only in static loading conditions but also in
quasi-dynamic and dynamic ones. Furthermore, the periodic phenomenon can be easily
monitored even if they show some fluctuations.

Other aspects of the VIC-3D system are:

- it is a contactless optical method and, consequently, the measurement does not influ-
ence the analyzed phenomenon as well as when applied to a large range of materials
(homogeneous, non-homogeneous, isotropic, orthotropic as well as anisotropic ones);

- it is not necessary to use expensive, consumable, only water-soluble white and black
paint for grounding and for painting the dots;

- it is able to eliminate the rigid body movements from the achieved values and, conse-
quently, can be applied in normal working (industrial) conditions;

- it shows good accuracy in 3D investigations of the field’s displacement components
(in usual cases up to approximately 1µm);

- it can alter not only the displacement field but also the corresponding strains too;
- it allows a large range for the measured values of the displacements (starting from

some microns up to several cm);
- it allows a superposing of a metric nod mapping similar to the FEM-analysis ones;
- it allows to superpose a desired density meshing over the area of interest and so

became possible to verify the Finite Elements simulations’ results (the numerical
model’s validation);

- it allows to re-analyze the acquisition dates (set of images) as many times as one wishes,
with desired accuracy by redefining the area of interest for the same phenomenon;

- it shows good stability, allowing high-accuracy measurements in operating/working/
industrial conditions. The system can be completed with several very useful post-
processing tools such as:

- strain and strain tensor’s evaluation;
- velocity and in-plane rotation calculus;
- applying arbitrary user-defined or own/implemented functions from VIC-3D;
- mapping external data (e.g., temperature field imported from a thermo-vision or

IR camera);
- extracting data (in specified points, along lines, curves, grids, points/nodes);
- VIC Gauge 3D TM module offers the facilities of real strain gauges, respectively, of

several high-accuracy and removable optical extensometers;
- exporting data (all data, pixel grid data, metric node data for FEM comparison,

statistical data in CSV or ASCII formats);
- in VicSnap software, the Real-time 3D Analysis module offers real-time monitoring (only

visualization at the first stage, but the information can be stored for later processing);
- the Strobo-module offers all of the facilities of a high-speed stroboscope, supplemented

with a high-accuracy displacement evaluation.
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The system consists of two (not necessarily high-resolution) video cameras, fixed on a
very rigid (highly-stiffened) aluminum profile (see Figure 3), mounted on a very stable tripod.

1 

 

  

Figure 3. The main components of the VIC-3D system [26,27].

To perform experimental investigations, the surface of the investigated object in ad-
vance is sprayed with a water-soluble paint, which assures obtaining a non-uniform
dotted surface; the sizes of dots depends on the tested/investigated surface magni-
tude/size/dimension. In this way, one can assure a different intensity of grey for each
representative (equivalent) pixel from the analyzed surface. One has to perform the cal-
ibration with some special targets, namely some plates foreseen with a number of some
high-accuracy sets of dots (Figures 4 and 5), which are disposed/printed with a special 2D
high-accuracy on the target’s surface. During the calibration process, this special target is
disposed in the plane corresponding to the predictable median plane of the tested object’s
surface. The target is rotated in the horizontal and vertical plane (in the predictable tested
object’s plane) to allow the VIC-3D program high accuracy in recognizing the 3D displace-
ments of the significant points (dots) of the target, which are colored by the software in
yellow, pink, and blue (Figure 5).

One has to underline the important fact, that in this case, the calibration supposes only
the hereby described process, without any special calibration of the lighting sources, it is
only required that there is a uniform distribution of the incident light on the tested object’s
surface. Calibration requirements of the lighting sources one can meet in some other optical
methods cases such as Electronic Speckle Pattern Interferometry (ESPI) or others, can
differ. For example, in the case of ESPI, together with a symmetrical disposition of the
lighting sources, it is also required that there are equal-lighting conditions for them on the
tested surface. If the lighting-source pair is disposed in the horizontal plane, it will assure
a high-accuracy measurement of the vertical in-plane displacements, when the vertical
disposed lighting-source pair will be suitable for the horizontal in-plane displacements’
evaluation. In the case of the coexistence of both lighting-source pairs (both of the horizontal
and vertical ones), having the same lighting intensity on the tested surface, then all of the
displacement components (in-plane on horizontal, as well as on vertical directions, together
with the out-of-plane one, too) will be obtained with the same nanometers’ accuracy.
This out-of-plane displacement represents/means the displacement along the normal
direction to the tested object’s surface. In the case of the VIC-3D system, one has to
impose only uniform lighting of the tested object’s surface, offered/assured usually by
means of a normal direction disposed central (between the two video cameras) white light
source, but also some oblique-incidental lighting sources (both of them with respect to the
normal direction to the tested surface) can be involved, which also has to assure uniform
lighting of the investigated surface; other special requirements for the lighting source there
are not imposed.
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After a calibration process, using some special targets, the cameras will perform the
image acquisition in an [n ∗ m] matrix of pixels, firstly, for the unloaded specimen (where
one has to define the area of interest of the investigation) and, secondly, for the loaded one.

