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Abstract: The relationships between crude oil prices and exchange rates have always been of interest
to academics and policy analysts. There are theoretical transmission channels that justify such links;
however, the empirical evidence is not clear. Most of the studies on causal relationships in this area
have been restricted to a linear framework, which can omit important properties of the investigated
dependencies that could be exploited for forecasting purposes. Based on the nonlinear Granger
causality tests, we found strong bidirectional causal relations between crude oil prices and two
currency pairs: EUR/USD, GBP/USD, and weaker between crude oil prices and JPY/USD. We
showed that the significance of these relations has changed in recent years. We also made an attempt
to find an effective strategy to forecast crude oil prices using the investigated exchange rates as
regressors and vice versa. To this aim, we applied Support Vector Regression (SVR)—the machine
learning method of time series modeling and forecasting.

Keywords: crude oil prices; exchange rates; nonlinear causality; forecasting; support vector regres-
sion; machine learning

1. Introduction

The crucial role of crude oil in the world economy has implied a discussion on links
between oil prices and other macroeconomic and financial variables. Both theoretical and
empirical research have pointed out some sources and potential consequences of these
links (cf. [1]). It has been noticed that one of the most important factors connected with
crude oil prices is exchange rates. The relation between oil prices and exchange rates
has always been of interest to academics and policy analysts. Theory indicates various
mechanisms which explain this relationship. They refer not only to direct ways how
both variables affect each other but also to indirect transmission channels referring to
specific macroeconomic or financial factors [2]. It should be noted that both directions
of causation are well-founded. On the one hand, crude oil prices affect exchange rates.
Crude oil is the most important source of energy in the world, and its price does not offer a
substantial arbitrage opportunities. On the other hand, exchange rate connects the internal
and external economies, hence in market-oriented and open economies crude oil prices
exert on exchange rates [3]. More specifically, three direct transmission channels of oil
prices to exchange rates can be indicated: the terms of the trade channel, the wealth effect
channel, and the portfolio reallocation channel [4]. On the other hand, reverse causality
from exchange rates to crude oil prices is also theoretically motivated. The main reason
for this fact is that oil prices are denominated in USD. An appreciation of the U.S. dollar
increases the price of oil in domestic currencies for countries besides the U.S., which directly
affects the oil supply and demand. Moreover, exchange rates can also affect oil prices
directly through financial markets or indirectly via other financial assets, and through
portfolio rebalancing and hedging practices in particular [5].

The relationships between crude oil prices and exchange rates have been the topic of a
rapidly growing body of empirical literature over the past two decades (cf. [1,3,6–9]). The
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general literature on this issue can be divided into four main research areas: links between
exchange rates and imported crude oil prices, causality analysis, variance decomposition
and impulse response, and the influence of crisis [7]. The obtained results showed that
the relations between crude oil prices and exchange rates can differ in time length. Many
studies found long-run connections between oil prices and exchange rates. There is also
much weaker evidence for short-run linkages and spillovers between both variables at
daily and monthly frequencies (cf. [1,3]). Moreover, it has been shown that the detected
relationships are time-varying, which can be the effect of their nonlinear or asymmetric
mechanism [3].

The main purpose of our paper was to test for bidirectional Granger causality between
crude oil prices and selected exchange rates, namely, EUR/USD, GBP/USD, and JPY/USD,
and to analyze its stability. In econometrics, Granger causality is one of the most popular
concepts of causality. It provides not only a strong insight into the mechanism of the
relationships, but most of all indicates the potential ability to predict investigated time
series. In the economic literature, Granger causality is usually tested in the framework of
linear dependencies, represented by VAR models (cf. [10]). In particular, linear Granger
causality between crude oil prices and exchange rates has been studied by [2,7,9,11–16].
The obtained results are not so clear on the direction of the causal relationship between
these two variables; however, some authors found evidence for bidirectional causality
(see [1,9]). On the other hand, it has been generally noted that the linear approach is not
sufficient in the case of nonlinear relations (e.g., [17–19]). Many studies have confirmed
the nonlinear dynamics of financial and economic systems, which indicates the need for
including nonlinear causality tests in studies. Otherwise, one can omit important properties
of the investigated dependencies that could be exploited for forecasting purposes (cf. [10]).
The nonlinear analysis of the relationships between crude oil prices and exchange rates
has been performed much more rarely than the linear one, but the obtained results show
that it can give a better insight into the mechanism of the investigated dependencies
(e.g., [8,20–24]). It has been argued that the nonlinear causality behavior between oil prices
and exchange rates can be explained by asymmetric responses of economic activity to oil
price shocks [25–27], the negative effects of oil price uncertainty on economic activity [28],
structural breaks, persistence and discontinuity in the adjustment (cf. [21]).

For these reasons, in our study, we tested for nonlinear causality, using two nonlinear
causality tests, introduced by Hiemstra and Jones [18] and Diks and Panchenko [29].
Moreover, we divided the analyzed period into two subperiods in order to verify if the
existing causalities were stable over time.

