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Abstract: To ensure dominance over a multi-domain battlespace, energy and power utilization must
be accurately characterized for the dissimilar operational conditions. Using MATLAB/Simulink
in combination with multiple neural networks, we created a methodology which was simulated
the energy dynamics of a ground vehicle in parallel to running predictive neural network (NN)
based predictive algorithms to address two separate research questions: (1) can energy and exergy
flow characterization be developed at a future point in time, and (2) can we use the predictive
algorithms to extend the energy and exergy flow characterization and derive operational intelligence,
used to inform our control based algorithms or provide optimized recommendations to a battlefield
commander in real-time. Using our predictive algorithms we confirmed that the future energy and
exergy flow characterizations could be generated using the NNs, which was validated through
simulation using two separately created datasets, one for training and one for testing. We then used
the NNs to implement a model predictive control (MPC) framework to flexibly operate the vehicles
thermal coolant loop (TCL), subject to exergy destruction. In this way we could tailor the performance
of the vehicle to accommodate a more mission effective solution or a less energy intensive solution.
The MPC resulted in a more effective solution when compared to six other simulated conditions,
which consumed less exergy than two of the six cases. Our results indicate that we can derive
operational intelligence from the predictive algorithms and use it to inform a model predictive
control (MPC) framework to reduce wasted energy and exergy destruction subject to the variable
operating conditions.

Keywords: exergy; model predictive control (MPC); neural network (NN); multi-domain
operations (MDO)

1. Introduction

Battlefield systems, whether they are vehicles, personnel with equipment, shelters,
weapon systems, or a combination, all require substantial amounts of energy to ensure suc-
cess. Because energy supplies are finite and must be constantly re-supplied, managing and
promoting efficiency will serve to increase resiliency, survivability, flexibility, and longevity
of combat forces. Mission effectiveness continues to be the primary consideration for de-
ciding how, where, and when the Army will allocate their available resources in support of
current and future military operations. Conversely, efficiency considerations are typically a
secondary consideration when designing combat systems and planning operations. With so
much overlap between these opposing forces, effectiveness and efficiency, there is opportu-
nity to design solutions that ensure both objectives are accomplished simultaneously.

Figure 1 depicts two M1-A2 Abrams tanks being transported by a C5 Galaxy which
can carry a maximum of 140 tons. Each Abrams weighs approximately 67.6 tons; the C5
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is approaching its maximum gross weight capacity by transporting the two tanks. Trans-
porting the tanks using this method is an inefficient waste of resources if you are energy
constrained. If constrained by time, however, this is the most effective use of the available
resources such that the Army can quickly get systems into a combat theater. Efficiency and
mission effectiveness represent trade-offs. One can typically achieve mission effectiveness
or efficiency, but it is difficult to achieve both concurrently. Mission effectiveness and
efficiency, from a military perspective, is a multivariate challenge driven by time, space,
the environment, and other operational considerations which require new and advanced
methods to evaluate and optimize the available energy usage in real-time.

Figure 1. Two M-1 Abrams tanks from Aberdeen Proving Ground, Md., are loaded in the cargo area
of a C-5M Super Galaxy assigned to Dover Air Force Base, Del. (U.S. Air Force photo/Lt. Col. Chad
E. Gibson) [1].

To achieve this, we envision using open-sourced cloud computing resources, more
efficient power electronics with reduced cost and increased efficiency, reduced order
modeling, and simulation practices which accurately characterize the dissimilar energy
flows. Ultimately, we exploit Artificial Intelligence (AI) and Machine Learning (ML) to
create and deploy lower-level control and optimization algorithms for a “box” to be used
to inform more energy optimal decisions, supporting maximum mission effectiveness and
efficiency. Using MATLAB/Simulink in combination with various Neural Networks (NN)
we developed algorithms capable of (1) predicting the future energy state of the vehicle
subject to future mission parameters, and (2) providing recommendations based on the
energy/exergy flow characterizations for time series data. A few recent studies in which
AI/ML have been successfully deployed to time series predictions include Li et al. [2],
Serale et al. [3], Sharma and Kushvaha [4] and Kushvaha et al. [5]. Such technical work
have shown that accurate time series predictions can be made to improve design and
control of dissimilar systems. The recommendations could be provided to the battlefield
commanders to make more energy optimal decisions, or used to inform the individual
control loops and adaptability to alter the performance of a vehicle. We implemented
a Model Predictive Control (MPC) based algorithm which was informed by the NNs to
more optimally actuate a Thermal Management System (TMS) to better accommodate the
variable mission parameters. The remainder of this section will provide a brief review of
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literature concerning prediction-based algorithms, followed by energy and exergy flow
optimization and control.

1.1. Prediction-Based Algorithms

To get a full understanding of the dissimilar energy flows within each asset, the copi-
ous amount of real-time data must be analyzed and characterized. Additionally, a thorough
understanding of the diverse set of operating conditions and mission objectives must be
known and understood. Military operations are not typically conducted in well-defined
areas with useful infrastructure. Communication is not guaranteed, GPS may be limited,
and environmental impacts may be ambiguous. Further, the applicable data sets which
describe the operation of an asset are likely sparse and non-diverse and subsequently not
extensible to vastly different operating conditions. This situation requires sensing key pa-
rameters and estimating others in real-time, while training and learning constantly subject
to the lack of communication or GPS information for extended and continued operation of
the military assets. This ultimately means that we need a way to develop and deploy com-
putationally efficient reduced order mathematical models of our system which accurately
portray the energy flow characterizations subject to time, space, the environment or other
operational considerations which impact efficiency and mission effectiveness. Thanks
to recent advancements in mathematics and computational sciences, AI, ML, and NN
based-algorithms are more robust and applicable for developing predictive algorithms
aimed at characterizing the dissimilar energy flows throughout an energy network.

An Artificial Neural Network (ANN) [6], more commonly referred to as a NN, is a
computational network created to mimic the behavior of the human brain. Input features
are passed to individual neurons contained within the input, output, or hidden layers.
Weights and biases are assigned to each neuron, and iteratively optimized throughout the
training process, the goal of the training process is to identify key behaviors within the
input features that correspond to the output or target features of interest. The weights and
biases are set accordingly so that the dominate behaviors which likely lead to the target
features of interest become prevalent throughout the various NN layers, enabling the NN
to mimic the target features.

There are two major types of NNs—shallow NNs and deep NNs. Originally, the term
“deep” was first used to describe Residual Neural Networks(ResNets) with fifty or more
hidden layers which included skip connections, i.e., alternative paths that skip over other
layers within the neural network to avoid vanishing gradients. The term “shallow” gener-
ally means the NN has a single hidden layer, while the term “deep” means the NN has
two or more hidden layers. Shallow or deep NNs can be used to fit various functions.
However, depending on the complexity of the function, a shallow NN will likely require
many neurons within its hidden layers which in-turn drastically increases the number
of parameters required to define the NN. Conversely, using a deep NN with more than
two hidden layers, where the number of neurons may be able to be reduced significantly,
leads to a decrease in the number of parameters required to define the NN. There are other
differences as well. Deep NNs typically require larger input data sets to fully describe a
particular function whereas a shallow NN can get by with less. A shallow NN is more
likely to be less extensible than a deep NN for the same reason. Haykin et al.’s [7] book
on NNs provided a comprehensive foundation level understanding of the concepts and
functions needed to understand and create these types of predictive algorithms.

There are many different NN variants, each variant was created in response to a par-
ticular objective, constraint, or desired application area. The two most prevalent variations
of a NN results from (1) the methodology used for training/learning, and (2) selected
architecture. In terms of a NN, learning or training is the process in which the weights
and biases within the individual layers are computed such that the target feature may be
predicted based on the dominate input features. As stated in Haykin et al. [7], there are
seven separate learning processes including (1) Error-Correction Learning, (2) Hebbian
Learning, (3) Competitive Learning, (4) Boltzmann Learning, (5) Supervised Learning,
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(6) Reinforcement Learning, and (7) Unsupervised Learning. Each learning technique
has its advantages and disadvantages, however the net result is a methodology used to
determine the unknown weights of basis of the NN.

The second most prevalent variations of NN results from the selected architecture.
The architecture defines the default connection pathways between individual layers and
neurons of a network. Some commonly used architectures of NN include ResNets,
Long Short-Term Memory (LSTM), Radial Basis Functions (RBFs), Recurrent Neural Net-
works (RNNs), Convolution Neural Networks (CNNs), MultiLayer Perceptron (MLP),
and sequence-to-sequence networks [8]. In regards to vehicle based predictive capabilities,
neural networks have been applied to a wide range of problems spanning from vehicle
state (speed, roll, slip, etc.) predictions to image classification, route planning, and anomaly
detection for manned and unmanned ground and aerial vehicles. The subsequent technical
work cited will highlight a small subset of the diverse operational range of the various
neural network prediction based variations.

ResNets are commonly used for image classification. Jung et al. [9] used ResNets for
vehicle classification and localization observations in traffic surveillance systems. Deep
residual networks or ResNets were used in combination with joint fine-tuning (JF) algo-
rithms combined with a Drop Convolution Neural Network (DropCNN) and compared to
other common image classification networks: VGG16 [10], AlexNet [11] and ResNet50 [12].
Using the proposed method, the models accuracy for classification and localization based
tasks were improved when compared to standard ResNets. The classification method pro-
posed outperformed AlexNet and VGG16 and other common ResNet variants. Similarly
the localization method also outperformed similar state-of-the-art detectors. Zhang [13]
developed ResNets for autonomous vehicle trajectory prediction. The ResNets were used
to forecast the vehicle trajectories, which could capture external feature dimensions better
than more standard image capture technologies. The raw input picture was then combined
with the ResNet trajectories, experimental results indicated that the proposed method
outperformed other common residual network architectures including VGG16 and VGG19.

Long Short Term Memory (LSTM) networks are commonly used for timeseries pre-
dictions, speech recognition, and in general a process or processes which have sequence
dependencies. Yeon et al. [14] developed ego-vehicle speed prediction using LSTMs. In-
ternal vehicle information pertaining to the relative speed, distance to the vehicle ahead
(obtained from radar) and relative vehicle location from a GPS and road-way model were
used as inputs to construct a LSTM, which was capable of predicting the vehicles speed for
the future vehicle states (15 s in the future) from the past 30 s. Using the developed LSTM,
the model was evaluated on three separate scenarios including a car following maneuver,
a sharp curve, and a full path trajectory collected from real-driving data. The proposed
method was compared to a predictive ANN model, constant speed (CS) model, and con-
stant acceleration (CA) model of the vehicle. The results indicated that the proposed
method outperformed the CS, CA, and ANN, resulting from lower RMSE values when
compared to the experimental data and the output of the LSTMs.

