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Abstract: The current practice for multi-fractured horizontal well development in low-permeability
reservoirs is to complete the full length of the well with evenly spaced fracture stages. Given methods
to evaluate along-well variability in reservoir quality and to predict stage-by-stage performance, it
may be possible to reduce the number of stages completed in a well without a significant sacrifice in
well performance. Provision and demonstration of these methods is the goal of the current two-part
study. In Part 1 of this study, reservoir and completion quality were evaluated along the length of
a horizontal well in the Montney Formation in western Canada. In the current (Part 2) study, the
along-well reservoir property estimates are first used to forecast per-stage production variability,
and then used to evaluate production performance of the well when fewer stages are completed in
higher quality reservoir. A rigorous and fast semi-analytical model was used for forecasting, with
constraints on fracture geometry obtained from numerical model history matching of the studied
Montney well flowback data. It is concluded that a significant reduction in the number of stages from
50 (what was implemented) to less than 40 could have yielded most of the oil production obtained
over the forecast period.

Keywords: history matching; numerical simulation; dynamic drainage area model; selective stimula-
tion; individual-stage forecasting

1. Introduction

Multi-fractured horizontal wells (MFHWs) are the most common technology used
for economic development of low- and ultra-low (“unconventional”) permeability oil and
gas reservoirs. This technology has enabled production from reservoirs that have been
traditionally viewed as “non-pay”, with permeabilities in the 10 s to 100 s of nanodarcy
range. In modern development practices, MFHWs are commonly drilled from the same
pad, often targeting more than one (vertical) reservoir interval in an unconventional play.
Another common practice is to place fracturing stages uniformly (or geometrically) along a
well; multiple perforation clusters, used as initiation points for hydraulic fractures, are also
often used, with the cluster spacing typically constant within a fracture stage. While this
practice has generally resulted in commercially successful development of unconventional
resources, it can also be inefficient because often only a fraction of the perforation clusters
may contribute to hydrocarbon flow, due in part to heterogeneity in reservoir properties
along the lateral [1,2].

As a result of the “geometric” fracturing approach (no selective stimulation), and
historical lack of focus on along-well reservoir characterization, production forecasting
approaches have also typically assumed reservoir/hydraulic fracture homogeneity along
a well. It is common practice to use “element of symmetry” (single fracture or quarter
fracture) models, that are then scaled up to the total number of fractures (estimated based
on perforation cluster efficiency) to generate a production forecast of a MFHW. A number
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of approaches have been used to generate forecasts for MFHWs, which can be classi-
fied as empirical [3–6], analytical [7–11], semi-analytical [12], or hybrid [13,14] methods.
Clarkson et al. [15] applied a combination of these approaches for forecasting MFHWs.

The goal of this two-part study is therefore to demonstrate a workflow for improving
well stimulation effectiveness through the selection of higher reservoir quality intervals
along the well for stimulation, and comparison of the forecasts for these selected intervals
with the forecast for the well using a geometric fracturing approach. The workflow consists
of the following steps: (1) quantify reservoir quality (RQ) and completion quality (CQ)
along a horizontal well, as determined from a combination of petrophysical, geochemical
and geomechanical properties; (2) identify intervals of higher RQ/CQ that can be selected
for stimulation; (3) use a simulation model, populated with properties determined from step
1, to generate production forecasts for all stages of the well (assuming a geometric fracturing
approach); (4) compare the production forecast for the selected (higher RQ/CQ) intervals
against the production forecast for all intervals (geometric fracturing case) to determine
if fewer stages can be completed in the well without significant loss in well performance.
Previous approaches for Steps 1 and 2 have been discussed in the literature e.g., [16–21]. If
Step 4 results in the conclusion that fewer fracturing stages can be implemented, and if the
reduction of cost for stimulation outweighs the consequent loss in production, then more
efficient development, with lower environmental impact (less water and sand use, lower
surface footprint), can be achieved. Steps 1 and 2 of the workflow are the subject of the
Part 1 paper [22], while steps 3 and 4 are the subject of the current (Part 2) paper.

In the Part 1 study, petrophysical and geomechanical properties generated from well
logs, petrophysical, geochemical and rock type information (using petrographic analysis)
derived from drill cuttings analysis, and geomechanical information derived from drilling
data, were integrated to enable the quantification of RQ/CQ along a horizontal well drilled
in the Montney Formation of western Canada (Step 1 of the workflow). Cutoff criteria were
defined and applied to identify RQ/CQ “sweetspots” (Step 2 of the workflow).

In order to implement Steps 3 and 4 of the workflow (applied to the same MFHW as
the Part 1 study), a semi-analytical model, which uses the dynamic drainage area (DDA)
concept and was developed for history-matching flowback and early time production of
MFHWs [23], is selected. This model is used for individual stage forecasting, as opposed
to fully numerical simulation, because it is quick and easy to setup and has faster run
times than numerical simulation, which is desirable when many intervals require a forecast
in a short period of time. However, prior to the use of the DDA model for stage-level
forecasting, a fully numerical compositional simulator, with properties imported from a
3D geological model constructed for a region around the well, was used to history match
the subject well production rates, flowing bottomhole pressures, and gas composition data
during the flowback period in order to derive estimates of the fracture properties to be
used in the DDA model. While the DDA model does include a hydraulic fracture modeling
module that can be used to estimate fracture properties from the stimulation treatment
data for each stage (see Zhang et al. [23] for model details), given various petrophysical
and geomechanical property input, the fracture model is currently slow to run. Therefore,
for this proof-of-concept study, hydraulic fracture properties are fixed for each stage (using
the results of the numerical model history match); any production forecast variability is
therefore attributed to reservoir properties selected for that stage.