It has been concluded in the literature that the frequent finding that exchange rates
and oil prices move together (especially over the long-run) does not necessarily imply
that one is useful when forecasting the other. The reason is that past relationships do
not necessarily hold in the future and the link between in-sample and out-of-sample is
often rather weak [1]. That is why the purpose of our study was not limited only to
detecting causality between the investigated series, but additionally to make an attempt to
exploit these relations for effective forecasting. As the predictor, we applied Support Vector
Regression (SVR)—the machine learning method of time series modeling and forecasting.
In recent years, specific machine learning techniques have been successfully applied for
forecasting purposes. They are data-driven, self-adaptive methods requiring very few
assumptions concerning the investigated data. The support vector regression model [30]
is based on the support vector machine method [31], which was originally introduced
to solve classification problems. It is designed to have a good power of generalization
and an overall stable behavior, which implies a good out-of-sample performance. Many
studies in the literature have shown that SVR models can give more accurate forecasts than
alternative machine learning methods and can be successfully used to forecast financial
time series, such as stock indices, stock prices, future contracts, or exchange rates (see,
e.g., [32–35]). SVR and SVR-based models have also been applied to forecast crude oil
prices [36–41] or exchange rates [42–46]. However, it should be noted that most of these
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models were autoregressive. In particular, to the best of our knowledge, there has not been
an attempt to incorporate crude oil prices and exchange rates jointly to the SVR model,
using one of these variables as the regressor for the second one. In our study, we construct
and analyzed such SVR models to verify if potential predictability (ensured by the existence
of Granger causality) really can result in more accurate forecasts.

The paper has three main contributions:

• First, we found strong nonlinear causal relationships between crude oil prices and
most investigated exchange rates;

• Second, we showed that the significance of the detected relationships has changed in
recent years;

• Third, we applied SVR models of different kernels and regressors to verify if it is
possible to exploit the detected relationships for effective forecasting.

The rest of the paper is organized in the following way. In Section 2, we introduce data
and describe the applied methods. Section 3 provides the results of our research. Finally, in
the last section, we discuss and conclude our findings.

2. Materials and Methods
2.1. Data

Our dataset consisted of the Brent spot prices’ FOB (published by the United States
Energy Information Administration (EIA)) and the exchange rates of three most heavily
traded currency pairs in the forex market, namely EUR/USD, GBP/USD, and JPY/USD.
We analyzed the daily data from 3 January 2011 to 31 December 2020. However, in order to
verify if the existing causalities were stable over time, we divided the analyzed period into
two separate subperiods. For comparison purposes (i.e., to preserve the same power of
the applied tests), we considered two subperiods of the same length—from 3 January 2011
to 31 December 2015 (Period 1) and from 4 January 2016 to 31 December 2020 (Period 2).
All data were transformed to log returns using the formula rt = 100 ln(pt/pt−1), where pt
is the price at time t. The investigated time series are presented in Figure 1. One can see
differences between both subperiods under study. There was a strong decline in crude oil
prices at the end of Period 1, which was the effect of the decisions of the U.S. and OPEC
countries to increase production, resulting in oversupply of crude oil compared to demand.
The crude oil prices were stabilized at clearly lower levels in Period 2. On the other hand,
the plot for daily log returns showed that the volatility of crude oil prices increased in
Period 2. This conclusion is confirmed by the descriptive statistics in Table 1.

For all investigated series, the calculated means were negative in the whole period and
in Period 1. Other statistics showed noticeable differences between crude oil and exchange
rates; crude oil proved to be much more volatile than the exchange rates (especially in
Period 2). As a consequence, it was characterized by the highest absolute values of the
minimum and maximum returns and a very high standard deviation. Moreover, the
distribution of crude oil returns exhibited the strongest skewness (except Period 1) and the
highest kurtosis. According to the results of the Ljung–Box test, only the returns for crude
oil were autocorrelated.
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Table 1. Descriptive statistics of the investigated returns.

Mean Min Max SD Skew Kurt LB(10)

3 January 2011–31 December 2020

Crude oil −0.024 −64.370 41.202 2.920 −3.270 121.79 0.000
EUR/USD −0.002 −2.948 2.962 0.526 −0.087 2.123 0.382
GBP/USD −0.005 −9.505 3.130 0.572 −1.809 31.663 0.263
JPY/USD −0.009 −3.466 4.136 0.564 0.113 5.298 0.655

3 January 2011–31 December 2015 (Period 1)

Crude oil −0.074 −8.245 8.508 1.696 −0.062 3.175 0.051
EUR/USD −0.015 −2.230 2.962 0.595 −0.012 1.524 0.485
GBP/USD −0.003 −1.649 1.490 0.462 −0.085 0.562 0.250
JPY/USD −0.031 −3.466 3.032 0.577 −0.221 4.110 0.402

4 January 2016–31 December 2020 (Period 2)

Crude oil 0.026 −64.370 41.202 3.756 −3.081 87.576 0.000
EUR/USD 0.010 −2.948 1.803 0.448 −0.186 2.507 0.718
GBP/USD −0.007 −9.505 3.130 0.664 −2.271 34.228 0.339
JPY/USD 0.013 −2.653 4.136 0.551 0.503 6.583 0.244

Note: Mean denotes the arithmetic mean, Min—minimum, Max—maximum, SD—standard deviation,
Skew—skewness, Kurt-excess kurtosis, LB(10)—the p-value of the Ljung–Box test for autocorrelation (with
10 lags).