Figure 4 shows some phases of the calibration process and Figure 5 a step of the
processing by the VIC-3D software of these captured images.

Figure 6, according to the same works [26,27,29], presents the principle of analysis of
these images captured by both video cameras.
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Each captured image by the two video cameras, corresponding to the initial unloaded
stage of the tested object, especially on the predefined area of interest, will be analyzed in
the following manner:

- in the first stage, the software asks the user to define the dimensions/sizes of a Subset
(Primarily Cell) (here: 5·5 = 25 pixels), as well as its step’s magnitude (i.e., with how
many pixels have to be translated/moved in this Subset along the captured image
from left to right, respectively, and down from the previous line to the next one);

- then, for the predefined Subset, starting from the upper left corner, the software will
establish/determine a unique grey-code, correlated with its median pixel’s (marked
in Figure 6 with/on black) high-accuracy 3D coordinates; this representative pixel
will be the equivalent pixel of the analyzed Subset;

- for the first, so-evaluated Subset, the software will perform/do its substitution with the
forementioned equivalent/representative median pixel (i.e., instead of these previous
25 pixels of this Subset the software will consider in the following only one: its
representative/equivalent median pixel);

- then, the software will perform the translation of the Subset in right, with the prede-
fined step, (in the same first upper line) and, similarly, will substitute this next Subset
with one other representative/equivalent median pixel, a.s.o.;

- finally, by analyzing the whole left and right first captured images of the initial
unloaded stage of the object, having several Mpxs, these images will be substituted by
means of a finite number of representative pixels, correlated with their high-accuracy
3D coordinates and also having some unique, easy-recognizable grey-codes;

- after performing the loading of the tested object, together with a predefined image-
capturing frequency, finally one will obtain a number of left and right images, which
will be analyzed, similarly, with those first ones; one has to underline that the men-
tioned image analysis will be performed only/strictly in the predefined area of interest
in order to diminish the analysis’ time/duration;

- finally, one has obtained for each captured left and right images, the same number of
equivalent median pixels, having the same initial grey-codes, but with modified 3D
coordinates (due to the object’s deformation or/and its rotation and translation);

- to evaluate these equivalent pixels’ 3D displacements (which can be considered as
some 3D-disposed/spatial vectors), their 3D components (u, v, w), as well as the
corresponding linear and angular strains

(
εx, εy, εz, γxy, γyz, γzx

)
, the software
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has to perform a high-accuracy and uniquely-defined identification of the newly
positioned equivalent pixels;

- this identification, thanks to the software manufacturing Correlated Solution Co.,
will be performed quickly (see Figure 7) because the software will compare only
once the left and right images, corresponding to Time 0 of the unloaded stage of
the object (named the reference stage), after this, the succeeding left images will be
compared with the left reference, the succeeding right images with the right reference
one. The software allows the user to perform corrections, based on an identification
of the initial reference point, marked by the user in advance with a small cross, for all
captured images;

- consequently, the software requests only the identification of a single point (assisted
by the user’s intervention) of the left and right first captured images, and based on
this, all captured images (by means of their equivalent/representative pixels) will
be correlated.
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Finally, the software will offer the corresponding image analysis, delivering a high-
accuracy 3D displacement field of the whole monitored structure and the corresponding
strain field.

In the case of the vibration analysis, the first image acquisitions correspond to the
static, unmoved object and the ones next to the vibrating object.

The above-described VIC-3D v7 system was used to put in evidence its advantages in
a complete/full vibration analysis process, which can be applied to the crankshaft of the
combustion engine.

There is a rich literature that develops the method and the range of applications. How,
is mentioned in several references, such as [20–22]. Video Image Correlation (VIC) has
proven to be an excellent method for analyzing the deformations and stresses that occur in
a structure.