For this Part 2 (proof-of-concept) study, reservoir modeling is implemented in the
following steps: (1) history match subject well flowback data using a compositional numer-
ical model in order to estimate hydraulic fracture properties (e.g., height and length); (2)
use the semi-analytical DDA model, constrained by fracture properties derived from the
numerical model history match, to forecast stage production for 15 stages with variable
RQ/CQ (as determined from the Part 1 study) in order to assess the range in production
performance associated with these stages; (3) forecast production for all of the (50) stages
of the well; (4) compare production forecasts for a subset of higher RQ/CQ stages to the
production from all stages (geometric fracturing case). The results of these steps, as applied
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to the same Montney Formation MFHW studied in Part 1 [22], will be discussed and the
efficacy of selective stimulation evaluated.

2. Theory and Methods

In this section, the geologic model and numerical model setup and procedure used
to history-match flowback data of the subject MFHW are first described. This calibrated
numerical model is used to estimate the fracture height and half length, which in turn is
used for individual stage forecasting with the semi-analytical (DDA) model. Next, a brief
description of the semi-analytical model used for individual stage forecasting, and for the
comparison between the geometric fracturing (all stages) and selected stages production
forecast, is provided.

2.1. Numerical Model History Match of Flowback Rates and Gas Compositions

A fully numerical simulation model was generated to estimate the fracture geometry
(height and length) created by the hydraulic fracture stimulation by history matching the
flowback rates, flowing bottomhole pressures, and surface gas composition data of the
subject MFHW. To minimize simulation runtimes, identical fracture dimensions, and reser-
voir volume attached to each fracture, were assumed, and only a single stage (element of
symmetry) was modeled. In the following, the geologic model used to derive petrophysical
data input for the simulation model is first described, followed by the numerical model
setup and history-matching procedure.

2.1.1. Geological Model

A 3D stochastic model was created using the PetrelTM software. A detailed description
of the model construction workflow was provided in Clarkson et al. [24]. For the sake of
completeness, a brief summary is provided herein. The created geomodel area includes
the studied MFHW and neighboring MFHW and vertical wells. The model was finely
gridded (75 m × 75 m × 1.6 m; 2.1 million active grid cells), and grid orientation (−0.45◦)
was aligned with the interpreted paleo-shelf edge orientation and regional depositional
trends. Because of the relatively fine vertical gridding (137 geological layers), vertical
heterogeneity in the reservoir is reasonably captured. The horizons were created using
the “Make Horizon” process in PetrelTM and gamma-ray (GR) cutoffs were used for facies
modeling and distribution. As part of the petrophysical modeling process, 3D models of
porosity and permeability in the reservoir were generated. Log-derived porosities used
in the petrophysical modeling were first adjusted to match core data [25] and then were
scaled up to the 3D grid using an arithmetic average method in PetrelTM. Next, a 3D
porosity distribution was generated using the sequential Gaussian simulation technique
in PetrelTM. For permeability modeling, profile permeability, scaled-up to log scale using
the procedure of Clarkson et al. [26], and corrected to in situ stress, was cross-plotted
against log-calculated porosity. This relationship was used to generate a 3D grid for
reservoir permeability.

2.1.2. Reservoir Simulation Model Setup

A 3D numerical simulation model was constructed in the CMG® GEMTM composi-
tional reservoir simulator and used to estimate fracture geometry by history matching flow-
back production rates, flowing bottomhole pressures, and surface gas composition data.

A small 3D sub-section of the original geologic model (sector model) was imported
into the simulation model for use in history matching flowback data. A small model is
appropriate for the matching of flowback data because the flowback production period lasts
for only 20 days, resulting in only a small distance of investigation in the reservoir. Only
one stage is modeled (element of symmetry). Porosity upscaling in the vertical direction
reduced the number of vertical layers from 137 to 26. An average porosity value was
assumed for each layer in the model, removing the effects of lateral heterogeneity, i.e., a
cube model (vertically heterogeneous, laterally homogeneous) was used for simulation. The
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aforementioned porosity-permeability relationship was used to generate the permeability
distribution in the reservoir model. Water saturation was assumed to be constant and
uniform for each layer. In order to capture the full fracture height growth, the reservoir
model was extended to include the entire Montney Formation, as well as a fraction of the
overlying Doig and underlying Belloy formations.

A logarithmic refinement was used inside the grid blocks that host the hydraulic
fracture (HF) to accurately model the pressure and saturation changes in grids near the HF.
A stimulated reservoir volume (SRV) with elevated permeability adjacent to the HF is also
considered in this work following Hamdi et al. [27]. This is a common engineering practice
for modeling tight oil/gas reservoirs [10–12,27,28] to account for fracture complexity.

The in situ fluid composition within the model was estimated by recombining the sep-
arator oil compositions with the gas compositions determined by sampling the headspace
of isojars® containing cuttings samples captured from the Doig, Montney, and Belloy for-
mations. The cuttings samples were collected from an offset vertical well in 10 m intervals.
Therefore, the numerical model accounted for vertical heterogeneity in fluid compositions
on initialization. The separator gas–oil ratio (GOR) value required for recombination
calculations was not available, and hence was used as a history match parameter in this
study. The combination of the vertical heterogeneity in in situ fluid composition used
for model initialization, and history matching of surface gas compositions, was used to
constrain the height of the hydraulic fracture, as explained by Clarkson et al. [24]. The
fluid recombination technique is outlined by McCain [29] and also explained in detail by
Clarkson et al. [24].

A planar HF with a constant 3.048 × 10−4 m width was used in this work and treated
as a propped fracture with effective porosity, permeability, length, and height properties.
These unknown HF properties, along with the initial water saturation in the HF, were
estimated as part of the history-matching procedure described below. Laboratory measured
propped fracture permeability values as a function of stress [30] were used to estimate HF
permeability changes with pressure in the simulation model. The use of these lab data to
constrain the simulation model significantly improved the quality of the history-matching
(HM) results. Non-Darcy flow due to inertia in the HF [31] was simulated using the CMG
GEM default correlation.