2.2. Nonlinear Causality Tests

The most general definition of Granger causality is formulated in terms of conditional
probability distributions [47]. It states that Xt does not Granger-cause Yt if:

F(Yt|(Xt−1, Xt−2, . . . ; Yt−1, Yt−2, . . .) ) = F(Yt|(Yt−1, Yt−2, . . .) ), (1)

where (Xt, Yt) is a strictly stationary bivariate stochastic process and F denotes the condi-
tional cumulative distribution function. According to the definition, when Equation (1) is
not satisfied, we say that Xt is a Granger cause of Yt (denoted: X→Y).

In causality testing, it is assumed that the lags of the processes Xt and Yt are finite;
hence, the null hypothesis of noncausality is expressed by the formula:

F
(

Yt

∣∣∣(Xt−1, . . . , Xt−lx; Yt−1, . . . , Yt−ly

))
= F

(
Yt

∣∣∣(Yt−1, . . . , Yt−ly

))
(2)

for given lx ≥ 1, ly ≥ 1. It is convenient to reformulate Condition (2) using the lagged

vectors of Xt and Yt, i.e.,
ˆ
X

lx

t = (Xt, Xt−1 , . . . , Xt−lx+1) and Ŷly
t =

(
Yt, Yt−1 , . . . , Yt−ly+1

)
.

In this notation, it takes the form:

F
(

Yt

∣∣∣(X̂lx
t−1, Ŷly

t−1

))
= F

(
Yt

∣∣∣Ŷly
t−1

)
. (3)

Due to its generality, Equation (3) is not easy to verify in practice. Therefore, it is often
reduced to the equality of the means of both conditional distributions and considered in the
linear framework using VAR models. However, this approach has low power against many
nonlinear alternatives. For this reason, Baek and Brock [17] introduced the alternative
definition and the test for nonlinear Granger causality, using the correlation integrals.
Formally, for a multivariate random vector W, the associated correlation integral CW(ε) is
the probability of finding two independent realizations of the vector at a distance smaller
than (or equal to) ε, i.e.,

CW(ε) = P
{
‖
−
W− W̃ ‖< ε

}
=
∫ ∫

Iε(s1, s2) fW(s1) fW(s2)ds2ds1, (4)
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where
−
W, W̃ are independent copies of W, ‖ . ‖ is the supremum norm, and Iε(s1, s2)

denotes the indicator function that equals 1 when s1 and s2 are within the supremum-norm
distance ε of each other, and 0 otherwise. In the concept of Baek and Brock, Xt does not
nonlinearly Granger-cause Yt if:

P
{
‖ Yt −Ys ‖< ε

∣∣∣(‖ Ŷly
t−1 − Ŷly

s−1 ‖< ε, ‖ X̂lx
t−1 − X̂lx

s−1 ‖< ε
)}

= P
{
‖ Yt −Ys ‖< ε

∣∣∣‖ Ŷly
t−1 − Ŷly

s−1 ‖ < ε
}

. (5)

Equation (5) states that the conditional probability that Yt and Ys are within the
distance ε, given that the corresponding lagged vectors Ŷly

t−1 and Ŷly
s−1 are ε-close, remains

the same as when, in addition, one also conditions on the vectors
ˆ
X

lx

t−1 and
ˆ
X

lx

s−1 being
ε-close. This means that lx lags of Xt do not incrementally help to predict the next period’s
value of Yt, given ly lags of Yt.

Note that based on the definition of the conditional probability, the null hypothesis of
Granger nonlinear noncausality given by (5) may be expressed as follows:

C1
C2

=
C3
C4

, (6)

where C1, C2, C3, and C4 are the correlation integrals of the form:

C1 = P
{
‖ Ŷly+1

t − Ŷly+1
s ‖< ε, ‖ X̂lx

t−1 − X̂lx
s−1 ‖< ε

}
, (7)

C2 = P
{
‖ Ŷly

t−1 − Ŷly
s−1 ‖< ε, ‖ X̂lx

t−1 − X̂lx
s−1 ‖< ε

}
, (8)

C3 = P
{
‖ Ŷly+1

t − Ŷly+1
s ‖< ε

}
, (9)

C4 = P
{
‖ Ŷly

t−1 − Ŷly
s−1 ‖< ε

}
. (10)

Given time series xt and yt of n realizations on Xt and Yt, Equation (6) is verified using
the estimators of the correlation integrals (7)–(10):

C1(N) =
2

N(N − 1) ∑ ∑
t<s

Iε(ŷ
ly+1
t , ŷly+1

s )Iε

(
x̂lx

t−1, x̂lx
s−1

)
, (11)

C2(N) =
2

N(N − 1) ∑ ∑
t<s

Iε(ŷ
ly
t−1, ŷly

s−1)Iε

(
x̂lx

t−1, x̂lx
s−1

)
, (12)

C3(N) =
2

N(N − 1) ∑ ∑
t<s

Iε(ŷ
ly+1
t , ŷly+1

s ), (13)