How, mentioned before, as the aspects of a contactless optical measurement method
(VIC), in high-accuracy quantitative linear and angular vibration analysis, are incontestable;
the system can substitute a high-performance stroboscope and quantitatively evaluate the
vibration amplitudes.

To put in evidence the mentioned advantages, the authors designed and tested an
angular vibration system. This consists of a small stepper motor, powered with an al-
ternating current (by small shocks/impulses, using an asymmetric cyclic feeding) and a
small plastic disk (a CD disk), fixed on its shaft. Due to the non-uniform power supply
from the stepper motor, a resonance phenomenon will occur in the plastic disk, which
leads to high angular amplitudes. The VIC measurement method offers, based on a frontal
viewing of the disk during the resonance phenomenon and by simple calculus on the mon-
itored linear displacements, the corresponding angular amplitude. The software enables
a quantitative evaluation of these angular vibrations (their amplitude, respectively, their
precise frequency). Similarly, the phenomenon can be observed at the crankshaft (where the
rotary speed is not perfectly uniform, requiring a flywheel and supplementary damping
device). In the authors’ opinion, the VIC-3D could be used as a powerful, relatively cheap,
simple, and high-accuracy investigation tool in the analysis of the torsional vibrations in
combustion engines [23–25].
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3. Experimental Setup of the Demo-Bench

In order to be able to put in evidence the angular displacements using a common
VIC system (having two relatively low-accuracy CCD cameras with only 1.4 Mpx), the
authors designed both an original testing bench presented in Figure 8 and an adequate
original electronic driving circuit (see Figure 9). On the end of the shaft from the small
unipolar stepper motor 1 is fixed the cylindrical Aluminum support 3 by means of the very
elastic rubber cylinder 2. In this support is fixed (and precisely centered) the small plastic
disk 4, by means of fixing disk 5 and screw 6. The small plastic disk 4 is foreseen with two
diametrically-disposed screws 7, to obtain a bigger polar mass moment of inertia. In order
to obtain a non-uniform supply (by small shocks/impulses) of the stepping motor 1, the
authors designed a special electronic driving system (see Figure 9). A variable frequency
RC pulse generator determines the stepping frequency, and so the rotational speed of the
stepping motor. The maximum frequency of about 1.2 kHz is enough for the experiment;
above 700 Hz the stepping motor loses the mechanical synchronization in our set-up. The
exact speed can be modified by a precision multi-turn potentiometer. 

2 

 Figure 8. Sketch of the testbed.
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The value of the clock (stepping) frequency can be measured by an external digital
frequency meter. For this purpose, an APPA 99 digital multi-meter was used. The clock
pulses get to two counter circuits. A digital divide-by-200 counter is used to obtain the
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rotation frequency (because the motor has 200 steps for a complete rotation), and to a
divide-by-4 counter with decoded outputs, to obtain four shifted pulses, necessary to
control the stepping motor. These signals get to the output driver circuits which provide
enough power to drive the motor. Due to the non-uniform supply of the stepper motor (by
small shocks), the torsional resonance phenomenon will occur in the plastic disk, which
leads to high angular amplitudes Φ. These angular/torsional vibrations will be superposed
on the regular/nominal rotations of the shaft. Thanks to the soft rubber cylinder 2, the
magnitude of Φ became much greater than when directly fixed on the steel shaft. Similarly,
with the crankshaft (where the rotation is not perfectly uniform, requiring a flywheel), here
the torsional vibrations of the stepper motor’s shaft can be monitored together with the
fixed small plastic disc.

Based on the above-described methodology, the authors prepared the small disk by
spraying it with water-soluble paint (see Figure 10).
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Figure 10. The sprayed small plastic disk‘s frontal view, together with the area of interest and the
vertical coordinates of the selected points (mainly presented interest P0 and P1).

After the calibration, using a special target, how, was presented afore, in frontal
viewing the first images of the disk in standstill/static condition were captured.

Further, the stepper motor was started and due to its special supply conditions
allowing non-uniform rotation, were monitored in its first resonance regime. The area of
interest and several significant points (P0, . . . , P7), presenting symmetrical positions (see
Figure 11), were selected and the following point coordinates are mentioned: R = 60 mm;
R0 = 34 mm; R1 = 39.5 mm; r = 22.6 mm.