Different relative permeability curves were assumed for the HF and SRV regions in
the model. The Brooks and Corey [32] two-phase, and Stone II [33] three-phase, relative
permeability models were used to simulate multiphase flow in the model. The parameters
of the Brooks-Corey correlations were estimated through the history-matching process.
SRV and matrix (unstimulated reservoir) relative permeability curves were assumed to be
the same. Capillary pressure was ignored in this study for all three regions.

2.1.3. Simulation History-Matching Procedure

Nineteen parameters in the model were adjusted to achieve a history match of flow-
back production rates, flowing bottomhole pressures (BHPs), and surface gas compositions,
in order to estimate HF, SRV, matrix and fluid properties.

Due to significant changes in the GOR during flowback, 4 different values were used
in the history-matching process to initialize the in situ fluid compositions. The height of
the fracture is represented by the number of grids above and below the horizontal well.
The maximum number of grids above the horizontal well is 9, which covers the entire
Upper Montney and part of the Doig Formation. Similarly, the entire Lower Montney, and
a portion of the Belloy Formation, is covered with 10 grid blocks below the horizontal well.

The initial water saturation inside the SRV region is calculated by honoring the
following material balance equation:

Qinj
w = 2φHFSw,HFx f h f ω f + 2φSRVSw,SRV x f h f YSRV (1)
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where Qinj
w is the total volume of water injected into the formation during the hydraulic

fracture stimulation treatment, φ is porosity, Sw is water saturation, x f is fracture half-
length, h f is fracture height, ω f is fracture width, and YSRV is the extension of SRV along
the horizontal well.

The total fluid production of the subject MFHW is the main constraint applied to the
simulation model, while individual fluid rates and BHP data were history matched by
minimizing the following global objective function. [34]:

ErrorHM
global = ωoilErroroil + ωgasErrorgas + ωwaterErrorwater + ωBHPErrorBHP (2)

where ωi is the weight factor and Errori is a local error. A higher weight factor was assigned
to the oil phase (ωoil = 5) compared to other parameters (ωi = 1) in Equation (2).

The history-matching task was completed using the Differential Evolution module
(DE) of CMG CMOSTTM with scaling factor, crossover rate, and population size values of
0.5, 0.8, and 35, respectively. Differential Evolution is a population-based metaheuristic op-
timization technique [35] which can be applied to high-dimensional oil and gas engineering
problems [36–41]. A detailed discussion of DE algorithm can be found in Price et al. [42].

2.2. Individual Stage Forecasting Using Semi-Analytical DDA Model

Petrophysical properties (porosity, permeability and water saturation), derived from
the along-well reservoir characterization work performed in the Part 1 study [22], and
averaged over the length of each fracture stage, were used as input into a semi-analytical
model for individual stage forecasting. In the following, the semi-analytical model used for
this purpose is first described, and the specific procedure used for forecasting each stage
is provided.

Semi-Analytical Model

The semi-analytical model used in this study is based on the dynamic drainage area
(DDA) approach, which was first applied to flowback data by Clarkson et al. [12], and
subsequently modified by Zhang et al. [23]. The model is capable of simulating two-
phase flow (oil and water) for a black oil system. The Zhang et al. [23] version of the
model is capable of simulating hydraulic fracture propagation (using a hydraulic fracture
simulator), leakoff during the stimulation treatment and subsequent shut-in, as well as
flowback. The version used in this work simulates flowback production only from a single
fracturing stage.

A conceptual model illustrating the fracture and reservoir regions used in the DDA
model is provided in Figure 1. The fracturing stage is subdivided into a primary hydraulic
fracture (PHF), and adjacent reservoir region consisting of either an enhanced fracture
region (EFR) or a non-stimulated reservoir (NSR) region. The PHF is a single-porosity
fracture region assumed to contain most of the proppant and represents the conductive
fracture. Three options for the reservoir region can be applied: (1) a single-porosity NSR,
representing the native, non-stimulated reservoir with matrix properties; (2) a single-
porosity EFR, in which the permeability and porosity are elevated with respect to the
matrix; or (3) a dual-porosity EFR, which is composed of two media, a fracture network
and matrix blocks, where the unpropped fracture network is assumed to be created as a
result of natural fracture reactivation during the hydraulic stimulation treatment.
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Figure 1. Conceptual model used by Clarkson et al. [12] for the tight oil DDA model. The conceptual 
model assumes that each hydraulic fracturing stage has a primary hydraulic fracture, containing 
most of the proppant, and two reservoir regions, adjacent to the primary hydraulic fracture. Modi-
fied from Clarkson et al. [43]. 
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Figure 1. Conceptual model used by Clarkson et al. [12] for the tight oil DDA model. The conceptual
model assumes that each hydraulic fracturing stage has a primary hydraulic fracture, containing
most of the proppant, and two reservoir regions, adjacent to the primary hydraulic fracture. Modified
from Clarkson et al. [43].

Illustrated in Figure 1 is the dynamic drainage area propagation within the PHF and
EFR/NSR at early time (Figure 1, left), and within the EFR/NSR at later time (Figure 1,
right). Transient linear flow within each region is modeled using the succession of pseu-
dosteady states concept [44]. The drainage area of each region in the direction of flow
during transient linear flow is calculated using the linear flow distance of investigation
(DOI) equation. The conceptual model in Figure 1 assumes that pressure in the PHF and
EFR/NSR are equal at the start of production. At early time (Figure 1, left), the DDA
propagates within the PHF and EFR/NSR simultaneously. At later time, after the pressure
transient has reached the tip of the PHF, the DDA propagates within the EFR/NSR only.