Radial Basis Functions (RBF) are distinguished from other NN variants in that they are
more universally deployed and developed to approximate timeseries functions. Chen et al. [15]
developed motion planning algorithms for autonomous vehicles using RBFs. The proposed
algorithm extracts the perceived operational environment and uses a gradient descent
optimization method to train the network to flexibly derive the drivable region for an
autonomous vehicle. The method developed was compared to a more standard Rapidly-
exploring Random Tree (RRT) method; experimental results indicated the proposed method
offered better motion quality and path planning abilities.

Recurrent Neural Networks, or RNNs, are designed to recognize sequential charac-
teristics and patterns to predict future sequences; this could include speech recognition
and natural language processing. Liu and Shoji [16] used deep RNNs to predict vehicle
mobility. Vehicle mobility was defined as the position of the vehicle at a given point in
time and if a vehicle’s path was obstructed mobility was reduced. The proposed RNN
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was simulated using a large-scale taxi mobility data set [17]. The developed RNN was
compared to multiple Markov-based Models (MMs) and evaluated using the F1 score
which is a measure of the ability of an algorithm to be precise and provide recall ability.
The F1 score of the proposed RNN was larger than the F1 score for the MMs simulated.
Larger F1 scores indicate better precision and recall capabilities, indicating the proposed
method leads to better predictive ability regarding vehicle mobility.

Convolution Neural Networks (CNNs) are primarily used for image processing,
classification and segmentation of data. Zheng et al. [18] used CNN for performing drive
cycle predictions for plug-in hybrid electric vehicles. Drive cycles were first separated into
six different types using k-shape clustering and compared to a k-means algorithm which is
more traditionally used as the standard method for clustering drive cycles. Using the results
of the k-shape clustering, a CNN was developed to predict the different types of drive
cycles, input features were extracted without human assistance, i.e., no human experience
was used to derive applicable input features. The CNN was subsequently simulated and
compared to the more traditional method of k-means. The k-shape clustering based CNN
algorithm outperformed the k-means method. Higher prediction accuracy was obtained.
The CNN was then applied to an energy management strategy for a Plug-in Hybrid Electric
Bus (PHEB); the results again showed that the k-shape clustering based CNN outperformed
the traditional method which lead to more optimal energy usage capabilities for the PHEB.

MultiLayer Perceptrons (MLPs) are typically used for implementing supervised learn-
ing, whereas input-output pairs learn model dependencies. It is a well-known fact that
predictive algorithms are challenging to develop when applied to deterministic events.
Yoon et al. [19] developed a MLP for probabilistic lateral motion prediction of surrounding
vehicles. The MLP-based solution was developed to model the target lane and trajectory of
a vehicle. The MLP generated probabilistic forecasts which depict possible vehicle trajecto-
ries in each lane given the current vehicle position and the past vehicle position. Simulated
traffic data was used for training. The results indicated that the proposed algorithm was
able to detect lane-changes one and half seconds earlier than existing methods and three
seconds before lane crossing with 90% accuracy. This indicated that an MLP could be used
to improve vehicle control and safety based algorithms for autonomous vehicle controls.

Regardless of the selected neural network architecture, NNs are powerful “black-
box” predictive based models. NNs generally lack specifics regarding the knowledge of
a systems’ dynamics and are thus perhaps less extensible than an state observer. This
assumes that the training data-set is non-diverse and covers a limited range of the systems
operational environment. If this is not the case, then a NN can likely generate comparable
predictions similar to an ordinary state observer. A NN may also be retrained while in
operation, thus providing improved extensibility, adaptability, and functionality. An ob-
server is a specific mathematical representation of a predictor which uses knowledge of a
dynamical system’s states to predict future states of a system. For a well defined system,
observers can be designed and deployed to improve control and performance of a system,
examples include Kalman filter and sliding mode control.

McBride et al. [20] compared the uses of an ANN and observer for estimating vehicle
tire-road contact forces. Tire-road contact forces play an important role in performance of
the vehicle, without sufficient contact force, a ground vehicle may be unable to achieve
mobility. Insufficient contact force in the lateral or longitudinal directions can cause
vehicle instability. These types of forces can be measured, however the instrumentation
required to measure such forces is expensive, and it is not suitable for a production vehicle.
Using observer theory which accounted for the systems nonlinearities and stochastic
states, an observer was constructed and compared to an ANN. The results indicated that
the observer out preformed the ANN with higher accuracy. In this case the observer is
more extensible than the ANN, because the observer states converge toward the plant
states as direct result of the observer states containing the plant states. If subjected to
different conditions the observer is expected to track the tire-road contact forces. Conversely,
the ANN would have degraded capabilities, which could be overcome by training the
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neural network on a more diverse training data-set or by adaptively retraining the ANN in
response to degraded performance error. Broad et al. [21] proposed a robust observer based
on H∞ and combined it with a NN to estimate vehicle roll angle. The NN was tested alone,
and also combined with the observer. The results indicated that the NN could estimate the
general trends of vehicle roll angle, however there were notable noise and errors. The NN
was then combined with the H∞ observer, vehicle roll angle could be further estimated
with reduced noise and errors.

The net goal of deploying any type of predictor is ultimately to mimic the behavior
of a process or processes and subsequently derive some type of operational intelligence
or knowledge. When the predictive algorithms are then coupled with an optimization
routine or a control loop, more advanced, robust, and extensible control algorithms can be
developed and deployed, thus increasing mission effectiveness or efficiency. In the case of
vehicles, this generally leads to improved capabilities or more stable operation subject to
the variable operational conditions.

1.2. Energy and Exergy Flow Optimization and Control

Every fielded asset deployed by the military can be abstracted to the point in which
it can be considered a self contained energy network, which possesses energy storage,
generation, dissipation, and the ability to interconnect to external energy networks, also
known as a microgrid. Each asset is fundamentally governed by a set of complex dissimilar
engineering disciplines with no uniform language for expressing energy flow. Every asset
is subsequently limited by its own energy generation, storage, and dissipation capabilities.
As such many of the assets utilize control algorithms which are purely based on the First
Law of Thermodynamics (FLT). The FLT states that energy must be conserved as shown in
Equation (1),

∆Esys = m · (u2 − u1) +
1
2
·m
(

v2
2 − v2

1

)
+ m · g · (z2 − z1) (1)

where m is mass, g is the acceleration due to gravity, u represents internal energy, v the
velocity, z the height relative to some reference, and the subscripts 1 and 2 are used to
denote the difference in states of the system. The first term on the right hand side of the
equation represents the difference of the internal energy, the second term represents the
difference in kinetic energy, and the final term represents the difference in gravitational or
potential energy. Although energy is conserved as the first law requires, not all energy is
usable. The Second Law of Thermodynamics (SLT) as defined in Silberberg and Duane [22]
as shown in Equation (2),

∆Suniv = ∆Ssys + ∆Ssurr ≥ 0 (2)

where ∆Suniv is the entropy of the universe, ∆Ssys is the entropy increase or decrease of
a system, and ∆Ssurr is the entropy transfer from the surrounding environment. Keep in
mind that if a process is reversible, there isn’t a change in total entropy hence the greater
than or equal to sign. The SLT establishes entropy, simply, it states that a process occurs
in a certain direction and that the movement of energy can be reversible or irreversible.
Irreversible energy loss, increasing the entropy of the universe, is the basis for unusable
energy in a process. The combination of the FLT and the SLT leads to exergy, or usable
work. In thermodynamics theory the term exergy is commonly used to assess the efficiency
of a process. As such, exergy is typically used within the design process but not necessarily
used for final implantation of control algorithms. The remainder of this section will present
technical work featuring energy or exergy based optimization for design and control.

Control systems were developed to reach and maintain desired set-points in processes
as early as 2000 years ago [23]. The volume of literature demonstrating methods for
improving efficiency in mechanical, chemical, electrical, or combined processes using
rigorous optimization and control is expansive and continues to this day. For the sake of
brevity here, this manuscript will not focus on the history of this topic in detail.
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Although the concept of exergy, or useful work, is the basis for a large number of
system analysis studies focused on improving efficiency, there are relatively fewer studies
that focus on exergy as a basis for control and optimization meant to improve efficiency [24].
The work of James et al. provides a detailed history of instances in the literature where ex-
ergy was successfully used as a basis for optimization and control. The work accomplished
to date in this field, although it is relatively limited in comparison, yields the conclusion
that exergy based optimization and control can provide a comparative advantage over sim-
ilar energy based methods. This study demonstrates that exergy based optimization and
control is vital to improving efficiency in military energy consuming/producing networks.
Further, the authors are unaware of any study that used neural networks to inform exergy
based optimization and control. This work intends to fill that gap in the literature.

1.3. Overview

The remainder of this technical document is arranged as follows: Section 2 will
present the mathematical models used to construct the individual vehicle components,
Section 3 describes the individual predictive algorithms in combination with our Model
Predictive Control based strategy, Section 4 describes our selected set of mission parameters,
constraints, and objective, Section 5 presents our results subject to the predefined scenario,
and Section 6 will conclude the document by presenting our conclusions and future work.

2. Modeling

Our selected vehicle architecture included a small autonomous mobile ground vehicle
(MGV), loosely based on the Clearpath Robotics [25] Husky ground vehicle. The orig-
inal architecture of the MGV as presented in Jane et al. [26] was used to develop and
deploy predictive algorithms for characterizing the energy/exergy flow for the current
state, and future state of the vehicle subject to a variable set of mission parameters. The ve-
hicle architecture was amended within this study to include six additional components.
The additional components permitted energy/exergy flow of the vehicle to be altered
subject to time, space, the environment or other operational considerations. The previous
vehicle architecture lacked this ability as the only room for improvement concerning en-
ergy/exergy was directly linked to the controller design. In this case, the six additional
components could be actuated differently subject to the mission parameters to elicit a
significant operational change, and thus consume more or less energy/exergy.

The selected MGV architecture includes a battery, two separate types of power con-
verters, two DC spinning machines, a mechanical differential, four wheels, two of which
were driven, a thermal compartment, a cold plate, coolant pump, chiller, and coolant tank
as shown in Figure 2. The cold plate, coolant pump, chiller, and coolant tank make up
a thermal management system (TMS), used to regulate the temperature of the vehicle’s
battery. The newly introduced components will be described in greater detail within the
subsequent subsections. The dynamic equations for the battery, power converters, DC
spinning machine, differential, wheel, vehicle body, and thermal compartment can be
referenced within Jane et al. [26].
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Figure 2. The selected vehicular architecture consists of a battery, three DC/DC power converters, two
DC motors, a differential used to drive two separate wheels and a TMS consisting of cold plate, coolant
pump, chiller, and coolant tank. Each electrical, electromechanical, or thermal fluid based component
has a separate thermal network each of which is contained within the thermal compartment. See
Appendix A.1 for explanation of labeling.