C4(N) =
2

N(N − 1) ∑ ∑
t<s

Iε(ŷ
ly
t−1, ŷly

s−1), (14)

where t, s = max(lx, ly) + 1, . . . , n, N = n−max(lx, ly).
Hiemstra and Jones [18] modified the test introduced by Baek and Brock by relaxing

its assumptions. According to their testing procedure (H-J test), for the given values of
lx ≥ 1, ly ≥ 1, and ε > 0, under the assumptions that Xt and Yt are strictly stationary,
weakly dependent, and satisfy the mixing conditions of Denker and Keller [48], if Xt does
not strictly Granger-cause Yt then:

√
N
(

C1(N)

C2(N)
− C3(N)

C4(N)

)
∼ N

(
0, σ2(lx, ly, ε)

)
, (15)

where the definition and the estimator of σ2(lx, ly, ε) were given in the Appendix of
Hiemstra and Jones [18].
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It was noted by Diks and Panchenko [49] that the H-J test is not fully compatible
with the definition of Granger causality; hence, it may lead to over-rejection of the null
hypothesis of noncausality. Therefore, they proposed an alternative test (D-P test) which
overcomes these inadequacies [29]. Their test statistics takes the form:

TN(ε) =
(2ε)−lx−2ly−1

N(N − 1)(N − 2) ∑
i

[
∑
k 6=i

∑
j 6=i

(
IXYZ
ik IY

ij − IXY
ik IYZ

ij

)]
, (16)

where IW
ij = Iε

(
Wi, Wj

)
and XYZ =

(
X̂lx

t−1, Ŷly
t−1, Yt

)
. In the case of lx = ly = 1, Diks and

Panchenko proved that their test statistics is asymptotically distributed as standard normal
and diverges to positive infinity.

It should be noted that the value of the test statistics in both the H-J and D-P tests
depends on the parameters lx, ly, and ε. In practice, lags lx = ly = 1, 2, . . . , lmax are
considered, where lmax is a fixed natural number. In the studies presented in the literature,
the value of a distance measure ε between 0.5 and 1.5 is recommended for consideration
(cf. [18,29,50]).

2.3. Support Vector Regression

Consider the regression model:

y = r(x) + δ, (17)

where r(x) is the unknown regression function, y is the dependent variable, x is the vector
of explanatory variables, and δ is an additive zero-mean noise with variance σ2. The
general purpose of SVR is to use a training dataset {(xt, yt)}t=1,...n to approximate r(x)
by a function f (x), which has, at most, ε deviation from the outputs yt and is as flat as
possible [51]. To construct the SVR function f (x), the vectors x are mapped onto a high-
dimensional space using some specific nonlinear transformation, and next, the coefficients
of the linear model:

f (x) =
d

∑
i=1

ωi ϕi(x) + b (18)

are estimated, where d is the space dimension, ϕi(x) are the transformation functions, ωi
denote the model coefficients, and b is the bias term [52,53]. In order to estimate ωi and b,
the ε-insensitive loss function:

Lε(y, f (x)) =
{

0, |y− f (x)| ≤ ε,
|y− f (x)| − ε, otherwise

(19)

has been proposed [31]. By its construction, Lε does not penalize errors below some ε > 0,
chosen a priori. This means that training points within the ε-margin have no loss; hence,
only points located outside the ε-margin are used as the support vectors to estimate the
model. However, the accuracy of the approximation (measured by the function Lε) is not
the only postulate taken into account in SVR. Besides it, SVR tries to reduce the model
complexity by minimizing the formula ‖ω ‖2 =ωTω, whereω = (ω1, ω2, . . . , ωd)

T . In
many cases, it is not possible to approximate all observations in the training set with an
error below ε (cf. [54]). Therefore, in order to allow for greater errors, one incorporates
nonnegative slack variables ξt and ξ∗t , which represent the upper and lower constraints, s.t.:

yt − f (xt) ≤ ε + ξ∗t , (20)

f (xt)− yt ≤ ε + ξt, (21)
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for all t = 1, 2, . . . , n. Finally, the function f (x) is indicated as the minimum of the functional:

Φ(ω,ξ) =
1
2
‖ω ‖2 + C

n

∑
t=1

(ξt + ξ∗t ), (22)

where C is some prespecified positive value (cf. [55]). The first term of Φ(ω,ξ) penalizes
large coefficients ωi in order to maintain the flatness of the function f (x), whereas the
second one penalizes training errors by using the ε-insensitive loss function [56]. The
hyperparameter C helps to prevent overfitting by determining the penalty imposed on
data that lie outside the ε-tube.

However, the minimization problem above can be simplified by considering a corre-
sponding dual problem, where the solution is given by:

f (x) =
nSV

∑
t=1

(αt − α∗t )K(xt, x), s.t. 0 ≤ αt ≤ C, 0 ≤ α∗t ≤ C, (23)

where αt and α∗t denote the Lagrange multipliers, nSV is the number of support vectors,
and K is the kernel function of the form:

K(xt, x) =
d

∑
i=1

ϕi(x)ϕi(xt). (24)

In practical applications, the following kernel functions are the most popular:

• Linear: K(xt, x) = xt
Tx;

• Radial Basis Function (RBF): K(xt, x) = exp
(
−γ ‖ xt − x ‖2

)
;

• Polynomial: K(xt, x) =
(
1 + xt

Tx
)p; p = 2, 3, . . .

