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Abstract: In this paper, a novel model based on the boundary element method (BEM) is presented for
the hydrodynamic analysis of floating twin-hull structures carrying photovoltaic panels, supporting
the study of wave responses and their effects on power performance in variable bathymetry regions.
The analysis is restricted to two spatial dimensions for simplicity. The method is free of any mild-
slope assumptions. A boundary integral representation is applied for the near field in the vicinity
of the floating body, which involved simple (Rankine) sources, while the far field is modeled using
complete (normal-mode) series expansions that are derived using separation of variables in the
constant depth half-strips on either side of the middle, non-uniform domain, where the depth
exhibited a general variation, overcoming a mild bottom-slope assumption. The numerical solution
is obtained by means of a low-order panel method. Numerical results are presented concerning
twin-hull floating bodies of simple geometry lying over uniform and sloping seabeds. With the
aid of systematic comparisons, the effects of the bottom slope and curvature on the hydrodynamic
characteristics (hydrodynamic coefficients and responses) of the floating bodies are illustrated and
discussed. Finally, the effects of waves on the floating PV performance are presented, indicating
significant variations of the performance index ranging from 0 to 15% depending on the sea state.

Keywords: hydrodynamic analysis; floating bodies; general bathymetry; BEM

1. Introduction

The energy yield of floating photovoltaics (FPVs) is in the spotlight, as offshore
photovoltaic (PV) installations present significant advantages over corresponding onshore
ones (see [1,2]). These, among others, include the ample surface available for arrangements
in farms, the nearshore/coastal regions and the open sea, including locations that are
already licensed for offshore wind parks (in the area between wind turbines), as well as the
potential of hybridization with offshore wind energy. The development of offshore FPV
parks is particularly important for southern European regions, e.g., in the Mediterranean
Sea, since solar radiation in southern latitudes is relatively high, nearly 150–200% greater
than that of the Atlantic Sea Ocean, the North Sea and Baltic Sea regions [3], while wind
and wave potentials are comparatively low. Furthermore, offshore PV installations present
increased efficiency due to the cooling effects of water and wind, which are triggered by the
interaction of airflow with the solar panels [4]. It is worth mentioning here that, according
to a recent report from DNV GL, it is expected that offshore FPVs will reach maturity by
2030 (see also DNVGL-RP-0584-Edition 2021-03).

On the other hand, although several solar farms have been developed on closed water
basins, such as lakes, reservoirs and dams, implementing installations in the open sea is
a challenging task, as their interaction with several environmental factors is not yet fully
understood [5]. In the offshore and nearshore region, safety and viability require the design
and construction of resilient FPV structures that can withstand the harsh marine envi-
ronment. Regarding the deployment of floating structures of relatively large dimensions
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in nearshore and coastal areas, it is also expected that bathymetric variations will have
significant effects on their responses under wave loads, which also affect the performance
of the power output due to oscillatory motions of the structure and the panels arranged on
the deck. Stability requirements, in conjunction with a lightweight structure with a center
of gravity at a relatively increased height above the keel, led to the consideration of a twin
hull structure with a more complicated response pattern and resonance characteristics.
In this study, a hydrodynamic model is developed to predict the dynamic responses of a
floating structure supporting photovoltaic panels on a deck while being subject to wave
loads. For the treatment of complicated resonance phenomena, as well as the effects of
finite and possibly variable bathymetry, which characterizes nearshore and coastal regions,
a general model based on boundary element methods (BEM) is developed, which is capable
of modeling the involved phenomena. The model is then systematically applied in selected
examples to produce preliminary results, which are illustrative of the effect of dynamic
motions on the energy efficiency of a floating unit.