2.1. Cold Plate

The cold plate was constructed using a combination of Simscape thermal and thermal-
fluid based blocks. Simscape’s Pipe (TL) [27] was used to model a rigid conduit for fluid
flow while dynamic compressibility and fluid inertia were ignored. The fluid flow within
the component is characterized by an input and output temperature, pressure, and mass
flow rate assuming energy was conserved. Equation (3) describes the internal temperature
of the thermal fluid,

V
d(ρ · u)

dt
= φA + φB + QH (3)

where V is the volume of liquid within the pipe, ρ is the density of the fluid, u is the internal
energy of the working fluid, φA and φB represent the total energy flow rates through the
pipe from port A to port B, and QH is the heat flow rate between the thermal fluid and the
pipe’s outer wall. QH can further be broken down into a convective and conductive heat
transfer terms, governed by the Nusselt and Reynolds numbers. A separate energy balance
is also performed around a solid mass given by Equation (4),

m · Cp,avg · Ṫi = QH + Pth,cond (4)

where m is the mass of the cold plate, Cp,avg is the average specific heat of the cold plate,
Pth,cond is the amount of power or heat transferred between the cold plate and the corre-
sponding component in which it is connected to (in this case the battery), and Ṫi is the time
rate of change of temperature for this particular asset. Heat flow between the thermal fluid
and the cold plate is dictated by the gradient of the temperature difference and the fluid
flow rate through the pipe. This permits energy to be directly transferred from the MGV’s
battery to the coolant loop enabling the TMS to regulate the temperature of the battery.

2.2. Coolant Pump

The coolant pump was constructed using a Simscape thermal-fluid based block.
Simscape’s Fixed-Displacement Pump (TL) [28] was used to model a fixed displacement
pump controlled by regulating the speed of the DC spinning machine, by controlling the
input voltage, regulated by a buck power converter attached directly to the vehicles DC
electrical bus. The block has three different variant selections which govern the efficiency
of the coolant pump: (1) analytic or tabulated data, (2) input efficiency, or (3) input losses.
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We used the analytic or tabulated data variant in combination with an analytic friction and
leakage parameterization to model the coolant pump. The energy balance for the coolant
pump is given in Equation (5),

φa + φb + Pmech = 0 (5)

where φa and φb represents the energy flow rates through ports A and B respectively and
Pmech is the mechanical power generated as a function of speed and torque, i.e., Pmech = τ ·ω.
The hydraulic power is then governed by Equation (6),

Phydro = (pa − pb)
ṁ
ρ

(6)

where pa and pb represents the energy flow rates through ports A and B respectively, ρ
is the density of the fluid, and ṁ is the mass flow rate of the fluid. Equations (5) and (6)
assume that pump irreversibility can be neglected (i.e., the ratio between the reversible
work and actual work invested on the pump is equal to one), in some cases the pump
efficiency may be less than one, in this case an alternative model should be used. Net mass
flow rate of the fluid is then given by Equation (7),

ṁ = ṁideal − ṁleak (7)

where ṁ is the actual flow rate through the coolant pump, ṁideal is the ideal mass flow
rate subject to the ideal torque, τideal , and ṁleak is the leakage mass flow rate subject to
the friction torque τf riction. The ideal mass flow rate and ideal generated torque are then
governed by Equation (8) through Equation (9),

ṁideal = ρ · D ·ω (8)

τideal = D(pa − pb) (9)

where D is the displacement parameter for the pump, and pressure difference pa − pb
assumes port A is the input while port B is the output. The remaining parameters set
internal to the Simscape block are then used to analytically define and compute the friction
and leakage relationships of the coolant pump.

2.3. Chiller

The chiller was constructed using a combination of Simscape thermal and thermal-
fluid based blocks. Simscape’s Pipe (TL) [27] was again used to model a rigid conduit
for fluid flow; dynamic compressibility and fluid inertia were also ignored. The fluid
flow within the component is characterized by an input and output temperature, pressure,
and mass flow rate assuming energy was conserved, thus the same energy balance as
provided in Equation (3) remains valid. The chiller was constructed assuming that heat
contained within the thermal fluid could be transferred to the ambient conditions subject
to Equation (10),

Ṗth,rej =

{
1
τ

[
A ·Q(ω)− B · Pth,rej

]
if ṁ 6= 0

0, otherwise
(10)

where τ is a time constant of the chiller, A and B represent scalar coefficients, Pth,rej is the
heat transfer rate from the component to the ambient conditions, and Q(ω) is the cooling
capacity of the chiller governed by Equation (11), i.e., the amount of heat which can be
rejected to the ambient conditions defined as a function of the spinning machines angular



Energies 2021, 14, 6049 10 of 39

velocity ω, where Qrated is the rated cooling capacity of the chiller and ωrated is the rated
speed of the coolant pump.

Q(ω) =


0, if ω = 0

Qrated ·
[

3 ·
(

ω
ωrated

)2
− 2 ·

(
ω

ωrated

)3
]

if 0 < ω
ωrated

≤ 1

Qrated, else ω
ωrated

> 1

(11)

The chiller then consumes electrical power as a function of Equation (12),

Pelc =
Pth,rej

COP
(12)

where Pelc is an additional parasitic load imposed on the vehicle’s DC electrical bus where
COP is the coefficient of performance of the chiller.

2.4. Coolant Tank

The coolant tank model was constructed using a Simscape thermal-fluid block. Sim-
scape’s Tank (G-TL) [29] was used to model a pressurized tank with variable gas and
thermal liquid volume. The complete derivation of the equations that govern the dynamics
are provided within MATLAB’s documentation. For brevity here, the net result of mass,
energy, and momentum balances for the components are provided in Equation (13) through
Equation (15),

ṗg

(
dm
dp

∣∣∣
g
+

ρgVl

βl

)
+

(
Ṫg

dm
dT

∣∣∣
g
− ṪlρgVlαl

)
= ∑

i=A1,B1

ṁi +
ρg

ρl
∑

i=A2,B2,C2

ṁi (13)

ṗl
dU
dp

∣∣∣
l
+ Ṫl

dU
dT

∣∣∣
l
= Qh2 + ∑

i=A2,B2,C2

φi + ∑
i=A2,B2,C2

ṁg(y(i)− y)− hl ∑
i=A2,B2,C2

ṁi (14)

pi + pi,dyn = pg + ρl(y− yi)g (15)

where subscripts l and g represent liquid and gas respectively, the term g represents the
acceleration due to gravity, ρ for density of the fluid or gas denoted using the appropriate
subscripts, p represents the pressure, T for temperature, yi represents inlet/output fluid
port heights, y represents the height of the gas-thermal liquid boundary, α represents the
isobaric thermal expansion coefficient, β represents the isothermal bulk modulus, A1 and
B1 represents the two gas input ports, A2, B2, and C2 represent one of three possible thermal
fluid ports, φ represents the energy flow rates through the fluid inlets, Q is the heat flow
through the thermal port, h is the fluid enthalpy, U is the total energy of the fluid volume,
and pi,dyn is the dynamic pressure at each thermal liquid input. The coolant tanks thermal
ports are directly connected to a thermal resistance, which impedes heat flow from the
pressurized tank to the thermal compartment, assumed to represent that the coolant tank
is insulated from the internal components to some degree.

3. Predictive Algorithms and Control

Recall that our research has two underlying goals, (1) predicting the future energy use
provided forecasted mission parameters, and (2) generating optimized recommendations
for improved mission effectiveness and efficiency. Current and future energy use of a
vehicle is likely to have sequence dependencies. As such, we sought to develop multiple
Long Short Term Memory Networks (LSTMNs) and multiple Shallow Artificial Neural
Networks (SANNs). LSTMNs are more computationally intensive, require greater training
time and typically require larger and more diverse data sets but achieve greater extensibility
or adaptability when compared to a SANN. Using the different NN variants, we assumed
we could develop reasonably accurate predictions for the current and future vehicle states,
further assuming we also have some observational knowledge regarding the environment
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or other operational considerations. The final research question that we are working
to understand is whether we can generate optimized recommendations which improve
performance of the vehicle subject to mission effectiveness and efficiency. To achieve
this, we implemented a Model Predictive Control (MPC) algorithm which was fed by the
individual neural network variants to reduce the exergy destruction rate as a function of
the operation of the vehicle and other mission objectives and constraints. More information
regarding the SANNs, LSTMNs and MPC will be provided within subsequent sections.

3.1. Shallow Artificial Neural Networks (SANNs)

SANNs can produce an accurate description of nonlinear timeseries models in a
timely manner with efficient error correction by utilizing one to two hidden layers that add
weight and bias to the inputs of the system; these hidden layers, or interposed neurons,
provide learnable parameters that effectively train the neural network to output the desired
optimized model. In comparison to other NNs, SANNs have lower risks of exploding
gradients or vanishing gradients that are often related to training larger neural architectures,
thus making them relatively simple to train and use in research applications. These
NNs are also much more time efficient when compared to complex networks with more
than two nodes that require more extensive training times. Specifically, primarily due to
the flexibility of NNs, SANNs have been used to effectively model nonlinear timeseries
data similar to the data in this study. Zhou et al. clearly demonstrated the usage of
SANNs in a highly nonlinear timeseries system to create a predictive algorithm modeling
the groundwater status in millimeters of the Heihi River basin over the span of several
decades [30]. In addition to this, SANNs have also been shown to be able to optimize the
nonlinear function for Chemical Vapor Infiltration (CVI) parameters of carbon composites
in the work of Li Aijun et al. [31]. Thus, SANNs are shown to be optimal to create predictive
models and have potential to appropriately characterize the exergy destruction and flow
data as a nonlinear timeseries in this study.

3.2. Long Short Term Memory Networks (LSTMNs)

Long short-term memory networks are a variations of recurrent neural networks with
enhanced capabilities to retain information over multiple time steps. Recurrent neural
networks are characteristically defined by their ability to utilize previously generated
outputs as input values, along with other new information entered into the network.
A node within the network uses a predetermined function or set of functions to perform
calculations from input values to generate output values. Output values are continually
used with new input values to generate the next output value. Specifically, within long
short-term memory networks, each node contains multiple internal states. Within these
states, information can be stored for long-term memory and retrieved over many time
steps such that information stored in the states, previous outputs, and new inputs are all
used in the calculation of the node. Within the node, parameters control how inputs are
used by nodes for calculations.