3. Results
3.1. Nonlinear Granger Causality Testing

We tested for nonlinear Granger causality by applying the H-J and D-P tests. Eight
values of lags: lx = ly = 1, 2, . . . , 8 and two distance measures ε = 1 and ε = 1.5 were
used. We analyzed two directions of causality—from crude oil to exchange rates and vice
versa—and two subperiods—Period 1 and Period 2.

The obtained results are summarized in Tables 2–4. Each cell in the table contains
p-values of both tests. We bolded the values smaller than 0.05, indicating the rejection of
the null hypothesis of noncausality.

In Period 1 we found strong bidirectional causalities between crude oil and two
currency pairs: EUR/USD and GBP/USD. The relations between crude oil and JPY/USD
in this period were less evident, since they were detected only for the distance measure
ε = 1. Moreover, causality from crude oil to JPY/USD was detected only by the H-J test.

Different results were obtained for Period 2. First of all, one can see the lack of
causality between EUR/USD and crude oil (in both directions). Additionally, the results for
GBP/USD and crude oil were not so univocal as in Period 1. Although the final conclusions
in this case were the same (i.e., bidirectional causalities were detected), one can see that only
some value of the lags applied in the testing procedure led to rejection of the null hypothesis.
In the case of the relation between crude oil and JPY/USD, the results also changed in
comparison to Period 1. First, the p-values for the direction JPY/USD→Brent clearly
decreased, strongly confirming this causality. Additionally, the results for the opposite
direction (Brent→JPY/USD) were also slightly different than before. Both conducted tests
led to the same conclusion, confirming the existence of causality; however, this conclusion
was derived only from small values of lags (lx = ly = 1), which suggests that the JPY/USD
exchange rate reacted to changes in crude oil prices much faster than before.
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Table 2. Results of nonlinear Granger causality testing for crude oil and EUR/USD.

ε Test
Number of Lags lx = ly

1 2 3 4 5 6 7 8

Brent→EUR/USD (Period 1)

1
H-J 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
D-P 0.0001 0.0000 0.0004 0.0022 0.0039 0.0055 0.0170 0.0257

1.5
H-J 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
D-P 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002

Brent→EUR/USD (Period 2)

1
H-J 0.1128 0.3092 0.1869 0.3024 0.3411 0.1714 0.1495 0.1228
D-P 0.1183 0.3502 0.2668 0.4334 0.5253 0.2647 0.3567 0.2685

1.5
H-J 0.0724 0.2511 0.1410 0.2270 0.2121 0.2871 0.2542 0.2738
D-P 0.0737 0.2548 0.1481 0.2267 0.2526 0.3231 0.2894 0.2821

EUR/USD→Brent(Period 1)

1
H-J 0.0017 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
D-P 0.0028 0.0000 0.0015 0.0013 0.0031 0.0192 0.0175 0.0175

1.5
H-J 0.0242 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
D-P 0.0240 0.0001 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003

EUR/USD→Brent(Period 2)

1
H-J 0.2438 0.0659 0.2864 0.3981 0.6039 0.4586 0.5040 0.4584
D-P 0.2785 0.0811 0.3206 0.4528 0.5708 0.4194 0.5161 0.4944

1.5
H-J 0.0812 0.0564 0.3510 0.2544 0.4281 0.3952 0.4743 0.5211
D-P 0.0798 0.0665 0.3918 0.2936 0.4838 0.4705 0.5652 0.5735

Table 3. Results of nonlinear Granger causality testing for crude oil and GBP/USD.

ε Test
Number of Lags lx = ly

1 2 3 4 5 6 7 8

Brent→GBP/USD (Period 1)

1
H-J 0.0154 0.0017 0.0006 0.0000 0.0000 0.0002 0.0003 0.0089
D-P 0.0200 0.0059 0.0079 0.0064 0.0138 0.0290 0.0474 0.1421

1.5
H-J 0.1482 0.0029 0.0026 0.0000 0.0000 0.0000 0.0000 0.0000
D-P 0.1692 0.0047 0.0069 0.0012 0.0009 0.0003 0.0002 0.0009

Brent→GBP/USD (Period 2)

1
H-J 0.0132 0.2492 0.1748 0.0290 0.0134 0.0075 0.0130 0.0657
D-P 0.0154 0.3152 0.2010 0.0493 0.0344 0.0410 0.0453 0.1207

1.5
H-J 0.0047 0.0308 0.0162 0.0023 0.0015 0.0005 0.0003 0.0006
D-P 0.0046 0.0399 0.0192 0.0028 0.0023 0.0012 0.0008 0.0020

GBP/USD→Brent(Period 1)

1
H-J 0.0477 0.0017 0.0030 0.0007 0.0014 0.0079 0.0140 0.0206
D-P 0.0574 0.0041 0.0130 0.0166 0.0339 0.0544 0.0562 0.0785

1.5
H-J 0.0669 0.0026 0.0087 0.0006 0.0012 0.0033 0.0061 0.0029
D-P 0.0716 0.0027 0.0129 0.0035 0.0069 0.0163 0.0235 0.0149

GBP/USD→Brent(Period 2)

1
H-J 0.0186 0.1343 0.5399 0.1944 0.1731 0.1291 0.0985 0.1465
D-P 0.0212 0.1805 0.5493 0.2012 0.1657 0.1406 0.1829 0.2603

1.5
H-J 0.0315 0.0628 0.4332 0.1904 0.2265 0.1261 0.0164 0.0104
D-P 0.0311 0.0644 0.4081 0.1787 0.2515 0.1579 0.0269 0.0181
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Table 4. Results of nonlinear Granger causality testing for crude oil and JPY/USD.