The interaction of free surface gravity waves with floating bodies at intermediate
depths in areas that are characterized by non-uniform seabed topographies is a mathemati-
cally interesting problem, which can be used to analyze a wide range of applications, such
as the design and performance evaluation of ships and other floating structures operating
in nearshore areas. Theoretical aspects of the problem of small-amplitude water waves
propagating in a finite water depth and their interaction with floating and/or submerged
bodies have been presented under various geometric assumptions by many authors [6–8]
regarding the existence of trapped modes in a channel with obstructions. Furthermore,
shallow-water conditions are frequently encountered in marine applications. When floating
structures or docks are moored in shallow-water areas, accurate predictions of the motions
induced by the prevailing sea state are needed, not only for optimizing the mooring system,
depending on the stability needs of each configuration, but also for ensuring that the
under-keel clearance remains sufficient for the structure to avoid grounding in extreme (for
the area under study) weather and sea conditions. In many applications, the water depth
is assumed to be constant, which is practically valid in cases where there are small depth
variations or the floating body’s dimensions are small compared to the bottom variation
length. However, in applications involving the utilization of floating bodies in coastal
waters, the variations of bathymetry may cause significant effects on the hydrodynamic
behavior of ships and structures, especially concerning the wave-induced responses. Under
the assumption of slowly varying bathymetry, mild-slope model have been developed
for the analysis of wave-induced floating body motion [9]. To treat environments that are
characterized by steeper bathymetric variations, e.g., near the coast or the entrances of
ports and harbors, extended models are required (see, e.g., Ohyama and Tsuchida [10]).

In the present work, a novel method based on BEM is used for the hydrodynamic
analysis of twin-hull floating structures with PV systems; the method is capable of treating
the effects of varying bathymetry without any mild-slope assumptions. In particular, a
low-order panel based on linear wave theory is developed and verified. Following the
hybrid formulation by Yeung [11], the present method utilizes the simplicity of Rankine
sources, in conjunction with appropriate representations of the wavefield in the exterior
semi-infinite domain, as presented by Nestegard and Sclavounos [12] for 2D radiation
problems in deep water and by Drimer and Agnon [13] in the case of finite water depth.
The far field is modeled using complete (normal-mode) series expansions, which are
derived using separation of variables in the two constant-depth half-strips separating the
variable bathymetry region from the regions of wave incidence and wave transmission (see
Figure 1). Numerical results are presented concerning twin-hull floating bodies of simple
geometry over uniform and sloping seabeds. With the aid of systematic comparisons, the
effects of bottom slope on the hydrodynamic characteristics (hydrodynamic coefficients and
responses) are presented and discussed. Finally, results are presented regarding the effect
of wave-induced motions on floating PV performance, indicating significant variations in
the performance index ranging from 0 to 15%, depending on the sea state.
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Figure 1. Geometric configuration of the 2D problem.

2. Mathematical Formulation

The 2D problem concerning the hydrodynamic behavior of a twin hull floating body
of arbitrary cross-section in a coastal–marine environment is considered, as illustrated in
Figure 1. A Cartesian coordinate system x = (x1, x2, x3) is introduced, with the origin
placed at the mean water level, coinciding with the structure’s center of flotation, with the
x3-axis pointing upwards. The configuration is considered unchanged in the x1-direction
and, therefore, the analysis is limited to the x2x3 plane, modeling a two-dimensional
cross-section.

The environment comprises a water layer bounded by the free surface at x3 = 0 and
the rigid bottom at depth h = h(x2). It is assumed that h = h(x2) exhibited a general
variation, i.e., the corresponding bathymetry is defined by parallel, straight contours
lying between two regions of constant but different water depths: h = ha in the region
of wave incidence and h = hb in the region of transmission. The fluid is assumed to be
homogeneous, inviscid and incompressible and its motion irrotational with a small width.
The wavefield in the region is excited by a harmonic incident field, with propagation
direction normal to the depth contours (along the x2-axis). Without loss of generality, a left-
incident wave field is assumed (see Figure 1). Thus, in the context of linearized wave theory,
the fluid motion is fully described by the 2D wave potential Φ(x2, x3; t), with the velocity
field being equal to v(x, t) = ∇Φ(x, t). Assuming that the free-surface elevation and the
wave velocities are small, the potential function Φ(x2, x3; t) satisfies the linearized wave
equations (see, e.g., [14,15]). Under these assumptions, the wavefield is time-harmonic and
its potential function can be represented by the time-independent (normalized) complex
potential function ϕ as:

Φ(x2, x3; t) = Re
{
− igA

ω
ϕ(x2, x3; µ) · exp(−iω t)

}
, (1)

where H = 2A is the incident wave height, g is the acceleration of gravity, µ = ω2/g is the
frequency parameter and i =

√
−1. The free surface elevation is obtained in terms of the

wave potential at x3 = 0 as follows:

η(x2; t) = − 1
g

∂Φ(x2, 0 ; t)
∂t

. (2)

In addition to the physical boundaries (floating body, free surface, seabed), we further
introduce two vertical interfaces on either side of the body, serving as incidence/radiation/
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transmission boundaries. Therefore, the boundary ∂D of the two-dimensional domain
D, occupied by the fluid, is decomposed into eight subsections ∂Di, i = 1, 2, . . . , 8, as
illustrated in Figure 1, so that D is enclosed by the curve ∂D = ∪8

i=1∂Di, with ∂D1 and ∂D3
being the right- and left-hand sides, respectively, of the twin-hull’s wetted surface. The
sections of ∂D numbered 2, 4 and 8 correspond to the water-free surface, while ∂D6 is the
impermeable seabed. Finally, the wave incidence occurs via ∂D5, which also serves, along
with ∂D7, as a radiation interface for the diffracted field due to the presence of the (fixed)
body, as well as the radiation fields that develop due to the wave-induced body’s motions.

Apart from the non-uniform domain D containing the floating body, the total flow
field is considered to be of infinite length and, therefore, also comprises the uniform
semi-infinite subdomains DL and DR, where the depth is constant and equal to ha and hb,
respectively. Hence, the function h = h(x2) is of the form:

h(x2) =


ha, x2 ≤ a
h(x2), a < x2 < b
hb, x2 ≥ b

(3)

The function ϕ = ϕ(x2, x3; µ) appearing in Equation (1) is the normalized potential in
the frequency domain, which will hereafter be simply written as ϕ(x2, x3). Using standard
floating body hydrodynamic theory [15,16], the potential is decomposed as follows:

ϕ(x2, x3) = ϕp(x2, x3) +
µ

A

4

∑
k=2

ξk ϕk(x2, x3) (4)

where ϕp(x2, x3) = ϕI(x2, x3) + ϕD(x2, x3) is the propagating field, with ϕI(x2, x3) being
the incident field, which corresponds to the solution of the wave propagation problem
across the non-uniform subdomain in the absence of the floating structure and ϕD(x2, x3)
being the diffraction potential, which accounts for the presence of the body, fixed in
its mean position. Moreover, the functions ϕk(x2, x3), k = 2, 3, 4, denote the radiation
potentials associated with the motion of the twin-hull structure, corresponding to its three
degrees of freedom (DOF), i.e., the linear transverse motion (sway: k = 2), the linear vertical
motion (heave: k = 3) and the rotation about the longitudinal (x1) axis (roll: k = 4). Finally,
ξk, k = 2, 3, 4, stand for the complex amplitudes of the corresponding wave-induced
motions.

The sub-problems, whose solutions provide the potential functions ϕk(x2, x3), k = p,
2,3,4, in the variable bathymetry region, were formulated as radiation-type problems in
the bounded subdomain D, with the aid of the following general representations of the
wave potential ϕ(x2, x3) in the left- and right-side semi-infinite strips DL and DR, which
are obtained using separation of variables (see, e.g., [17]):

ϕ
(L)
p (x) =

[
exp

(
ik(L)

0 x2

)
+ C(L)

0 exp
(
−ik(L)

0 x2

)]
Z(L)

0 (x3)+

+
∞
∑

n=1
C(L)

n exp
[
k(L)

n (x2 − a)
]

Z(L)
n (x3), x ∈ DL

(5a)

ϕ
(L)
k (x) = C(L)

0 exp
(
−ik(L)

0 x2

)
Z(L)

0 (x3)+

+
∞
∑

n=1
C(L)

n exp
[
k(L)

n (x2 − a)
]

Z(L)
n (x3), x ∈ DL, k = 2, 3, 4

(5b)

ϕ
(R)
k (x) = C(R)