Long short-term neural networks have been utilized and researched in various appli-
cations of sequence finding in complex patterns of unknown length. These neural networks
have been applied to other highly non-linear systems to identify sequential patterns and
interdependent relationships for future predictions of the system through timeseries func-
tions. Fischer and Krauss, through applying long short-term memory networks to predict
the financial market, found that the long short-term memory neural networks outperformed
the deep neural network, logistic regression analysis, and random forest neural network
“with statistically and economically significant returns of 0.46 percent per day, compared
to 0.43 percent for the Random Forest (RAF), 0.32 percent for the standard Deep Neural
Network (DNN), and 0.26 percent for the logistic regression” [32]. Ahuja et al. found in
applying long short-term neural networks to predict domain generated algorithms, this
variation of recurrent neural networks outperformed the HMM model, the random forest
neural network, and the logistic regression in predicting true positive domain generated
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algorithms [33]. Through this, the retention of state and long-term memory capabilities of
long short-term memory networks are highlighted and shown to be effective in sequential
learning and generating accurately predictive outputs.

3.3. Model Predictive Control (MPC)

Our mathematical models and NNs were constructed in such a way that they were
meant to be modular. In order to predict the current state or future state of the vehicle or
an individual component, we develop multiple predictive based algorithms to characterize
the current and future energy/exergy flows for each dissimilar engineering discipline
modeled, chemical, mechanical, electrical, thermal, thermal-fluid, etc, thus the objective
function for the MPC algorithms is provided in Equation (16),

J(t) = ∑ χ̇(t) (16)

where J(t) represents the aggregate cost computed as the summation of the exergy destruc-
tion rate χ̇(t) resulting from the operation of each individual component. The individual
electrical, electromechanical, and thermal exergetic losses equations are the same as those
featured in Jane et al. [34]. We also included the electrical load to operate the chiller as an
exergetic loss in that if we did not run the chiller, we would save any electrical energy not
used to operate the thermal coolant loop. There are two design variables which are to be
optimized subject to the bounds as shown in Equations (17) and (18),

250 rpm ≤ ωdc ≤ 500 rpm (17)

1 ◦C ≤ ∆T ≤ 4 ◦C (18)

where ∆T represents the temperature offset and ωdc represents the controlled speed of the
DC spinning machine which drives the coolant pump. The temperature offset was used to
generate a temperature error signal which triggers the hysteresis control. The temperature
error signal was computed using Equation (19)

Terr = Tbatt − (Tamb − ∆T) (19)

where Tamb is the ambient temperature, Tbatt is the battery’s temperature, and Terr is the
temperature error. A hysteresis control was then applied to control the temperature of
the battery.

The hysteresis was defined such that if Terr ≥ 1 the hysteresis or relay will be triggered
to cool the battery, the TMS will remain active until Terr ≤ 0.1, at which point the TMS
will be disabled. By changing the temperature offset, the temperature at which the battery
was regulated will change. Reducing ∆T will reduce the time in which the TMS is active,
thereby reducing the pure mechanical and electrical exergy losses associated with the
duration of time in which the TMS was active. Conversely, if ∆T was increased the TMS
will remain active for longer durations, this will in turn increase the pure exergetic losses
resulting from a longer duration of activity. Alternatively, the DC spinning machine’s
angular velocity ωdc could increase. Increasing the speed will increase the exergetic losses
in magnitude and the duration at which the TMS will remain active will decrease the
exergetic losses resulting from a shorter duration of activity. Conversely, decreasing the
angular velocity will lead to a reduction in exergetic losses associated with the operating
the TMS. However, the TMS is likely to operate for longer durations and exergetic losses
could increase.

In any case, the duration and magnitude in which the TMS will be enabled or disabled
may increase or decrease as a function of the selected angular velocity of the DC spinning
machine or the temperature offset. The exergetic losses of the vehicle will be minimized
subject to the event schedule. The event schedule directly corresponds to mission effective-
ness or efficiency. The event schedule defined a set of U.S. Army relevant events which
may require alteration to the control logic for the TMS to better accommodate mission
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effectiveness. One such event where this is the case is during a reduced ancilliary load
operation. During a reduced ancilliary load operation, the vehicle would be operating with
a reduced load. Unnecessary actuation of a component or group of components such as
the TMS will increase the aggregate electrical load which would reduce mission efficiency.
Thus during a reduced ancilliary load operation, the TMS should be controlled such that
it is minimally actuated. Using the event schedule in combination with the equations
presented within this section the MPC was created and tested. If the predictive algorithms
indicated that a particular set of temperature offsets and angular velocity operational
conditions resulted in the activation of the TMS, that particular set of operating conditions
will be considered infeasible.

To limit the solution space, we broke the simulation epoch into two optimization
epochs. First, we will optimize at the beginning of the simulation and then roughly an hour
after the start of the simulation we would re-execute the MPC. The first epoch was broken
up as shown in Equation (20), while the second was broken up as shown in Equation (21),
where ωdc

∆T
t

 =

ωdc,1 ωdc,1 ωdc,2 ωdc,2
∆T1 ∆T1 ∆T2 ∆T2

0 3300 3300.5 10800

 (20)

ωdc
∆T

t

 =

ωdc,1 ωdc,1 ωdc,2 ωdc,2
∆T1 ∆T1 ∆T2 ∆T2
3300 6900 6900.5 10800

 (21)

where ωdc,1 and ωdc,2 are the first and second angular frequency setpoints, ∆T1 and ∆T2 are
the first and second angular temperature hysteresis variables, and t represents a time vector
for which the setpoints will be valid. Using these variables, the MPC routine will then
minimize the exergy destruction of the MGV and also accommodate minimal actuation of
the thermal coolant loop (TCL) during the reduced ancilliary load event. Our MPC was
formulated such that we used a brute force optimization routine in which we predefined
each unique possible solution assuming the coolant pump’s angular frequency could be
controlled to be ωdc = 250 rpm, ωdc = 375 rpm, or ωdc = 500 rpm, and subjected to
∆T = 1 ◦C, ∆T = 2 ◦C, ∆T = 3 ◦C, and ∆T = 4 ◦C temperature hysteresis, i.e., twelve
unique solutions for the first and second intervals leading to one-hundred and forty-four
unique solutions which may allow the MGV’s operation to be optimized for mission
effectiveness and efficiency.

4. Scenario

A scenario in the context of a microgrid, or more generally an energy network, rep-
resents a set of mission parameters, operating conditions, mission loads, and/or drive
cycle, all of which impact performance of an asset. In this particular case we choose a
small robotic platform which was loosely based on Clearpath Robotics robotic platform for
semi-autonomous or autonomous vehicle. We used the same scenario specific information
as presented in Jane et al. [26]. For brevity, the individual training and testing data-sets
are also provided within this document. In order to develop the different predictive ca-
pabilities, we generated two separate data-sets, each data-set contained a mission load
profile, a set of operating conditions (temperature, pressure, etc.), road grade, drive cycle,
and event schedule. The event profiles and operating conditions were held constant for
both the training and testing data-sets, both of which are provided in Figure 3.

In general, each data-set contained a drive cycle which contains two mobility maneu-
vers, representing a round trip maneuver. In between each mobility maneuver, the vehicle
will remain stationary, during which time it will participate in a reduced ancilliary load
operation. At this time on-board Government Furnished Equipment (GFE) will be used to
conduct some predefined mission. The mission loads are another distinguishing character-
istic for each data-set, in addition to separate road grades.
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(a) The variable operating conditions consists of a variable temperature and
irradiance profile downloaded from NREL’s NSRDB tool.

0 20 40 60 80 100120140160180

Time (min)
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Mobility Operations

Stationary Operations

(b) The mission’s event schedule. Normal operations is assumed under a mobility
maneuver, conversely during a reduced ancilliary load operation, the vehicle
should operate with a reduced aggregate electrical load.

Figure 3. A variable set of operating conditions and event schedule which impact performance of the
vehicular asset.

The training and testing data-sets are shown in Figure 4. The training data-set was
used for initial development of the individual predictive algorithms. Using the individual
drive cycles, road grade, and mission load profiles, the vehicle architecture was simulated.
Analysis of each asset’s energy and exergy flow were subsequently used to identify per-
tinent features, used to predict the dissimilar energy and exergy flow features, enabling
energy and exergy flow characterization to be developed. The testing data-set was then
used for assessing the individual predictive algorithms. Prior to implementing the MPC-
based optimization routine described previously, the individual prediction algorithms
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were tested on the testing data-set in order to observe the applicability of the predictive
algorithms. If the algorithms performance was poor, MPC based-control would suffer, if ac-
ceptable, MPC-based optimization and control could be applied to improve performance
of the vehicle.
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Figure 4. Cont.



Energies 2021, 14, 6049 16 of 39

0 20 40 60 80 100 120 140 160 180

Time (min)

0

2.5

5

7.5

10

12.5

15

D
ri
v
e
 C

y
c
le

 (
m

/s
)

Training Mission Load Testing Mission Load

(c) The training and testing mission load current imposed on the MGV’s
DC electrical bus.

Figure 4. The training and testing drive cycle, road grade, and mission load profile.

5. Results

Prior to testing the predictive algorithms, the MGV was simulated twelve separate
times, six times on the training data-set and six times on the testing data-set. The MGV
was simulated assuming the TCL would operate at ωdc = 250 rpm, ωdc = 375 rpm,
or ωdc = 500 rpm, where the TCL’s temperature hysteresis was set to ∆T = 1 ◦C or
∆T = 2 ◦C. Figures 5 and 6 illustrate the aggregate exergy destruction response for the
MGV subject to the variable coolant pump operating speed and hysteresis temperature
control in addition to the differences between the training and testing data-sets. Similarly,
the dissimilar thermal response of the components which arises from the differences within
the training or testing data-sets are provided in Figure 7 through Figure 8. The tabulated
aggregate exergy destruction resulting from either the training or testing data-sets are
formally provided in Table 1. Similarly, the final State of Charge (SoC) of the vehicle at the
end of the simulation is also formally provided in Table 2.

Figure 5 through Figure 6 illustrates the differences between the tabulated exergy
destruction rate resulting from the variable actuation of the TCL. The primary features
which are observable includes the differences between the mission load which can be
observed periodically within the mobility maneuvers, or during the reduced ancilliary
load operation. The periodic mission loads during the mobility maneuvers are larger for
the training data-sets versus the testing data-sets. Conversely, the mission loads during
the reduced ancilliary load operation was larger for the testing data-set than the training
data-set. We can also identify the periods of time in which the TCL becomes active,
i.e., noticeable deviation from the nominal exergy destruction rate, in which many of the
trajectories appears to track together despite the differences within the control of the TCL.