ε Test
Number of Lags lx = ly

1 2 3 4 5 6 7 8

Brent→JPY/USD (Period 1)

1
H-J 0.3999 0.3858 0.6696 0.3276 0.2312 0.0538 0.0321 0.0092
D-P 0.4608 0.3947 0.6248 0.2041 0.2074 0.1337 0.0980 0.0925

1.5
H-J 0.5198 0.6875 0.8965 0.9217 0.9594 0.8297 0.5170 0.3306
D-P 0.5192 0.7003 0.9109 0.9355 0.9686 0.8229 0.4534 0.3344

Brent→JPY/USD (Period 2)

1
H-J 0.0405 0.3544 0.3852 0.4075 0.3559 0.4972 0.7010 0.7573
D-P 0.0579 0.4407 0.5160 0.5377 0.4822 0.5730 0.6791 0.6939

1.5
H-J 0.0293 0.2695 0.2326 0.1326 0.1741 0.3503 0.5965 0.5193
D-P 0.0328 0.3097 0.2666 0.1528 0.2097 0.3706 0.6288 0.5560

JPY/USD→Brent(Period 1)

1
H-J 0.5404 0.7095 0.5646 0.1271 0.0053 0.0042 0.0066 0.0039
D-P 0.5813 0.6788 0.4553 0.1219 0.0326 0.0267 0.0437 0.0567

1.5
H-J 0.5028 0.8275 0.8776 0.5392 0.3383 0.3392 0.2614 0.1260

D-P 0.5102 0.8482 0.8728 0.4764 0.2832 0.2534 0.1995 0.1070

JPY/USD→Brent(Period 2)

1
H-J 0.0133 0.0027 0.0136 0.1000 0.2297 0.4628 0.2631 0.1618
D-P 0.0192 0.0049 0.0242 0.1400 0.2772 0.4756 0.2513 0.1392

1.5
H-J 0.0042 0.0004 0.0002 0.0008 0.0034 0.0129 0.0141 0.0142
D-P 0.0037 0.0003 0.0002 0.0006 0.0034 0.0160 0.0207 0.0239

3.2. Forecasting

The results of nonlinear causality testing showed that most of the investigated series
were linked by causal relationships. This means that there is a potential possibility to use
lagged crude oil returns as the regressor for the exchange rates’ returns and vice versa.
However, the crucial question is if it is really feasible to find a forecasting method that can
exploit these potential possibilities to generate accurate forecasts. It should be noted that
both tests for nonlinear Granger causality applied in the study are nonparametric, which
means that they test the null hypothesis of noncausality against an unspecified alternative.
This fact is beneficial since it allows detecting causal relations of a different type—linear
and nonlinear ones. On the other hand, a shortcoming of this approach is that the rejection
of the null hypothesis gives no information about the functional form of the model that
can be used to exploit the detected relationship for forecasting purposes [10]. However,
there are many forecasting techniques that do not impose assumptions about the form of
the modeling dependencies and, as a consequence, are flexible with respect to different
types of dependencies, including nonlinear ones. It has been shown that SVR satisfies
these requirements, combining the training efficiency and simplicity of linear methods
with the prediction accuracy of the best nonlinear algorithms. Moreover, SVR copes with
high-dimensional or incomplete data and is robust to outliers [40,57,58].

In our study, we applied two alternative approaches to the SVR models’ specification.
In the first one, we used only lagged dependent variables as the regressors, which means
that the constructed models are autoregressive, i.e.,:

yt+1 = f
(

yt, yt−1, . . . , yt−ly+1

)
, (25)
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where ly is the lag length. In the second approach, we additionally incorporated the second
lagged variable as the regressor:

yt+1 = f
(

yt, yt−1, . . . , yt−ly+1, xt, xt−1, . . . , xt−lx+1

)
, (26)

where lx and ly are the lag lengths. This means that if the dependent variable y denotes
the crude oil returns, then x denotes the exchange rates’ returns and vice versa. According
to the purpose of our study, we intended to assess if the extended model of the form (26)
outperformed the autoregressive model (25) in terms of its predictive power.

We determined the lag lengths lx and ly in the SVR models based on the results of
the nonlinear causality tests presented in Tables 2–4 (assuming lx = ly as in the applied
tests). For a better comparison, we decided to choose the same lag for Period 1 and Period
2 (separately for each modeled relationship). In the autoregressive model (25), we used
the same ly as in the corresponding model (26). The chosen lag lengths are summarized in
Table 5.

Table 5. Lag lengths in the constructed SVR models.