For the vertically disposed points, P0, . . . , P3, presented interest mainly due to their
horizontal displacements u0 , . . . , u3, and for the horizontally disposed ones (P4, . . . , P7)
their vertical displacements v4 , . . . , v7. In Figure 12 is offered, as illustration, the graphs
for P0 and P1.

On the horizontal axis are the number of the captured images and on the vertical one
are the obtained horizontal direction’s displacements u [mm], having amplitudes up to
approx. 0.38 mm, as well as their correspondent Φ

[0] angular (torsional) displacements
with their amplitudes up to 0.5160.
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Figure 11. The frontal view of the monitored disk 4.
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Taking an u[mm] magnitude value (better/it is recommended) of u0 of the point P0,
the corresponding Φ

[0] angular amplitude will be:

Φ[rad] = arctan
(

u0

R1

)
≈ u0

R1
(1)

or:

Φ
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0
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It is known [7] the correlation between the angular displacement Φ[rad], shaft’s length
`[mm], torsional modulus of stiffness G · It

[
N

mm2 · mm4 = N · mm2
]
, which for the circular

or tubular cross sections becomes G · Ip

[
N

mm2 · mm4 = N · mm2
]

and the corresponding
torque moment Mt[N · mm], i.e.,

Φ =
Mt · `
G · It

, (3)
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Respectively, for the circular/tubular cross-sections:

Φ =
Mt · `
G · Ip

, (4)

Became possible to evaluate the corresponding tangential (shear) τmax stress state:

τmax =
Mt

Wt
, (5)

where:
Wt = Wp = Ip/R (6)

We have: It
[
mm4] the conventional second-order of moment inertia for torsion;

Ip
[
mm4]—the polar moment of inertia; Wp

[
mm3]—the polar strength modulus;

R[mm]—the shaft’s radius, respectively Wt
[
mm3]—the torsional strength modulus in the

general case.
Even the used/involved CCD cameras had a relatively low resolution and the results

prove the VIC system’s accuracy and efficiency. Based on [3], the VIC is typically accurate to
≈ 0.02 px. If one has to monitor a viewing field of 1000× 1000 mm, using the same cameras
with 1.4 Mpx, a correspondence factor of 1 mm/px results; taking a smaller viewing field,
i.e., in this case of approx. ≈ 150 × 150 mm, one obtains ≈ 6.6 times higher accuracy.
Under normal conditions, the lighting system is usually room-light and the recommended
maximal frequency is 50 Hz. Using halogen lighting, this becomes 200 Hz, and in the
case of common stroboscope lighting becomes 4000 Hz. Finally, in the case of the ultra-
bright stroboscope, it can achieve 10 kHz. As a conclusion, under normal (continuous)
lighting and by triggering (with a high-accuracy timing device included in the VIC system)
corresponding images are captured in strobo-mode (see Figure 13, red-marked points)
with very high-fidelity results. In the horizontal axis is offered the time, and in the vertical
one, the real oscillation’s phenomenon; the red points correspond to the captured images
momentums. Consequently, the CCD cameras will capture images only after a well-
defined time (with a relatively low frame rate), but with very high-accuracy timing. This
capturing protocol will successfully substitute the high-speed cameras (thanks to the
system’s high-accuracy timing), even if one skips several cycles before advancing to the
next phase (next image capturing), because the signal tracking is highly accurate due to the
phase-locking logic.
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Figure 13. The capturing protocol under normal lighting conditions and using low-speed CCDs [28].

In order to use this facility correctly and efficiently, the operator must follow these steps:

- Before starting the experimental measurements, the VIC software asks us to specify
from how many points we want to reconstruct a complete rotation (from 10, 15, or
50 measuring points/sampling rate);

- After this information is provided, the internal timer (of very high precision of the
order of a few ps = picoseconds) will divide the angle 360◦ into as many equal parts ς;
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- Additionally, with the help of the internal stroboscopic system of the VIC-3D system,
the frequency of oscillations in stationary mode can be adjusted very precisely, when
(as is well-known) the image of some pre-marked signs on the disc becomes stationary;

- The precise establishment of this working frequency (the stabilized regime of the
system) follows the capture of the first image during the rotation (see the first red dot
on the diagram in Figure 13);

- Then the software allows the system to perform a well-defined number of complete
oscillation cycles and the next image acquisition is made on this last cycle, at a very
precise angular offset, corresponding to that angular interval ς that has been set;

- For the third point, the system is also allowed to perform the same complete number
of oscillations, plus an additional angular offset ς.