Another discernible feature which distinguishes the different exergy destruction rates
of each data-set includes the point in which the TCL becomes active and the approximate
amount of exergy being destroyed as a result of the TCL operation. Generally speaking,
with larger temperature hysteresis (∆T = 2 ◦C), the coolant loop must remain active for
longer periods of time. Conversely, a smaller temperature hysteresis (∆T = 1 ◦C) means
the coolant loop is less likely to be active for long periods of time. The TCL is also affected
by the coolant pump’s angular frequency. Lower angular frequencies (ω = 250 rpm)
lead to less mass flow rate. This reduces the heat transfer rate, which in turn changes the
operation of the chiller, meaning we expect our exergy destruction to decrease in magnitude.
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However, the duration in which the TCL must remain active to achieve the desired cooling
rate, this is expected to increase. In contrast for larger angular frequencies (ω = 500 rpm),
greater mass flow rate means more heat may be transferred away from the fluid decreasing
the likelihood the TCL remains active for longer periods of times. Increased angular
frequency results in a larger amount of exergy being destroyed to operate the components.
The aggregate exergy destroyed as a result of the different training or testing data-sets is
shown in Table 1. It is also worth mentioning that the amount of exergy being destroyed
is directly tied to the state of charge of the battery, therefore if greater exergy is being
destroyed as a result of the variations of the mission loads, drive cycle, and the TCL control,
we expect greater energy storage utilization. More of the batteries amp-hour capacity is
subsequently dissipated, which can be observed upon inspection of Table 2.
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Figure 5. The exergy destruction for the MGV subject to a temperature hysteresis control of ∆T = 1 ◦C
for the training data set (a) and the testing data set (b).
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Figure 6. The exergy destruction for the MGV subject to a temperature hysteresis control of ∆T = 2 ◦C
for the training data set (a) and the testing data set (b).
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Figure 7. The thermal response of the battery 502(1) and the thermal compartment 321(1) at various
coolant pump speeds and a temperature hysteresis control of ∆T = 1 ◦C for the training data set (a)
and testing data set (b).

Another set of results which help to illustrate the differences between the training and
testing data-sets are that of the different temperature profiles for thermal compartment
and the battery’s temperature as shown in Figure 7 through Figure 8. Upon inspection
of these figures, we can infer that the mission loads during the reduced ancilliary load
operation are larger for the testing data-set as opposed to the training data-set. This result
is a direct result of a larger thermal response of the boost power converter, which is the
power converter which facilitates power flow from the battery to the DC bus and all other
systems of the MGV. We can also see the periods of time in which the TCL becomes active
or inactive. When the TCL becomes active large and abrupt temperature changes are
observed. When the TCL deactivates, then the temperature begins to rebound following
a parabolic concave up trajectory at which point it seems to follow a linear trend until
the temperature rises to the point in which the TCL will again become active which is
a function of the TCL’s temperature hysteresis. One important feature to focus in on
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within the temperature profiles is that for all training or testing data-sets shown in this
section, the TCL becomes active one or two times throughout the reduced ancilliary load
operation. This is the primary feature we would like to avoid, which is only possible if we
can accurately characterize the dissimilar energy flows of the MGV subjective to variable
time, space, or the environment.
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Figure 8. The thermal response of the battery 502(1) and the thermal compartment 321(1) at various
coolant pump speeds and a temperature hysteresis control of ∆T = 2 ◦C for the training data set (a)
and testing data set (b).
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Table 1. The aggregate exergy destruction rate for each training and testing data-sets.

Hysteresis Data Set ωdc = 250 rpm ωdc = 375 rpm ωdc = 500 rpm

∆T = 1 ◦C
Train (kJ) 431.07 437.86 445.58

Test (kJ) 447.73 458.33 467.71

∆T = 2 ◦C
Train (kJ) 434.51 438.80 446.53

Test (kJ) 453.29 456.44 467.64

Table 2. The aggregate exergy destruction rate for each training and testing data-sets.

Hysteresis Data Set ωdc = 250 rpm ωdc = 375 rpm ωdc = 500 rpm

∆T = 1 ◦C
Train (%) 67.07 66.82 66.62

Test (%) 65.61 65.30 65.07

∆T = 2 ◦C
Train (%) 66.86 66.64 66.43

Test (%) 65.24 65.16 64.91

Upon completion of the twelve simulations, we used the training based data-sets
for constructing our predictive algorithms. The remainder of the results are arranged as
follows: Section 5.1 contains the results collected in order to observe the applicability of the
predictive algorithms and Section 5.2 contains the results of the MPC-based optimization
and control strategy.

5.1. Applicability of the Predictive Algorithms

In Jane et al. [34] we tested our predictive algorithms using multiple coolant pump
angular frequencies and it showed that our predictive algorithms were insufficient to
characterize the exergy and energy flow of the vehicle for the variable operating conditions
tested. Our previously created predictive algorithms were all trained assuming that the
coolant pump operated at ωdc = 500 rpm and the temperature hysteresis was set to
∆T = 2 ◦C. When we tested our predictive capabilities we altered the coolant pumps oper-
ating frequency and the temperature hysteresis. As one might have expected, the predictive
algorithms preformed poorly, leading to inaccurate energy or exergy flow characterizations.
Inaccurate energy flow characterizations limited our ability to fully implement a model
predictive control (MPC) strategy and improve the mission efficiency of our target plat-
form. To improve our performance of our predictive algorithms, we utilized more training
data which included alternative coolant pump operating frequencies and temperature
hysteresis setpoints.

The results of the algorithms in response to two of the testing data-sets are provided
in Figures 9–12. In Jane et al. [26,34] we developed multiple sets of predictive algorithms
which could be used to reconcile applicable sensor measurements and reconstruct the
energy and energy flow for a current point in time while using estimated information
relating to the drive cycle, road grade, ambient temperature, and the mission load forecast
the future energy and exergy flow. Since our ultimate goal is to improve the mission effi-
ciency of our target platform, our results are focused on developing future energy/exergy
flow characterizations. If we can provide accurate forecasts of the future energy/exergy
flow considering the vehicle’s future operational use, we can use the predictive algorithms
to help inform a MPC-based strategy which seeks to lead to a more mission effective or
efficient operation of the vehicle.

Figures 9 and 10 illustrates the response to the future forecasts of the aggregate exergy
being destroyed for the differential, a power converter, and the battery. The future forecasts
were generated assuming we had knowledge of the future drive cycle, ambient temperature,
road grade, and mission load profile. This information was passed to a neural networks
which sought to predict the aggregate load of the driven tires. This result was then fed
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into the tire neural networks which predicted the amount of destroyed exergy and stored
energy, permitting the delivered energy to each drive tire to be predicted. The output
of the each tire neural network then fed the differential’s neural networks, which back-
propagates to all other neural networks as defined by the MGV’s architecture. As we can
infer from Figures 9 and 10, our newly trained neural network are sufficient to characterize
the dissimilar energy flows of the MGV’s drive train and the only noticeable differences
observed within the figures occur from 750 through 900 s. This is one of the periodic times
within the simulation that the mission load increases because we did not sufficiently alter
the mission load within the training data-sets. Our predictive algorithms have a tendency
to go awry during these periods.
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Figure 9. The future forecast of the exergy destruction rate for the differential, assuming that the
coolant pump, if active would operate at ωdc = 500 rpm and ∆T = 2 ◦C (a) or ωdc = 250 rpm and
∆T = 1 ◦C (b).
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Figure 10. The future forecast of the exergy destruction rate for the battery, assuming that the coolant
pump, if active would operate at ωdc = 500 rpm and ∆T = 2 ◦C (a) or ωdc = 250 rpm and
∆T = 1 ◦C (b).

Figures 11 and 12 illustrates the response of our predictive algorithms for the battery
and the thermal compartment. These two components were selected as a result that they
are the primary components which are to be impacted by the activation of the coolant
loop. The coolant loop will be activated by the battery’s temperature rising above the
upper bound. Once the lower bound has been achieved the coolant loop will deactivate.
Each electrical/mechanical component in addition to the thermal fluid components may
also transfer heat to the thermal compartment, which results in an aggregate temperature
response of the thermal compartment. Upon inspection of Figures 11 and 12 we see that
the battery temperature response performs well for the future forecast. However, there is a
noticeable difference for the thermal compartment temperature, which directly corresponds
to the periods of time in which the mission load increases. A significant increase in the
predicted thermal compartment temperature will lead to over predictions of the heat
transfer rates between each individual component. This leads to degradation in each of the
component’s thermal response. Despite the noticeable degradation, it is believed that as
long as the forecast horizon of the predictive algorithms do not extend sufficiently far into
the future and that the increased mission load does not remain active for extended periods
of time, the neural networks should continue to provide sufficiently accurate predictions
such that a MPC-based algorithm can be implemented to improve mission efficiency.
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Figure 11. The future forecast of the thermal response of the battery, assuming that the coolant pump,
if active would operate at ωdc = 500 rpm and ∆T = 2 ◦C (a) or ωdc = 250 rpm and ∆T = 1 ◦C (b).
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Figure 12. The future forecast of the thermal response of the thermal compartment, i.e., the com-
partment in which all other electrical components interact with, assuming that the coolant pump,
if active would operate at ωdc = 500 rpm and ∆T = 2 ◦C (a) or ωdc = 250 rpm and ∆T = 1 ◦C (b).

5.2. Model Predictive Control

In this final subsection we implemented our MPC-based strategy which used multiple
neural networks to predict the dissimilar energy flows in an attempt to improve mission
effectiveness and efficiency of the MGV. Figure 13 compares the exergy destruction rate and
thermal response for four of the six testing data-set responses when compared to simulated
MGV which used the MPC-based strategy to improve mission effectiveness or efficiency.

Recall, the goal of the optimization routine was to minimize exergy destruction i.e., im-
prove mission efficiency and improve mission effectiveness by delaying the activation of
the TCL such that it would not trigger during a reduced ancilliary load operation. During a
reduced ancilliary load operation, the aggregate load of the vehicle should be reduced such
that no unnecessary components are activated.

Figure 13a shows the exergy destruction rate for four of the six aggregate exergy
destruction response of the MGV subject to the testing data-set in addition to the aggre-
gate exergy destruction response of the MGV in which the MPC was deployed. Similarly,
Figure 13b contains four of the six thermal response for the battery and the thermal com-
partment of the MGV subject to the testing data-set in addition to the thermal response for
the battery and the thermal compartment of the MGV in which the MPC was deployed.
In either figure, four of the five trajectories indicate that the TCL becomes activated during
reduced ancilliary load operation, i.e., the MGV will be less effective. The only trajectory
which does not trigger the TCL to become activate during the reduced ancilliary load
operation is the trajectory which results from deploying the MGV’s MPC based predictive
algorithms. When the TCL becomes active, we see an noticeable increase in the exergy
destruction rate and a characteristic deviation from what is presumed to be the nominal
exergy destruction rate. Similarly if we look at the thermal response of the battery, we
notice a sudden and rapid concave down trajectory. Once the TCL has sufficiently cooled
the battery, the TCL becomes inactive, and the batteries thermal response will follow a
concave up trajectory and naturally decay to more of linear trend increase in temperature
as time progresses.