Modeled Relationship lx = ly

Brent→EUR/USD 3
EUR/USD→Brent 2
Brent→GBP/USD 6
GBP/USD→Brent 8
Brent→JPY/USD 8
JPY/USD→Brent 8

Before estimating the SVR models, the regressors were standardized, i.e., centered by
subtracting their mean and divided by the standard deviation. The kernel and the values
of the model hyperparameters ε, C (and γ in case of the RBF kernel) must be specified
before estimation as well. In the study, we constructed the SVR models with two different
kernels: the linear and RBF ones. There are competitive propositions in the literature of
how to tune the hyperparameters in SVR models (e.g., [52,59–61]), but previous studies did
not prove the convincing superiority of any of them. To this purpose, we applied Bayesian
optimization, which is a method for performing global optimization of unknown “black
box” objectives and is particularly appropriate when objective function evaluations are
expensive (in any sense, such as time or money [62]).

Finally, for each investigated pair of time series, we considered four variants of the
SVR models:

1. The autoregressive model of type (25) with the linear kernel (SVR_ar_lin);
2. The autoregressive model of type (25) with the RBF kernel (SVR_ar_rbf);
3. The extended model of type (26) with the linear kernel (SVR_reg_lin);
4. The extended model of type (26) with the RBF kernel (SVR_reg_rbf).

To estimate the SVR models, we used a rolling window in the following way. For
the starting three-year sample (i.e., from 3 January 2011 to 31 December 2013 for Period 1,
and from 4 January 2016 to 31 December 2018 for Period 2), we estimated the models and
calculated one-day-ahead forecasts. Consecutively, we changed the estimation sample by
adding one new observation while removing the oldest one. For each estimation sample,
we determined the optimal hyperparameters ε, C, and γ, re-estimated the models, and
forecasted. We repeated this procedure until we obtained forecasts for the whole two-year
period (i.e., from 2 January 2014 to 31 December 2015 for Period 1 and from 2 January 2019
to 31 December 2020 for Period 2).
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In order to assess the predictive power of the models, two primary measures of the
forecasts’ accuracy, namely the Mean Squared Error (MSE) and the Mean Absolute Error
(MAE), were applied. They are defined as:

MSE =
1
T

T

∑
t=1

(
yt − y f ,t

)2
,

MAE =
1
T

T

∑
t=1

∣∣∣yt − y f ,t

∣∣∣
where y f ,t is the forecast of yt at time t and T is the number of forecasts. As the benchmarks,
we applied the white noise models, where the forecasts y f ,t were calculated as the mean of
the observations from the previous three-year sample (used to estimate the corresponding
SVR models). The obtained results are given in Table 6. For each modeled relationship
(and each period), the smallest values of the MAE and MSE are bolded.

Table 6. Accuracy measures of the forecasts from the constructed SVR models.

Modeled Relation Period

Model

WN SVR_ar_lin SVR_ar_rbf SVR_reg_lin SVR_reg_rbf

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

Brent→EUR/USD
Period 1 0.430 0.352 0.434 0.363 0.431 0.352 0.431 0.353 0.431 0.353

Period 2 0.304 0.162 0.308 0.164 0.303 0.161 0.313 0.180 0.303 0.161

EUR/USD→Brent
Period 1 1.353 3.924 1.359 3.943 1.359 3.943 1.359 3.943 1.359 3.943

Period 2 2.512 27.948 2.513 27.616 2.501 27.749 2.519 28.540 2.515 27.934

Brent→GBP/USD
Period 1 0.332 0.202 0.332 0.203 0.331 0.202 0.345 0.217 0.331 0.202

Period 2 0.453 0.389 0.452 0.389 0.453 0.388 0.466 0.450 0.455 0.391

GBP/USD→Brent
Period 1 1.353 3.924 1.360 3.972 1.361 3.929 1.371 4.041 1.361 3.958

Period 2 2.512 27.948 2.526 27.925 2.529 28.096 2.558 29.170 2.518 27.987

Brent→JPY/USD
Period 1 0.358 0.250 0.360 0.256 0.360 0.252 0.368 0.269 0.359 0.251

Period 2 0.303 0.221 0.326 0.341 0.305 0.222 0.323 0.264 0.304 0.222

JPY/USD→Brent
Period 1 1.353 3.924 1.369 3.997 1.353 3.933 1.358 3.962 1.356 3.944

Period 2 2.512 27.948 2.504 27.846 2.717 41.748 2.513 27.834 2.599 30.809

The results showed that the constructed SVR models did not differ significantly from
each other in terms of the forecasts’ accuracy. What is most important is that the results did
not support the hypothesis that extended SVR models outperform the autoregressive ones.
This means that lagged crude oil returns used as regressors do not help to calculate more
accurate forecasts of the exchange rates’ returns and vice versa. Moreover, we showed
that none of the applied kernels had an advantage over the second one. Finally, the
results implied that the constructed SVR models do not outperform the benchmark white
noise model.

4. Discussion

In our study, we tested for bidirectional causal relationships between crude oil prices
(Brent spot prices’ FOB) and the most important exchange rates (EUR/USD, GBP/USD,
and JPY/USD). To this purpose we applied two tests for nonlinear Granger causality,
introduced by Hiemstra and Jones and Diks and Panchenko. In order to analyze stability
of the investigated relations, we divided the analyzed period into two subperiods: Period
1—from 3 January 2011 to 31 December 2015 and Period 2—from 4 January 2016 to 31 De-
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cember 2020. Due to the fact that we analyzed daily data, our study was concentrated on
short-term relationships.