This feature of the very precise internal timer gives the VIC-3D system the great
advantage of tracking vibrational phenomena up to 10 kHz without requiring exces-
sive spaces/memories on the computer, which, in the case of capturing images with
the size of several Mpxs at these frequencies would lead to the rapid blocking of the
acquisition system.

After completing the capture of the n images, the software signals the complete
realization of the acquisition and, thus, a system with a stabilized working regime will be
able to be analyzed in conditions of maximum precision and with a minimum volume of
stored data.

In Figure 13, this number was n = 8, therefore, from eight images captured at very
precise angular shifts ς, was necessary to reconstruct the vibrating phenomenon.

4. Experimental Measurements on the Flange of the Truck’s Adder Box Disc

Based on what was analyzed in the previous chapters, the flange of the disc of the
adder box was properly prepared, ie., on a well-defined area was applied water-soluble
paint (black primer and white stains), also delimiting the area of interest (area of interest).

Figure 14 shows the principle drawing of this flange, together with the significant
coordinates.
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Figure 15 shows the assembly prepared for VIC-3D measurements, where you can
also see the six LEDs, which provided uniform illumination of the area of interest. From the
constructive solution of the summing box the dimensions R = 140 mm and R1 = 120 mm,
respectively, are known. This last dimension R1 is indicative, because, on the first set of
captured images, related to the rest state of the disk, the point P0 had data coordinates
with submicron precision, later used by software in calculating angular displacements,
according to relation (1, b).
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Figure 15. The experimental setup.

The measurement protocol involved the following steps:

- The spray was applied in the area of interest to obtain those stains with random
distribution and dimensions;

- With the help of the special plate, mentioned before, the calibration of the VIC-3D
system was performed; the calibration plate is chosen according to the distance
between the cameras and the analyzed objective (ie., the observation distance), the
size of the spots applied, as well as the optical system used (the objectives and the
type of video cameras used);

- The first set of images of the disc at rest is recorded;
- The left engine is started, and after identifying the nominal working speed and

setting, the number of images to form the cycle of oscillations, make the capture of the
appropriate number of images while the engine is running at the set operating mode.
Here, instead of strobe lighting, the internal system of the VIC-3D system, presented
above, is used, which ensures the same function, but is much more precise;

- This set of measurements is repeated, both for the right engine running and for both
engines in operation;

- The analysis of the sets of images is performed, where the points of interest are
positioned for the first time (in this case, from these points P0 it was chosen, for which
the software calculates the linear displacements, followed, based on the relation (1, a)
to determine the angular oscillations Φ as well.

Figure 16 shows the analyzed flange, with the area of interest (area of interest) marked,
as well as the magnitude of the linear displacement of the representative point P0. Figure 17
gives the diagram of the variation of both the linear displacement u0 and the corresponding
torsion angle Φ.

Similarly, Figure 18 shows the flange analyzed, with the area of interest (area of
interest) marked, as well as the magnitude of the momentary linear displacement of the
points of area of interest, for the case of solitary operation of the right engine. Figure 19
provides the variation diagram of both the linear displacement and the corresponding
torsion angle, and for the case of the right-hand engine with solitary operation.

Finally, when both engines were running, the image of the area of interest (Figure 20),
respectively, the variation of the linear displacement u0 and the corresponding torsion
angle Φ (Figure 21) were obtained.
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measurement results (displacement amplitudes) can be summarized and converted to
a polynomial function in order to be statistically analyzed. Furthermore, using special
optimization techniques and taking into account some dedicated restrictions the minimum
or maximum value can be determined. Those result analyses should be able to deliver
valuable information about the analyzed case and to determine improvement measures in
order to get a better product.

6. Conclusions

Careful analysis of these graphs shows that these probable cycles are not unitarily defined.
For example, in the case of the single-engine operation on the right, the oscillations

are closer to small shocks, while in the other two cases, more periodic effects can be seen.
These can be partially explained by the fact that, during operation, the uniformity of the
speeds was not perfectly similar in the three cases, there being small deviations in this
respect, even if an identical operating regime was imposed (hence, a uniform speed).

These Equations (1)–(3) can be extended for the analysis of some phenomena with
angular variations, ∆Φ, of an elastic drive system (which exists before the analyzed flange).

Conclusions can be drawn regarding the more or less uniform operation of the above-
mentioned system, depending on the coupling of one or other of the drive motors.
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