Analysis of both the exergy destruction rate and the thermal response of the optimal
trajectory indicates that the TCL remains active for a long period of time during the first
mobility maneuver. This is to sufficiently cool the battery such that the TCL will not need
to be activated until after the reduced ancilliary load mission has passed. In this way the
MPC was able to identify a set of angular frequency operating points and temperature
delta setpoints that permitted the MGV to operate more effectively. Interestingly, as a
result of the MPC, the MGV now destroyed 461.31 kJ of exergy and consumed 34.92% of
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the energy contained within the MGV’s battery. The MGV consumed less percentage of
the total energy storage capacity and destroyed less exergy than the MGV when the TCL
operated at ωdc = 500 rpm and ∆T = 1 ◦C or 2 ◦C, but was less efficient when the TCL
operated at ωdc = 375 rpm and ∆T = 1 ◦C or 2 ◦C. The MPC was effectively able to
identify a potential set of operating points that saved some energy, but more importantly
allowed the vehicle to operate more effectively in the presence of reduced ancilliary load
operation.
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Figure 13. The exergy destruction response (a) and the thermal response of the battery 502(1) and the
thermal compartment 321(1) for four of the six operating set-points for the TCL when compared to
the MPC’s more effective solution as identified from the predictive algorithms (b).
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Our MPC was executed twice throughout the total simulation epoch, once at the
beginning, and once after fifty-five minutes after the simulation began. During the first
simulation epoch the MPC identified the optimal coolant pump angular velocity ω∗dc and
hysteresis delta temperature ∆T∗ to be that of Equation (22).ω∗dc

∆T∗

t∗

 =

375 375 500 500
4 4 1 1
0 3300 3300.5 10800

 (22)

At the next optimization interval, the MPC’s solution did not converge which would
indicate that none of the unique one-hundred and forty-four possible solutions for the
remaining simulation epoch could ensure a more mission effective operation of the MGV.
In this case the MPC algorithm used the previously found optimal solution to create a new
theoretical optimal solution candidate as shown in Equation (23).ω∗dc

∆T∗

t∗

 =

 500 500 500 500
1 1 1 1

3300 6900 6900.5 10800

 (23)

It is unclear how this happens but a likely cause is that upon updating the memory
and states of the model, the neural network model over or under estimates some of the
dissimilar energy flows which impact the thermal behavior or heat transfer characteristics
of the system. These inaccurate predictions then lead the neural networks to under perform.
Recall that in Section 5.1, we briefly explored the applicability of the predictive algorithms
and our analysis indicated good agreement between the neural network performance
and the simulated response for a fifteen-minute epoch. However near the end of the
fifteen-minute epoch there was a noticeable deviation of the batteries thermal temperature
response, in part due to the inclusion of mission load. When the MPC was run, it was
predicting the exergy flow and temperature responses for two to three hours in the future.
Longer simulation epochs are better for ensuring we can identify the optimal energy/exergy
solution which is more effective, however, it presents more avenues for the predictive
algorithms to drift. Over or under predictions are more likely to occur as a result of states
or memories deviating substantially from any known conditions. In the presence of regular
feedback the neural networks performance is less likely to degrade. This establishes an
important result that the applicability of the predictive algorithms must not exceed some
predefined forecast horizon. The algorithms may only be good for a small forecast horizon;
larger forecast horizons can lead to degraded forecasts and the inability to optimize the
performance of the target platform.

6. Conclusions and Future Work

We presented an exergy based model predictive control (MPC) method for battlefield
analysis and control. Using MATLAB/Simulink in combination with Simscape’s thermal,
thermal-fluid, and mechanical tool-boxes, we created a simulation architecture in which
we could simulate the dynamics of a MGV and (1) simultaneously run our neural network-
based predictive algorithms and compare to the simulated truth model, or (2) run our MPC
to optimize the vehicle’s performance. Our results indicated the predictive algorithms
showed good agreement with the simulated truth model indicating that the algorithms
were likely sufficient for implementing a MPC based optimization routine. The predictive
algorithms were trained on multiple training data-sets and tested on alternative data-sets
using supervised learning practices.

Once we had determined that the predictive algorithms seemed to sufficiently predict
the dissimilar energy flows and the thermal response, we implemented a brute-force
optimization routine to improve the effectiveness of the vehicle, while maximizing the
efficiency of the vehicle. The initial execution of the MPC yielded a candidate solution
which led to increased effectiveness and efficiency of the MGV when compared to the
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previously simulated training or testing data sets. Unfortunately, the subsequent executions
of the MPC were inconclusive, i.e., the MPC was unable to identify a candidate solution
which could increase effectiveness and efficiency of the vehicle. The likely reason is the
updates of the memory and states of the predictive algorithms lead to under and over
estimations of some of the dissimilar energy flows which lead to under or over predictions
of the heat transfer response. This leads to poor temperature response predictions. It
is also possible that because the first operating point identified by the MPC sufficiently
deviated from the training data-sets and upon updating of the memory or states of the
model, the new operational space sufficiently deviated from the training space and led to
degradation of the predictive algorithms.

The work presented indicates that it is possible to create a set of artificial neural
networks which can be used for developing timeseries predictions of dissimilar energy
flows and thermal responses with sufficient accuracy that an MPC can be deployed to
increase mission effectiveness or efficiency of a target system. The only caveat to this
is the response of the predictive algorithms may degrade for longer forecast horizons,
and thus it becomes paramount to ensure that the predictive algorithms developed are not
overextended beyond the reasonable forecast horizon. For future work, we intended to
continue to develop and deploy dissimilar types of artificial neural networks for energy
flow and temperature prediction and improve the algorithms developed. We intend to
focus on larger Army relevant platforms which include internal combustion engines [35]
including squad multipurpose equipment transport (SMET). Further we intend to improve
the optimization routing by integrating more standard and efficient optimization based
algorithms which further improves the ability to utilize the predictive algorithms for
improving performance of a target platform. We are also beginning to explore developing
and deploying these same type of predictive algorithms using real-time online training
capabilities in combination with unsupervised training such that we can adaptability and
flexibly train the algorithms to improve efficiency or mission effectiveness of a target
platform based on the defined operational scenario.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
AlexNet Alex Krizhevsky’s Neural Network Architecture
ANN Artificial Neural Network
C5 Cargo Five
CA Constant Acceleration
CNN Convolution Neural Network
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COP Coefficient of Performance
CS Constant Speed
CVI Chemical Vapor Infiltration
DC Direct Current
DNN Deep Neural Network
DropCNN Drop Convolution Neural Network
F1 Function One
FLT First Law of Thermodynamics
G-TL Gas and Thermal Liquid
GFE Government Furnished Equipment
GPS Global Positioning Satellite
H∞ Hardy Infinity
JF Joint Fine-tuning
LSTM or LSTMN Long Short Term Memory or Long Short Term Memory Network
M1-A1 Model One - Advancement One
MGV Mobile Ground Vehicle
MM Markov-based Models
ML Machine Learning
MLP Multi-Layer Preceptron
MPC Model Predictive Control
MDO Multi-Domain Operations
NN or NNET Neural Network
PHEB Plug-n Hybrid Electric Bus
RAF Random Forest
RBF Radial Basis Function
RMSE Root Means Squared Error
RNN Recurrent Neural Network
RRt Rapidly-exploring Random Tree
ResNet Residual Neural Network
ResNet50 Residual Neural Network Fifty
RPM Revolutions Per Minute
SANN Shallow Artificial Neural Network
SMET Squad Multipurpose Equipment Transport
SLT Second Law of Thermodynamics
SoC Sate of Charge
TL Thermal Liquid
TMS Thermal Management System
TCL Thermal Coolant Loop
VGG16 Visual Geometry Group’s Sixteenth Neural Network Architecture
VGG19 Visual Geometry Group’s Nineteenth Neural Network Architecture

Appendix A

The intent of this section is to provide insight regarding our predictive algorithms.
Appendix A.1 a table that contains list of unique identification number at its relation to
the MGV. It also points to multiple tables as defined in Appendix A.2 help to describe the
input and target features used to develop the SANNs and the LSTMs.

Appendix A.1

This Appendix contains list of unique identification number for each asset as shown
in Figure 2, provided in Table A1. The information as provided within the table will help to
distinguish the difference between each asset and be used to define the differences within
the neural network architectures provided within subsequent appendices subsections.
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Table A1. The mobile ground vehicle’s (MGV) asset list and their corresponding unique identification
number, and the table in which the neural networks primary configuration features are defined.

Asset Identification Number NNet Configuration

Rear Differential 105(1) Table A3

Right Rear Tire 106(1) Table A4

Left Rear Tire 106(2) Table A5

Right Front Tire 106(3) Table A6

Left Front Tire 106(4) Table A7

Load 107(1) -

Boost Power Converter 205(1) Table A8

Buck Power Converter 205(2) Table A9

Buck Power Converter 205(3) Table A10

DC Bus 207(1) -

Cold Plate 305(1) Table A11

Coolant Pump 315(1) Table A12

Thermal Compartment 321(1) Table A13

Coolant Tank 322(1) Table A14

Chiller 323(1) Table A15

DC Motor 400(1) Table A16

DC Motor 400(2) Table A17

Battery 502(1) Table A18

Appendix A.2

This Appendix contains a compressive list which defines the sensor list in combination
with a symbol used to abbreviate the sensor value as shown in Table A2. These abbrevia-
tions will be used to describe the neural networks. We developed multiple sets of Shallow
Artificial Neural Network (SANN) and Long Short Term Memory Network (LSTMNs) and
used them for (1) reconcile past state information not directly observable from the available
sensor measurements and (2) to characterize the future energy/exergy flow behavior of the
asset. Neural networks used to reconcile past state information will be classified as state
estimator, conversely neural networks used to forecast or predict future energy/exergy
flow behavior will be classified as state predictor. Additional subscripts may be added to
symbols as shown in Table A2, this is done to distinguish between a different engineering
domain, as an example m or mech mechanical, e or elec electrical, th for thermal, or t f for
thermal fluid.
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Table A2. The mobile ground vehicle’s (MGV) sensor list and the corresponding symbol used to
abbreviate the sensor value.