While the mathematical model for production during flowback has been described
comprehensively by Clarkson and Williams-Kovacs [45] and Zhang et al. [23], it is briefly
summarized herein. At each time-step, material balance equations are solved simultane-
ously for saturation and pressure within the DDA using the Newton-Raphson algorithm.
For the early time scenario depicted in Figure 1 (left), the material balance equations for
the oil and water phase within the reservoir region correspond to Equations (3) and (4),
respectively, while Equations (5) and (6) are material balance equations for these same
phases in the PHF:

Nm + qo, m∆t = 4n f yinv, m Amatrix, DDA

φi, mSoi, m

5.615Boi
−

φm

(
pinv, m

)
So, inv, m

5.615Bo

(
pinv, m

)
 (3)

Wm + qw, m∆t = 4n f yinv, m Amatrix, DDA

φi, mSwi, m

5.615Bwi
−

φm

(
pinv, m

)
Sw, inv, m

5.615Bw

(
pinv, m

)
 (4)

Np + qo∆t − (Nm + qo, m∆t) = 4n f w f xinvh f

φi, FSoi, F

5.615Boi
−

φF

(
pinv, F

)
So, inv, F

5.615Bo

(
pinv, F

)
 (5)

Wp + qw∆t − (Wm + qw, m∆t) = 4n f w f xinvh f

φi, FSwi, F

5.615Bwi
−

φF

(
pinv, F

)
Sw, inv, F

5.615Bw

(
pinv, F

)
 (6)

where qw, m and qo, m f are water transfer rate and oil transfer rate, respectively, between
matrix and primary hydraulic fracture; Nm is cumulative oil flow from reservoir (matrix
in this case) to the primary hydraulic fracture; PHF; Np is cumulative oil flowback from
the well; Wm is cumulative water inflow from matrix to primary hydraulic fracture; Wp is
cumulative water flowback from the well; xinv is the DOI in the PHF; yinv,m is the DOI in the
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reservoir region; w f is the PHF width; ∆t is the time elapsed; φi, m and φi, F are matrix/PHF

porosity at initial pressure; φm

(
pinv, m

)
and φF

(
pinv, F

)
are matrix/PHF porosity at their

respective average pressure; Bo

(
pinv, m

)
and Bo

(
pinv, F

)
are formation volume factors

at average matrix pressure and average PHF pressure, respectively; Boi is the initial oil
formation volume factor (the analog water formation volume factors have the subscript is
“w” instead of “o”); n f is the number of fractures.

Water and oil flux from the matrix to primary hydraulic fracture, included in
Equations (3)–(6), are evaluated using the following flow equations:

qw, m =
ki,mkrw,m

(
Sw, inv, m

)
Amatrix, DOI(mw,m(pinv,m)− mw,m(pinv, F))

141.2µwiBwi

[
2
π

(
yinv,m

n f

)] (7)

qo, m =
ki,mkro,m

(
So, inv, m

)
Amatrix, DOI

(
mo,m

(
pinv,m

)
− mo,m(pinv, F)

)
141.2µoiBoi

[
2
π

(
yinv,m

n f

)] (8)

where yinv,m is the DOI in the reservoir region; Amatrix, DDA is the total contacted area be-
tween the matrix and primary hydraulic fracture in the matrix dynamic drainage area; ki,m
is the initial matrix permeability; krw,m is the endpoint matrix water relative permeability;
µwi is initial water viscosity; Sw, inv, m and So, inv, m are average water and oil saturations,
respectively, within the matrix DOI; mo,m and mw,m are oil and water pseudo-pressures,
respectively, defined as follows:

mw,m(p) =
µwiBwi

ki, m

∫ p

p0

km( p̂)
µw( p̂)Bw( p̂)

dp̂ (9)

where km( p̂), µw( p̂), and Bw( p̂) are matrix permeability, water viscosity, and formation
volume factor, respectively, evaluated at different pressures in the integration process; p0 is
the reference pressure, and:

mo,m(p) =
µoiBoi
ki, m

∫ p

p0

km( p̂)
µo( p̂)Bo( p̂)

dp̂ (10)

where µo( p̂), and Bo( p̂) are oil viscosity and formation volume factor, respectively, evalu-
ated at different pressures in the integration process.

The DOI within the reservoir matrix is defined as follows:

yinv,m = Min

(
α

√
ki,mkrPP, mt
φi,mµppicti,m

, ye

)
(11)

where α = 0.159; krPP, m is matrix primary phase relative permeability; cti,m is initial matrix
total compressibility; and ye is width of the reservoir region (Figure 1). Different methods
used to derive the constant α in Equation (11) were discussed by Behmanesh et al. [46].

The PHF flow equations proposed by Clarkson et al. [12] are used to calculate flowback
water and oil rates from primary hydraulic fractures as follows:

qw =
ki, Fkrw, F

(
Sw, inv, F

)
h f

(
mw, F

(
pinv, F

)
− mw, F

(
pw f

))
141.2µwiBwi

[
2
π

(
xinv

n f w f

)] (12)

qo =
ki, Fkro, F

(
So, inv, F

)
h f

(
mo, F

(
pinv, F

)
− mo, F

(
pw f

))
141.2µoiBoi

[
2
π

(
xinv

n f w f

)] (13)
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where ki, F is initial PHF permeability; krw, F is PHF water relative permeability; Sw, inv, F is
average PHF water saturation within the DOI; pinv, F is average PHF pressure within the
DOI; pw f is flowing bottomhole pressure; kro, F is PHF oil relative permeability; So, inv, F is
the average PHF oil saturation within the DOI.

The PHF pseudo-pressures used in Equations (12) and (13) are defined as follows:

mw, F(p) =
µwiBwi

ki, F

∫ p

p0

kF( p̂)
µw( p̂)Bw( p̂)

dp̂ (14)

mo, F(p) =
µoiBoi
ki, F

∫ p

p0

kF( p̂)
µo( p̂)Bo( p̂)

dp̂ (15)

where kF( p̂) is PHF permeability evaluated at different pressures in the integration process.
The PHF DOI is defined as follows:

xinv = Min

(
α

√
ki,FkrPP, Ft

φi,FµPP,icti,F
, x f

)
(16)

where krPP, F is the primary phase relative permeability in the PHF; µPP,i is the primary
phase initial viscosity; cti,F is the initial PHF compressibility; x f is fracture half-length.