We found that most of the investigated series were linked by causal relationships.
However, our study revealed some differences between both analyzed subperiods. Gener-
ally, EUR/USD and GBP/USD proved to be more strongly related to crude oil in the earlier
period (Period 1) than in the later one (Period 2). One can even see that the bidirectional
causality between EUR/USD and crude oil, which was strongly indicated by both tests
in Period 1, vanished in Period 2. Moreover, in Period 1, JPY/USD was linked to crude
oil (in both directions) much more weakly than EUR/USD and GBP/USD. However, the
opposite situation took place in Period 2, where the unidirectional causality from JPY/USD
to crude oil was stronger in comparison to both other currency pairs.

There are many empirical studies concentrating on the detection of causality between
crude oil price and exchange rates, and their results are mixed [21]. The inclusiveness of the
causation between exchange rates and oil price may depend on the choice of the exchange
rate measure, the time-varying causality patterns, or others [7]. Moreover, it should
be noted that most of previous investigations have been restricted to linear framework,
ignoring the possible nonlinear behaviors, which may be caused by asymmetry, persistence,
or structural breaks [21]. The nonlinear Granger causality tests were applied to detect the
relationships between crude oil price and exchange rates by [8,22–24,63]. The results of
these studies were also mixed. Bayat et al. [63] analyzed three transition countries, namely
the Czech Republic, Hungary, and Poland. Based on the D-P test, they found that neither
oil price shocks, nor exchange rate fluctuations affect each other. This conclusion was
confirmed by Drachal [22], who also applied the D-P test to CEE countries, namely the
Czech Republic, Hungary, Poland, Romania, and Serbia, and found no causal relations
between the exchange rates and oil prices. According to the results of the H-J and D-P
tests, Wen et al. [8], pointed out sufficient statistical evidence in favor of nonlinear Granger
causality from the crude oil prices to the USD exchange rate and much weaker for causation
in the opposite direction. Kumar [23] tested for causality between oil prices and exchange
rate in the Indian context and found that the H-J test strongly rejected the hypothesis of
no causality in both directions. Ajala et al. [24] investigated the impact of oil prices on
the exchange rates in Nigeria and found that oil prices significantly affected the exchange
rates. All of the mentioned studies were performed for monthly data, except Wen et al. [8],
who applied weekly data. We conducted our analysis for daily data, which means that
the relationships we detected can be regarded as more short-term. Our results, confirming
causal relationships between crude oil price and exchange rates, have practical implications
for policymakers in the field of monetary policies and strategic risk management. However,
due to the short-term character of the detected relationships, they should be taken into
consideration primarily by market participants, such as investors, financial managers, and
traders, to create effective investment portfolios and risk-hedging strategies (cf. [7,23]).

The revealed existence of bidirectional causal relations between crude oil and ex-
change rates’ returns implies the potential possibility of using lagged values of one of these
variables as the regressor for the second one. However, the applied tests are nonparametric,
which means that they give no information about the model that can describe the detected
relations. Therefore, it causes a question about the forecasting method that can be success-
fully applied to investigated time series. That is why in the second part of our study, we
verified if the support vector regression model can be used for this purpose.

Generally, the obtained results did not support the hypothesis that SVR can be effec-
tively used to forecast the investigated time series. First of all, the constructed models,
regardless of the applied kernel and regressors, did not significantly outperform the bench-
mark white noise model. Secondly, we found that including the lagged crude oil returns
to the SVR models of the exchange rates’ returns (and vice versa) did not significantly
improve the accuracy of the obtained forecasts. This shows that the applied models were
not able to exploit the dependencies detected by the Granger causality tests.
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This finding seems consistent with previous studies performed using other forecasting
methods. It has been concluded in the literature that the fact that exchange rates and
crude oil prices are linked to each other does not necessarily imply that one is useful
when forecasting the other. The reason is that past relationships do not necessarily hold
in the future, and the link between in-sample and out-of-sample is often rather weak [1].
Chen et al. [64] showed that exchange rates of commodity exporters have robust power in
predicting global commodity prices. Their explanation was that exchange rates embody
information about future movements in commodity export markets. However, based on
comprehensive literature studies, Alquist et al. [65] derived the general conclusion that
trade-weighted exchange rates have no significant predictive power for the nominal price
of oil. On the other hand, they noted that this does not necessarily mean that all exchange
rates lack predictive power and found evidence that the Australian exchange rate has
significant predictive power for the sign of the change in the nominal price of oil at certain
horizons. When analyzing the opposite direction models, one cannot find systematic
evidence that oil price is useful for exchange rates’ predictions. Chen et al. [64] noted
that the problem with effective exchange rates’ forecasting can result from the fact that
exchange rates are strongly forward-looking, whereas commodity price fluctuations are
typically more sensitive to short-term demand imbalances. The literature on fundamental
exchange rate models is vast, starting from the seminal work of Meese and Rogoff [66],
which showed that such models do not outperform the benchmark random walk model.
Contemporarily, it has been argued that the forecasting performance of exchange rate
models based on economic fundamentals can depend on the choice of predictor, forecast
horizon, sample period, model, and forecast evaluation method [67].

Future research might extend this study by considering SVR models with other lags of
regressors. Moreover, alternative machine learning methods of forecasting such as neural
networks or hybrid models could be applied.
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