Signal Symbol

Mission Load Profile Imis

Reference Mission Load Profile Imis,r

Source Current Isrc

Source Voltage Vsrc

Load Current Ilod

Load Voltage Vlod

Source Angular Velocity ωsrc

Source Torque τsrc

Load Angular Velocity ωlod

Load Torque τlod

Steady State Reference Speed SSm,r

Angular Velocity of DC Motor ωm,src

Source Power Psrc

Load Power Plod

Dissipated Power Ploss

Stored Power Pstr

Component Temperature Tth

Battery Temperature Tth,batt

Thermal Compartment Temperature Tth,ext

Ambient Temperature Tth,amb

Reference Ambient Temperature Tth,amb,r

Cold Plate Temperature Tth,cp

Thermal Fluid Source Power φt f ,src

Thermal Fluid Source Pressure Ψt f ,src

Thermal Fluid Source Temperature Tt f ,src

Thermal Fluid Source Mass Flow Rate ṁt f ,src

Thermal Fluid Load Phi φt f ,lod

Thermal Fluid Load Pressure Ψt f ,lod

Thermal Fluid Load Temperature Tt f ,lod

Thermal Fluid Load Mass Flow Rate ṁt f ,lod

Longitudinal Velocity Vx

Reference Longitudinal Velocity Vx,r

Longitudinal Acceleration Ax

Reference Longitudinal Acceleration Ax,r

Wind Velocity Ww

Reference Wind Velocity Ww,r

Heat Transfer to Ambient Conditions Pth,rej

Heat Transfer to Thermal Compartment Pth,tran

Heat Transfer through Conduction Pth,cond

Heat Transfer through Convection Pth,conv

Exergy Destruction Rate χ̇

Binary Relay State (On/Off) Ξ

Measure of Time Relay has been Active τon

Measure of Time Relay has been Inactive τo f f
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Table A3. The rear differential 105(1) neural network configurations.

Input Features Output
Features

SANN Hidden
Layer Size

LSTMN Hidden
Layer Size Purpose

Pm,src, Pm,lod,right, Pm,lod,le f t, Pm,src −
(Pm,lod,right + Pm,lod,le f t)

Ploss [10 5 10 5]
[25] Estimator

Pm,src, Pm,lod,right, Pm,lod,le f t, Pm,src −
(Pm,lod,right + Pm,lod,le f t)

χ̇mech [10 5 10 5]

Pm,lod,right, Pm,lod,le f t, Vx,r , (Pm,lod,right +

Pm,lod,le f t)
Pm,src [5 25 15 10 5]

[25] Predictor
Pm,lod,right, Pm,lod,le f t, Vx,r , (Pm,lod,right +

Pm,lod,le f t)
Ploss [5 25 15 10 5]

Pm,lod,right, Pm,lod,le f t, Vx,r , (Pm,lod,right +

Pm,lod,le f t)
χ̇mech [5 25 15 10 5]

Table A4. The right rear tire 106(1) neural network configurations.

Input Features Output
Features

SANN Hidden
Layer Size

LSTMN Hidden
Layer Size Purpose

Pm,src, Pm,lod Ploss [10 5]
[25] Estimatorτm,src, ωm,src, ωm,lod Pm,lod [10 5]

Pm,src, Pm,lod χ̇mech [10 5]

Pm,lod, Vx,r Pm,src [5 15 10 5]
[25] PredictorPm,lod, Vx,r Ploss [5 15 10 5]

Pm,lod, Vx,r χ̇mech [5 15 10 5]

Table A5. The left rear tire 106(2) neural network configurations.

Input Features Output
Features

SANN Hidden
Layer Size

LSTMN Hidden
Layer Size Purpose

Pm,src, Pm,lod Ploss [10 5]
[25] Estimatorτm,src, ωm,src, ωm,lod Pm,lod [10 5]

Pm,src, Pm,lod χ̇mech [10 5]

Pm,lod, Vx,r Pm,src [5 15 10 5]
[25] PredictorPm,lod, Vx,r Ploss [5 15 10 5]

Pm,lod, Vx,r χ̇mech [5 15 10 5]

Table A6. The right front tire 106(3) neural network configurations.

Input Features Output
Features

SANN Hidden
Layer Size

LSTMN Hidden
Layer Size Purpose

Pm,src, Pm,lod Ploss [10 5]
[25] Estimatorτm,src, ωm,src, ωm,lod Pm,lod [10 5]

Pm,src, Pm,lod χ̇mech [10 5]

Pm,lod, Vx,r Pm,src [5 15 10 5]
[25] PredictorPm,lod, Vx,r Ploss [5 15 10 5]

Pm,lod, Vx,r χ̇mech [5 15 10 5]

Table A7. The left front tire 106(4) neural network configurations.

Input Features Output
Features

SANN Hidden
Layer Size

LSTMN Hidden
Layer Size Purpose

Pm,src, Pm,lod Ploss [10 5]
[25] Estimatorτm,src, ωm,src, ωm,lod Pm,lod [10 5]

Pm,src, Pm,lod χ̇mech [10 5]

Pm,lod, Vx,r Pm,src [5 15 10 5]
[25] PredictorPm,lod, Vx,r Ploss [5 15 10 5]

Pm,lod, Vx,r χ̇mech [5 15 10 5]
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Table A8. The boost converter 205(1) neural network configurations.

Input Features Output
Features

SANN Hidden
Layer Size

LSTMN Hidden
Layer Size Purpose

Pe,src, Ve,src, Ie,src, Pe,lod, Ie,lod Ploss [10 25 25 15]

[10 25 25 5] EstimatorTth, Tth − Tth,ext Pth,tran [10 5]
Pe,src, Ve,src, Ie,src, Pe,lod, Ie,lod χ̇elec [10 25 25 15]
Tth, Tth,ext, Tth,amb, Tth − Tth,ext χ̇th [5 10 10 10 5]

Pe,lod, Vx,r , Imis,r Pe,src [15 25 10 5]

[10 25 25 5] Predictor
Pe,src, Pe,lod, Vx,r , Imis,r Ploss [15 25 10 5]
Tth, Tth − Tth,ext Pth,tran [10 5]
Pe,src, Pe,lod, Vx,r , Imis,r χ̇elec [15 25 10 5]
Tth, Tth,ext, Tth,amb, Tth − Tth,ext χ̇th [5 10 10 10 5]

Table A9. The buck converter 205(2) neural network configurations.

Input Features Output
Features

SANN Hidden
Layer Size

LSTMN Hidden
Layer Size Purpose

Pe,src, Ve,src, Ie,src, Pe,lod, Ie,lod Ploss [10 5 10 5]

[10 25 25 5] EstimatorTth, Tth − Tth,ext Pth,tran [10 5]
Pe,src, Ve,src, Ie,src, Pe,lod, Ie,lod χ̇elec [10 5 10 5]
Tth, Tth,ext, Tth,amb,Tth − Tth,ext χ̇th [5 5 5]

Pe,lod, Imis,r Pe,src [5 10 5 10 5]

[10 25 25 5] Predictor
Pe,src, Pe,lod, Vx,r Ploss [5 10 5 10 5]
Tth, Tth − Tth,ext Pth,tran [10 5]
Pe,src, Pe,lod, Vx,r , Imis,r χ̇elec [15 25 10 5]
Tth, Tth,ext, Tth,amb, Tth − Tth,ext χ̇th [5 5 5]

Table A10. The buck converter 205(3) neural network configurations.

Input Features Output
Features

SANN Hidden
Layer Size

LSTMN Hidden
Layer Size Purpose

Pe,src, Ve,src, Ie,src, Pe,lod, Ie,lod Ploss [10 10 10 10]

[10 25 25 5] EstimatorTth, Tth − Tth,ext Pth,tran [10 5]
Pe,src, Ve,src, Ie,src, Pe,lod, Ie,lod χ̇elec [10 10 10 10]
Tth, Tth,ext, Tth,amb, Tth − Tth,ext χ̇th [5 5 5 5]

Pe,lod, SSm,r , ωm,r Pe,src [5 15 10 5]

[10 25 25 5] Predictor
Pe,src, Pe,lod, SSm,r , ωm,r Ploss [5 5 5 5]
Tth, Tth − Tth,ext Pth,tran [10 5]
Pe,src, Pe,lod, SSm,r , ωm,r χ̇elec [5 5 5 5]
Tth, Tth,ext, Tth,amb, Tth − Tth,ext χ̇th [5 5 5 5]

Table A11. The cold plate 305(1) neural network configurations.

Input Features Output Features SANN Hidden Layer Size LSTMN Hidden Layer Size Purpose

Ψt f ,src, Tt f ,src, ṁt f ,src Ψt f ,lod [5 15 10 5]

[10 25 25 5] Estimator

Ψt f ,src, Tt f ,src, ṁt f ,src Tt f ,lod [5 15 10 5]
Ψt f ,src, Tt f ,src, ṁt f ,src ṁt f ,lod [5 15 10 5]
ṁt f ,src Pth,tran [5 10 5]
ṁt f ,src Pth,rej [5 10 5]
Tth,batt,Tth,batt − Tth,cp Pth,cond [10 5]
Tth,cp,Tth,cp − Tt f ,src, ṁt f ,src Pth,conv [5 15 10 5]

ωm,r ṁt f ,lod [4 2]

[10 25 25 5] Predictor

ωm,r , Ξ, τon, τo f f φt f ,src − φt f ,lod [5 15 10 5]
Tth,cp, Tth,cp − Tt f ,lod, ωm,r , Ξ, τon, τo f f Pth,conv [5 5 5 5 5]
Ψt f ,src, ωm,r , Ξ, τon, τo f f Ψt f ,src −Ψt f ,lod [5 5 5 5 5]
Tt f ,src, ωm,r , Ξ, τon, τo f f Tt f ,src − Tt f ,lod [5 5 5 5 5]
ωm,r Pth,tran [5 5 5]
ωm,r Pth,rej [5 5 5]
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Table A12. The coolant pump 315(1) neural network configurations.

Input Features Output Features SANN Hidden
Layer Size

LSTMN Hidden
Layer Size Purpose

Ψt f ,src, Tt f ,src, ṁt f ,src Ψt f ,lod [5 15 10 5]

[10 25 25 5] Estimator

Ψt f ,src, Tt f ,src, ṁt f ,src Tt f ,lod [5 15 10 5]
Ψt f ,src, Tt f ,src, ṁt f ,src ṁt f ,lod [5 15 10 5]
ωm,src Pm,src [5 15 10 5]
ωm,src Pth,tran [5 15 10 5]
ωm,src Pth,rej [5 15 10 5]
Tth,batt,Tth,batt − Tth,cp Pth,cond [10 5]
Tth,cp,Tth,cp − Tt f ,src, ṁt f ,src Pth,conv [5 15 10 5]

ωm,r Pm,src [5 15 10 5]

[10 25 25 5] Predictor

ωm,r , Ξ, τon, τo f f φt f ,src − φt f ,lod [5 15 10 5]
ωm,r ṁt f ,lod [5 15 10 5]
Ψt f ,src, ωm,r , Ξ, τon, τo f f Ψt f ,src −Ψt f ,lod [5 25 10 5]
Tt f ,src, ωm,r , Ξ, τon, τo f f Tt f ,src − Tt f ,lod [5 15 10 5]
ωm,r Pth,tran [5 15 10 5]
ωm,r Pth,rej [5 15 10 5]

Table A13. The coolant pump 321(1) neural network configurations.