Additional discussion of mathematical development and derivations of equations for
the DDA method can be found in Zhang et al. [23].

3. Results

In this section, several of the modeling steps outlined in the Introduction section are
illustrated using the Montney MFHW analyzed in the Part 1 paper [22].

3.1. Studied Well Description and Production Data

The subject MFHW was drilled and completed (cased hole, plug and perf completion)
in a low-permeability liquid-rich reservoir within the Montney and hydraulically fractured
using slickwater. A toe-up configuration was used for the lateral. Fifty stages were
completed in total, with an average stage spacing of 170 ft and 3–4 perforation clusters
per stage.

After the hydraulic fracturing treatment, the plugs were drilled out and the well was
shut in for 1 month before being flowed back. There were multiple shut-ins during the
flowback period due to operational requirements. Figure 2 presents the water, oil, and gas
production and bottomhole pressure (BHP) during the flowback period. Inconsistencies in
the data are described in the figure caption. Figure 3 provides the bottomhole pressure and
gas–oil ratio (GOR) during the flowback stage for this well.

3.2. Numerical Reservoir Simulation Model Input, Initialization and History-Match Results

As noted in the Theory and Methods section, the reservoir model used for flowback
data history matching was constructed from a geologic sector model; vertical porosity up-
scaling from the geologic model was implemented, resulting in 26 vertical layers. Figure 4
provides a 3D view of the porosity model. In the reservoir model, the width of the single
stage modeled is 65 m in the X direction (parallel to the lateral), represented by 9 gridblocks.
In total, 241 gridblocks (1836 m) are used to represent reservoir extension in the Y direction
(parallel to the hydraulic fracture).

Figure 5 demonstrates the variation of in situ fluid compositions by vertical layer in
the simulated reservoir for a given GOR. Importantly, although the vertical variability in
in situ gas composition obtained by combining drill cuttings gas with separator oil is not
large (Figure 5), it provided a critical constraint on fracture height growth estimates.

As noted in the Theory and Methods section, it is important to account for fracture
property variation with stress during the flowback period. For this purpose, laboratory
propped fracture permeability data as a function of stress was used to generate a HF
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permeability ratio (permeability at each pressure over the initial permeability value at
initial pressure) versus pressure (Figure 6).
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Figure 2. Field data gathered during the flowback period of the studied MFHW. The gray zones
highlight inconsistencies in the data. No gas production is reported for the first zone. In the second
through fourth zones, trends in BHP are not consistent with production or lack of production.
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Figure 3. Field GOR variation during the flowback period. A significant GOR oscillation during the
flowback period makes it difficult to select a constant GOR value for the fluid recombination.

The constructed reservoir model was then used to history match production rates,
bottomhole pressures, and compositions of the produced surface gas for the purpose of
constraining fracture dimensions. A zero weight factor was applied to uncertain field
data during the history match. During the history-matching process, 19 parameters were
adjusted to achieve the match and derive HF, SRV, matrix, and fluid properties. Table 2
summarizes the parameters adjusted (and their range) during for the history match.
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The impact of fluid composition variation with depth on the produced gas composition is controlled
by the fracture height extension.

A summary of various model input values used in the simulation is provided in
Table 1.
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Table 1. Various model input values.

Parameter Value Unit

Nx, Ny, Nz (matrix) 9, 241, 26 [-]
Nx, Ny, Nz (HF) 7, 7, 3 [-]

Tres 199 ◦F *
Pres (reference depth) 5650 psia **

Matrix Porosity (variable) 0.031–0.053 fraction
Matrix Permeability (variable) 0.00007–0.003 mD

Swi (matrix) 0.3 fraction
Swi (HF) 0.9 fraction

Conductivity (HF) 35 mD.ft
Width (HF) 0.001 ft ***
Width (SRV) 15 ft

* ◦C = (◦F−32)/1.8; ** 1 MPa = 145.038 psi; *** 1 m = 3.2808 ft.
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Table 2. The list of the parameters (and their ranges) used in history matching with the CMG
CMOST simulator.

Parameter Min Max Unit

xf 100 500 ft
Layers above horizontal well 1 9 [-]
Layers below horizontal well 1 10 [-]

GOR 750 2000 SCF/STB
PermeabilitySRV 0.01 20 mD

Swcon (HF) 0 0.15 fraction
Sorw (HF) 0 0.15 fraction
Krw (HF) 0.5 1 [-]
Krow (HF) 0.5 1 [-]
nw (HF) 1 1.5 [-]
now (HF) 1 1.5 [-]
Sgcrit (HF) 0 0.05 fraction
Sorg (HF) 0 0.05 fraction
Krg (HF) 0.5 1 [-]
Krgl (HF) 0.5 1 [-]
ng (HF) 1 1.5 [-]
nog (HF) 1 1.5 [-]
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As noted in the Theory and Methods section, the total hourly fluid production was
used as the main simulator constraint, and phase production rates, BHPs, and produced
surface gas compositions were matched in order to derive fracture geometry. Figure 7
illustrates how the DE algorithm improves the quality of the history match over several
generations by minimizing the global and local errors. The calculated global error decreases
and plateaus after 600 runs.
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The best-case history-match results are provided in Figure 8. Although the quality
of the production rate history match is satisfactory for the entire flowback period, the
difference between measured and predicted BHPs becomes quite significant for three
distinct time intervals. The simulation predicts a sharp increase in pressure during the
two shut-in periods (corresponding to zero production rates). However, the recorded
data exhibit a gradual increase in pressure long before the shut-in periods without any
associated impact on the production rates. This inconsistency in the recorded data is the
primary reason for the low-quality match with BHP pressure prior to the shut-in intervals.
The difference between the measured and predicted gas rate data at early time is due to the
lack of measured gas data during this period.