Input Features Output
Features

SANN Hidden
Layer Size

LSTMN Hidden Layer
Size Purpose

Tth, Tth − Tth,amb Pth,rej [10 5]
[10 25 25 5] Estimator

Tth, Tth,ext, Tth,amb, Tth − Tth,ext χ̇th [5 15 10 5]

Tth, Tth − Tth,amb Pth,rej [10 5]
[10 25 25 5] Predictor

Tth, Tth,ext, Tth,amb, Tth − Tth,ext χ̇th [5 15 10 5]

Table A14. The coolant tank 322(1) neural network configurations.

Input Features Output Features SANN Hidden
Layer Size

LSTMN Hidden
Layer Size Purpose

Ψt f ,src, Tt f ,src, ṁt f ,src Ψt f ,lod [5 15 10 5]

[10 25 25 5] Estimator

Ψt f ,src, Tt f ,src, ṁt f ,src Tt f ,lod [5 15 10 5]
Ψt f ,src, Tt f ,src, ṁt f ,src ṁt f ,lod [5 15 10 5]
Tt f ,lod, Tt f ,lod − Tth,ext Pth,tran [10 5]
Tt f ,lod, Tt f ,lod − Tth,ext Pth,rej [10 5]
Tt f ,lod, Tth,ext, Tth,amb, Tt f ,lod − Tth,ext χ̇th [5 10 15 10 5]

ωm,r Pm,src [5 15 10 5]

[10 25 25 5] Predictor

ωm,r φt f ,src − φt f ,lod [5 15 10 5]
ωm,r ṁt f ,lod [5 10 5]
ωm,r , Ξ, τon, τo f f Ψt f ,src −Ψt f ,lod [25 10 5]
Tt f ,src, ωm,r , Ξ, τon, τo f f Tt f ,src − Tt f ,lod [5 5 5 5]
Tt f ,lod, ωm,r , Ξ, τon, τo f f Psit f ,lod [25 10 5]
Tt f ,lod, Tt f ,lod − Tth,ext Pth,tran [10 5]
Tt f ,lod, Tt f ,lod − Tth,ext Pth,rej [10 5]
Tt f ,lod, Tth,ext, Tth,amb, Tt f ,lod − Tth,ext χ̇th [5 10 15 10 5]

Table A15. The coolant tank 323(1) neural network configurations.

Input Features Output Features SANN Hidden
Layer Size

LSTMN Hidden
Layer Size Purpose

Ψt f ,src, Tt f ,src, ṁt f ,src Ψt f ,lod [10 5]

[10 25 25 5] Estimator

Ψt f ,src, Tt f ,src, ṁt f ,src Tt f ,lod [5 5 5 5]
Ψt f ,src, Tt f ,src, ṁt f ,src ṁt f ,lod [5 15 10 5]
ṁt f ,src Pm,lod [4 2]
ṁt f ,src Pth,tran [5 5 5]
ṁt f ,src Pth,rej [5 5 5]
Tth,ext, Tth,amb χ̇th [5 10 15 10 5]
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Table A15. Cont.

Input Features Output Features SANN Hidden
Layer Size

LSTMN Hidden
Layer Size Purpose

ωm,r Pm,lod [5 15 5]

[10 25 25 5] Predictor

ωm,r φt f ,src − φt f ,lod [5 15 10 5]
ωm,r ṁt f ,lod [5 15 10 5]
Psit f ,src, Ξ, τon, τo f f Ψt f ,src −Ψt f ,lod [25 10 5]
Tt f ,src, ωm,r , Ξ, τon, τo f f Tt f ,src − Tt f ,lod [5 5 5 5]
Tt f ,lod, ωm,r , Ξ, τon, τo f f Psit f ,lod [25 10 5]
ωm,r Pth,tran [5 5 5]
ωm,r Pth,rej [5 5 5]
Tth,ext, Tth,amb χ̇th [5 10 15 10 5]

Table A16. The buck converter 400(1) neural network configurations.

Input Features Output
Features

SANN Hidden
Layer Size

LSTMN Hidden
Layer Size Purpose

Pe,src, Pm,lod Ploss [5 10 15 10 5]

[10 25 25 5] Estimator
Tth, Tth − Tth,ext Pth,tran [10 5]
Pe,src, Pm,lod χ̇mech [5 10 15 10 5]
Pe,src, Pm,lod χ̇elec [5 10 15 10 5]
Tth, Tth,ext, Tth,amb, Tth − Tth,ext χ̇th [5 10 15 10 5]

Pm,lod, Vx,r Pe,src [5 10 15 10 5]

[10 25 25 5] Estimator

Pe,src, Pm,lod, Vx,r Ploss [5 10 15 10 5]
Tth, Tth − Tth,ext Pth,tran [10 5]
Pe,src, Pm,lod, Vx,r χ̇mech [5 10 15 10 5]
Pe,src, Pm,lod, Vx,r χ̇elec [5 10 15 10 5]
Tth, Tth,ext, Tth,amb, Tth − Tth,ext χ̇th [5 10 15 10 5]

Table A17. The buck converter 400(2) neural network configurations.

Input Features Output
Features

SANN Hidden
Layer Size

LSTMN Hidden
Layer Size Purpose

Pe,src, Pm,lod, ωm,lod Ploss [5 10 15 10 5]

[10 25 25 5] Estimator
Tth, Tth − Tth,ext Pth,tran [10 5]
Pe,src, Pm,lod, ωm,lod χ̇mech [5 10 15 10 5]
Pe,src, Pm,lod, ωm,lod χ̇elec [5 10 15 10 5]
Tth, Tth,ext, Tth,amb, Tth − Tth,ext χ̇th [5 10 15 10 5]

Pm,lod, Vx,r Pe,src [5 10 15 10 5]

[10 25 25 5] Estimator

Pe,src, Pm,lod, Vx,r Ploss [5 10 15 10 5]
Tth, Tth − Tth,ext Pth,tran [10 5]
Pe,src, Pm,lod, ωm,r χ̇mech [5 10 15 10 5]
Pe,src, Pm,lod, ωm,r χ̇elec [5 10 15 10 5]
Tth, Tth,ext, Tth,amb, Tth − Tth,ext χ̇th [5 10 15 10 5]

Table A18. The battery’s 502(1) neural network configurations.

Input Features Output
Features

SANN Hidden
Layer Size

LSTMN Hidden
Layer Size Purpose

Plod, Vlod, Ilod Psrc [10 10 10]

[10 25 25 5] Estimator

Psrc,Plod, Vlod, Ilod Ploss [5 5 5]
Tth, Tth − Tth,ext Pth,tran [10 5]
Tth, Tth − Tth,cp Pth,con [10 5]
Psrc, Plod, Vlod, Ilod χ̇elec [5 5 5]
Tth, Tth,ext, Tth,amb,Tth − Tth,ext,Tth,cp χ̇th [5 10 10 10 5]

Plod, Vx,r , Imis,r Psrc [10 10 10]

[10 25 25 5] Predictor

Psrc, Plod, Vx,r , Imis,r Ploss [10 10 10 10 5]
Tth, Tth − Tth,ext Pth,tran [10 5]
Tth, Tth − Tth,cp Pth,con [10 5]
Psrc, Plod, Vx,r , Imis,r χ̇elec [10 10 10 10 5]
Tth, Tth,ext, Tth,amb, Tth − Tth,ext, Tth,cp χ̇th [5 10 10 10 5]
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Appendix B

The intent of this section is to provide an example of how the first law of thermody-
namics (FLT) and second law of thermodynamics (SLT) was used to derive relevant exergy
based principles.

Appendix B.1

This Appendix contains a derivation of the DC Motor/Generator FLT and SLT.
Step 1: We define our electrical-mechanical based components which approximate

a DC spinning machine, and added a lumped parameter thermal model. The resulting
Electrical-Mechanical-Thermal Circuit is provided in Figure A1, the equations are also
provided in Jane et al. [26].

m Cp,avg

Tc Te
Rcond

Χe

.
Χe

.

Χm

.
Χm

.

isrc

Vsrc

L RiL

Jeq Beq

Ke,Kt
τ m,θm

.

Figure A1. Electrical-Mechanical-Thermal Circuit Used for Model DC Motor/Generator.

Step 2: We derive the equations of motion which approximate a DC Motor/Generator
electrical-mechanical system of equations:

L
diL
dt

= Vsrc − il R− Keωm (A1)

Jeq
d2ωm

dt2 = KtiL − Beq
dωm

dt− τlod
(A2)

Step 3: An energy balance is preformed for the electrical-mechanical based system:

Psrc − Plod = Pstr + Ploss (A3)

where
Psrc = VsrciL (A4)
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Plod = τlodωm (A5)

Pstr = L
diL
dt

iL + Jeq
d2ωm

dt2 ωm (A6)

Ploss = χ̇em =

χ̇elec︷︸︸︷
i2LR +

χ̇mech︷ ︸︸ ︷
ω2

mBeq (A7)

There are two loss terms, each of them represents a different exergetic losses for the
DC Motor/Generator that must be overcome to produce sufficient energy to drive the
corresponding load. In the case of the DC Motor/Generator Ploss represents pure exergetic
losses of the system, i.e., the i2LR is the pure exergetic losses (χ̇elec) of the electrical circuit,
where as ω2

mBeq is the pure mechanical exergetic loss (χ̇mech) of the mechanical based
components of the DC Motor/Generator. The aggregate is assumed to be χ̇em. The energy
dissipated by these components represents the unusable energy which we must overcome
to obtain usable energy out of the system, i.e., exergy.

Step 4: The aggregate electrical and mechanical exergetic losses then fuel the lumped
parameter thermal model of the system given by the FLT:

χ̇em = mCp,avgṪc + 2Rcond(Tc − Te) (A8)

where dTc
dt = Ṫc.

Step 5: Because there is a thermal circuit and therefor energy may transfer from the
asset to anther asset, we must also perform an entropy balance (SLT):

χ̇em

Tc
+ Ṡgen =

mCp,avgṪc

Tc
+

2Rcond(Tc − Te)

Tc
(A9)

Substituting in the energy balance (combine FLT and SLT), resulting in:

Ṡgen =
2Rcond(Tc − Te)

2

TcTe
(A10)

Step 6: Thus the thermal exergetic losses is then:

χ̇th = ToṠgen (A11)

The χ̇th exergetic losses is a direct result of heat being allowed to flow and the fact
that there is a temperature difference. If Tc = Te = To then there is no additional exergetic
losses for the system. Any thermal variation will subsequently lead to some type of
destroyed exergy.
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