The reservoir-simulator-predicted surface gas compositions are plotted against sample
gas compositions measured at day 17 of the flowback period in Figure 9. A reasonably
good match with the field data was achieved. As noted above and observed in Figure 5, the
in situ fluid composition varies with depth in the reservoir, as quantified using the isojar
samples. Therefore, the produced surface gas composition is controlled by the layers in
contact with the hydraulic fractures. The history match resulted in an estimate of upward
fracture growth from the well of 65 m (210 ft), and downward growth of 95 m (310 ft). The
40% upward growth in the fracture is consistent with microseismic observations obtained
for this well. The best-case match-derived reservoir parameters are reported in Table 3.
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Figure 9. Surface gas compositions: field vs. simulation model prediction. A reasonable match of the
field data was achieved.

A global sensitivity analysis was also implemented for this study to understand the
impact of several parameters on reservoir performance and the quality of the history match.
As is apparent from Figure 10, among all of the history match parameters considered
in this study, fracture geometry (height and length) was identified as the primary factor
influencing the quality of the history match.
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Table 3. Reservoir properties derived from the best-case simulation numerical model history match.

Parameter Value Unit

xf 220 ft
Layers above horizontal well 6 [-]
Layers below horizontal well 9 [-]

GOR 1000 SCF/STB
Swi (SRV) 0.53 fraction

SRV Permeability 17 mD
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3.3. Semi-Analytical DDA Model Individual-Stage Forecast Results

The fracture dimensions, reservoir volume, and fluid properties derived from the
numerical model history match in the previous section were then used to constrain the
semi-analytical DDA model for forecasting individual-stage production for the subject
well. The parameters that were fixed in the modeling are provided in Table 4. Prior to
running these predictions, the DDA model was tuned by adjusting the productivity index
to ensure it generates the same production profile as that predicted by the history-matched
numerical simulator.

Table 4. Fixed reservoir and fluid properties used for semi-analytical model forecasting runs.

Properties Value

Initial reservoir pressure (psia) 5600
Fracture height (ft) 520

Fracture half-length (ft) 220
Oil formation volume factor at 5600 psi (RB/STB) 1.1918

Undersaturated oil compressibility (1/psi) 2.3 × 10−5

Oil viscosity at 5600 psia (cp) 0.19
Water formation volume factor at 5600 psia (RB/STB) 1.18

Water compressibility (1/psi) 3 × 10−6

Water viscosity (cp) 0.31
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The first step in the analysis was to investigate the sensitivity of the stage forecasts
(generated with the DDA model) to reservoir quality determined from the Part 1 study [22].
For this purpose, 15 stages with variable RC/CQ were selected (Table 5). The stage-length-
average porosity, permeability, and water saturation, determined using the along-well
characterization methods from Part 1, are reported. Figure 11 provides the location of these
selected stages along the subject well lateral, as well as an illustration of the along-well
variability in permeability, porosity and water saturation derived from the Part 1 study.

Table 5. Reservoir properties for 15 selected stages. Permeability and water saturations were
calculated using the equations of Wood [47], which are based on empirical relationships derived
from core and log data from the Montney Formation.

Stage # Porosity (%) Permeability (mD) Water Saturation

4 4.59 0.00180 17.61
6 4.25 0.00142 18.13
9 5.89 0.00343 11.70
12 7.80 0.00736 8.03
15 5.95 0.00357 9.56
18 2.01 0.00037 32.46
21 4.62 0.00174 11.56
24 2.81 0.00080 27.41
28 3.44 0.00079 17.76
33 2.24 0.00026 28.07
37 6.18 0.00404 8.79
40 4.44 0.00160 10.63
43 2.89 0.00054 20.60
46 5.13 0.00234 9.63
49 3.87 0.00111 12.38
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Figure 11. Location of the 15 selected stages along the horizontal well. Well trajectory, permeability/porosity/water
saturation derived from the Part 1 study, and the gamma ray log are also provided.

In Table 6, the selected stages are ranked from 1–15 based on permeability (highest to
lowest), porosity (highest to lowest), and water saturation (lowest to highest).
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Table 6. Permeability, porosity, and initial water saturation-based ranking for the selected stages.

Ranking Stage
(Permeability)

Permeability
(mD)

Stage
(Porosity) Porosity Stage

(Water Saturation) Water Saturation (%)

1 12 0.00736 12 7.80 12 8.03
2 37 0.00404 37 6.18 37 8.79
3 15 0.00357 15 5.95 15 9.56
4 9 0.00343 9 5.89 46 9.63
5 46 0.00234 46 5.13 40 10.63
6 4 0.00180 21 4.62 21 11.56
7 21 0.00174 4 4.59 9 11.70
8 40 0.00160 40 4.44 49 12.38
9 6 0.00142 6 4.25 4 17.61
10 49 0.00111 49 3.87 28 17.76
11 24 0.00080 28 3.44 6 18.13
12 28 0.00079 43 2.89 43 20.60
13 43 0.00054 24 2.81 24 27.41
14 18 0.00037 33 2.24 33 28.07
15 33 0.00026 18 2.01 18 32.46

From the ranking provided in Table 6, it is observed that Stages 12, 37, and 15 are the
top 3 stages for all properties evaluated. Stages 18 and 33 are the bottom two stages in
terms of the properties evaluated.

In order to forecast production for each of these 15 stages with the semi-analytical
DDA model, the fracture geometry (half-length and height), reservoir volume, and fluid
properties obtained from the numerical simulation model history match (Table 4) were
input into the model along with the petrophysical properties provided in Table 6. The flow-
ing bottomhole pressure was then set as 3900 psi for 150 days to generate the production
forecast; this BHP was set slightly above bubble point pressure because the semi-analytical
model is currently capable of forecasting undersaturated oil cases only. Each stage forecast
required 1–5 min to run in the DDA model.

The results of these individual stage forecasts are provided in Figures 12–15.
Figures 12 and 13 provide the oil rate forecasts for the entire forecast period and from
60 to 120 days, respectively, and Figures 14 and 15 provide the water rate forecasts for the
entire forecast period, and from 60 to 120 days, respectively. From the results provided, it
is evident that there is substantial variability in oil and water production. Certain stages
will likely payout the completion/stimulation costs associated with that stage, while oth-
ers will not; for example, stages 18 and 33 have negligible oil production and possibly
will not payout completion/stimulation costs. In terms of the relationship between stage
performance and petrophysical properties for each stage (Table 6), it is observed that oil
production of each stage is largely consistent with the petrophysical ranking in Table 6.
For example, Stage 12 has the highest oil production, and also the highest petrophysical
property ranking in Table 6. Stages 9, 37 and 15 have similar oil production, which is also
consistent with their similar petrophysical properties and ranking. Stages 18 and 33 have
the poorest stage performance, also consistent with their petrophysical ranking. Focusing
on water production rates, it is observed that highest oil producing stages also produce the
most water; this is because the permeability and porosity of these stages are higher, which
offsets their lower water saturation and water relative permeability.

Focusing now on the production forecast for all 50 stages of the subject well, petro-
physical parameters (permeability, porosity and water saturation) derived for each stage
as a result of the Part 1 study were input into the semi-analytical DDA model (along with
fracture dimensions, fluid properties and reservoir volume derived from the numerical
model history match), and a constant BHP (=3900 psi) was used to generate a 150-day
forecast for each stage of the well. The results are presented in terms of the cumulative
oil production at the end of the 150-day forecast in Figure 16. A substantial variability
in per-stage oil production is exhibited, with several stages producing < 1000 STB of oil
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during the 150-day period. These results suggest that selective completion of the higher-
performing stages may not have substantially impacted the well performance as a whole.
This point is explored further in the Discussion section.

1 
 

 

 

 
 

Figure 12. Stage-by-stage oil production rate forecast for the 15 stages in Tables 5 and 6. The legend is
arranged to correspond with the well performance ranking. Stage 12 performs the best while Stages
18 and 33 are the poorest.

1 
 

 

 

 
 Figure 13. Same as Figure 12, with a focus on the 60 to 120 days of production.

 

2 

 
Figure 14. Stage-by-stage water production rate forecast for the 15 stages in Tables 5 and 6. The
legend is arranged to correspond with the well performance ranking. Stage 12 has the greatest water
production, while Stages 18 and 33 have the least.
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4. Discussion

The goal of this two-part study is to demonstrate that rigorous methods to evaluate
along-well variability in reservoir/completion quality (Part 1), combined with a simple-yet-
rigorous method for predicting stage-by-stage performance that accounts for this variability
in reservoir quality (Part 2), may be used to reduce the number of stages completed in a well
(through selective stimulation) without a significant sacrifice in well performance. While
the previous section demonstrated that production performance of each stage predicted
with the DDA model varied substantially along the well (Figure 16), this section explores
the impact that selective stage completion could have on total well performance. For this
purpose, the per-stage cumulative production was sorted, and then the total cumulative
production in sequence from the most productive zone to the least productive zone was
calculated (Figure 17). This analysis demonstrates that 60% of the stages (top 30 stages in
Figure 17) are able to generate 80% of the total production (if all 50 stages were completed)
at the end of the 150-day forecast period, while 74% of the stages (top 37 stages in Figure 17)
are able to generate 90% of the production (if all 50 stages were completed). As a result, it
may be possible to substantially reduce the stage count (from 50 to 30, or 37), and still retain
a large percentage the total well production if all 50 stages were completed. Economic
analysis will have to be performed to determine what the optimal stage count reduction
will be (benefits of reduced cost are offset by reduced oil production).
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Figure 17. Plot of per-stage cumulative production, from most productive to least productive, along with total well
cumulative production. The top 30 stages (60%) produce 80% of total production. The top 37 stages (74%) produce 90% of
the production.

The per-stage forecasting performed using the semi-analytical DDA model in this
proof-of-concept has not considered the impact of variable hydraulic fracture properties
that may result from variability in geomechanical and reservoir properties. For this study,
the fracture dimensions were fixed using the results of the single-stage numerical model
history match. However, as noted previously, the DDA model of Zhang et al. [23] included
a hydraulic fracture model for predicting hydraulic fracture length and proppant concentra-
tion. In future work, the frac-through-flowback DDA model developed by Zhang et al. [23]
will be used to predict fracture properties (given stimulation treatment data) prior to
generating the per-stage production forecasts. In this way, the per-stage geomechanical
properties (Poisson’s ratio and Young’s modulus) can be honored and used to determine the
impact on per-stage fracture properties. For reference, Table 7 provides the geomechanical
properties (derived from the Part 1 study) for the 15 stages selected for forecasting in the
Results section.

Table 7. Geomechanical properties for 15 selected stages.

Stage Poisson’s Ratio (Unitless) Young Modulus (Psi)

4 0.26 9.17 × 106

6 0.24 9.29 × 106

9 0.25 9.31 × 106

12 0.23 9.28 × 106

15 0.25 9.54 × 106

18 0.27 1.00 × 107

21 0.27 9.90 × 106

24 0.26 9.70 × 106

28 0.24 9.73 × 106

33 0.26 9.78 × 106

37 0.23 9.20 × 106

40 0.28 8.79 × 106

43 0.27 8.90 × 106

46 0.25 9.29 × 106

49 0.25 9.49 × 106
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5. Conclusions

In this study, a rigorous approach for forecasting production from individual stages in
a MFHW completed in a low-permeability, liquids-rich reservoir in the Montney Formation
is demonstrated. A compositional numerical simulation model history match of the
subject well flowback data is first performed in order to estimate hydraulic fracture extent.
Importantly, the combination of estimated in situ fluid compositions with depth in the
reservoir, and produced surface gas compositions, are used to constrain fracture height
growth in the model.

Given fracture parameters, reservoir volume, and fluid properties derived from the
numerical model history match, and along-well petrophysical properties, a semi-analytical
model is used to forecast per-stage production. As a starting point, 15 stages with vari-
able petrophysical properties (permeability, porosity, water saturation), were selected for
forecasting. The forecasted per-stage oil and water production variability is substantial,
with the production variability reflecting the range in petrophysical properties input for
each stage. Importantly, it is demonstrated that, by selecting only the highest quality stages
in the well for stimulation (as determined from along-well estimates of petrophysical
parameters), the stage count can be significantly reduced without a substantial loss in well
production (when all stages are completed).

The following are the key findings of this study:

1. Fracture dimension has the greatest impact on the numerical model history matching
results;

2. Fracture height growth constrained by in situ fluid compositions and produced gas
compositions is consistent with microseismic observations;

3. Per-stage production forecasts generated with the semi-analytical model exhibit
substantial variability, reflecting the individual stage petrophysical properties;

4. Using the individual-stage forecasts generated for all 50 stages of the subject well, the
following can be concluded:

a. The top 30 stages (60% of the total number of stages) produce 80% of the total
well production (when all 50 stages are completed);

b. The top 37 stages (74%) produce 90% of the total well production;
c. It is possible to complete fewer stages without a substantial loss in production.

The results of this study have important implications for operators looking to reduce
well cost, and lower the environmental impact of their operations, without a substantial
loss in well production.
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Nomenclature
Amatrix, DDA total matrix surface area in a dynamic drainage area, ft2

Bo oil formation volume factor, RB/STB
Boi initial oil formation volume factor, RB/STB
Bw water formation volume factor, RB/STB
Bwi initial water formation volume factor, RB/STB
cti,F total initial primary hydraulic fracture compressibility, 1/psi
ct,m total matrix compressibility, 1/psi
h f hydraulic fracture height, m or ft
GOR gas-to-oil ratio, scf/STB
Krg (HF) Brooks-Corey gas relative permeability end point in hydraulic fracture
Krgl (HF) Brooks-Corey liquid relative permeability end point in hydraulic fracture
Krow (HF) Brooks-Corey oil relative permeability end point in hydraulic fracture
Krw (HF) Brooks-Corey water relative permeability end point in

hydraulic fracture, dimensionless
Krw (HF) Brooks-Corey water relative permeability end point in

hydraulic fracture, dimensionless
kF primary hydraulic fracture permeability, md
ki, F initial primary hydraulic fracture permeability, md
ki, m initial matrix permeability, md
krPP,F primary hydraulic fracture primary-phase relative permeability, dimensionless
krPP,m matrix primary-phase relative permeability, dimensionless
kro,m matrix oil relative permeability, dimensionless
krw,F primary hydraulic fracture water relative permeability, dimensionless
krw,m matrix water relative permeability, dimensionless
mo,F primary hydraulic fracture oil normalized pseudopressure, psia
mo,m matrix oil normalized pseudopressure, psia
mw,F primary hydraulic fracture water normalized pseudopressure, psia
mw,m matrix water normalized pseudopressure, psia
Nm cumulative oil transfer amount between the fracture and matrix, STB
Np cumulative oil production, STB
Nx number of simulation grids in x direction
ng(HF) Brooks-Corey gas exponent term in hydraulic fracture, dimensionless
n f number of fracture stages
nog(HF) Brooks-Corey oil-gas exponent term in hydraulic fracture, dimensionless
now(HF) Brooks-Corey oil-water exponent term in hydraulic fracture, dimensionless
nw(HF) Brooks-Corey water exponent term in hydraulic fracture, dimensionless
n f number of fracture stages
Pres reservoir pressure, psia
pinv,F average primary hydraulic fracture pressure in distance of investigation, psia
pinv,m average matrix pressure in distance of investigation, psia
pw f bottomhole pressure, psia
qo oil production rate from primary hydraulic fracture, STB/day
qo, m oil transfer rate between the fracture and matrix, STB/day
qw water production rate from primary hydraulic fracture, STB/day
qw, m water transfer rate between fracture and matrix, STB/day
Sgcrit(HF) Brooks-Corey critical gas saturation term in hydraulic fracture, dimensionless
Soi,F initial primary hydraulic fracture oil saturation, dimensionless
Soi,m initial matrix oil saturation, dimensionless
Sorg(HF) Brooks-Corey residual oi saturation to gas in hydraulic fracture, dimensionless
Sorw(HF) Brooks-Corey residual oi saturation to water in hydraulic fracture, dimensionless
Swcon(HF) Brooks-Corey connate water saturation term in hydraulic fracture, dimensionless
Swi,F initial primary hydraulic fracture water saturation, dimensionless
Swi initial water saturation, dimensionless
Swi,m initial matrix water saturation, dimensionless
Sorg Brooks-Corey residual oil saturation term in hydraulic fracture, dimensionless
So, inv, F primary hydraulic fracture oil saturation in distance of investigation, dimensionless
So, inv, m matrix oil saturation in distance of investigation, dimensionless
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Nomenclature

Sw, inv, F primary hydraulic fracture water saturation in distance of
investigation, dimensionless

Sw, inv, m matrix water saturation in distance of investigation, dimensionless
Tres reservoir temperature, ◦F
t time, s or day
Wm cumulative water transfer amount between the fracture and matrix, STB
Wp cumulative water production, STB
w f the average width of primary hydraulic fracture or unpropped fracture width, ft
x f fracture half length, ft
xinv the distance of investigation in fracture, ft
ye maximum matrix distance perpendicular to primary hydraulic fracture

into the reservoir, ft
yinv, m the distance of investigation in matrix, ft
∆t time step, days
α distance of investigation coefficient, dimensionless
µPP, i initial primary-phase viscosity, cp
µo oil viscosity, cp
µoi initial oil viscosity, cp
µw water viscosity, cp
µwi initial water viscosity, cp
φF primary hydraulic fracture porosity, dimensionless
φi, F initial primary hydraulic fracture porosity, dimensionless
φi, m initial matrix porosity, dimensionless
φm matrix porosity, dimensionless
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