0 exp
(

ik(R)
0 x2

)
Z(R)

0 (x3)

+
∞
∑

n=1
C(R)

n Z(R)
n (x3) exp

[
k(R)

n (b− x2)
]
, x ∈ DR, k = p, 2, 3, 4

(5c)

The first term (n = 0) in the series Equations (5) is the propagating mode, while the
remaining ones (n = 1, 2, . . .) are the evanescent modes with C(i)

n (n = 0, 1, 2, . . .) being
the corresponding coefficients. The first term of ϕ

(L)
p (x) is further separated into a unit-
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amplitude mode propagating toward D, playing the role of the incident field, and the
additional mode C(L)

0 exp(−ik(L)
0 x2)Z(L)

0 (x3), propagating toward −∞ in the x2-direction,
which is the reflected field coming from the diffraction potential ϕD(x). In the above expan-

sions, the functions
{

Z(i)
n

}∞

n=0
are defined as Z(i)

n = cosh
[
k(i)n

(
z + h(i)

)]
/ cosh

(
k(i)n h(i)

)
and are obtained using separation of variables via the vertical Sturm–Liouville problem, to
which Laplace’s equation reduces in the constant depth strips {DL| − ha < x3 < 0, x2 < a}
and {DR| − hb < x3 < 0, x2 > b}. The corresponding eigenvalues k(i)0 and

{
k(i)n

}∞

n=1
are

respectively obtained as the real root and the imaginary roots of the dispersion relation:
ω2 = k(i)g · tanh

(
k(i)h(i)

)
, i = L, R, where g denotes the acceleration due to gravity. The

completeness of the expansions derives from the standard theory of regular eigenvalue
problems (see, e.g., [18]). Based on the above representations, the hydrodynamic prob-
lems concerning the propagating and radiation potentials ϕk(x2, x3) were formulated as
radiation-type problems, satisfying the following systems of equations, boundary condi-
tions and matching conditions for k = p, 2, 3, 4:

∂2 ϕk(x2, x3)

∂x22 +
∂2 ϕk(x2, x3)

∂x32 = 0, x ∈ D|(Domain o f Transmission) (6a)

∂ϕk(x)
∂n

− µϕk(x) = 0, µ =
ω2

g
, x ∈ (∂D2 ∪ ∂D4 ∪ ∂D8)|(Free Sur f ace) (6b)

∂ϕk(x)
∂n

= 0, x ∈ ∂D6|(Seabed) (6c)

∂ϕk(x)
∂n

= Nk(x), x ∈ (∂D1 ∪ ∂D3)|(Wetted Sur f ace) (6d)

∂ϕk(x)
∂n

− TL

[
ϕ
(L)
k (x)

]
= Qk, x ∈ ∂D5|(Incidence /Reflection /Radiation) (6e)

∂ϕk(x)
∂n

− TR

[
ϕ
(R)
k (x)

]
= 0, x ∈ ∂D7|(Radiation) (6f)

The above boundary sections are also illustrated in Figure 1. Moreover, in
Equations (6a)–(6f), n = (0, n2, n3) denotes the unit normal vector to the boundary ∂D,
directed to its exterior. The boundary data Nk, k = 2, 3, 4 appearing on the right-hand side
of Equation (6d) are defined by the components of the generalized normal vector on the
wetted surface boundary section ∂D1 ∪ ∂D3: N2 = n2, N3 = n3 and N4 = x2n3 − x3n2, and
constitute the (unit-amplitude) excitations of the system in Equation (6a)–(6f) for each k. Np
is set to 0 so that the solution of the propagating field is obtained by treating the floating
body as an impermeable, immobile solid boundary. Finally, the operators TL

[
ϕ
(L)
k (x)

]
and

TR

[
ϕ
(R)
k (x)

]
are appropriate Dirichlet-to-Neumann (DtN) maps (see, e.g., [19]), ensuring

the complete matching of the fields ϕk(x), k = p, 2, 3, 4, on the vertical interfaces ∂D5
and ∂D7, respectively. These operators are derived from Equations (5a)–(5c), exploiting
the completeness properties of the vertical bases

{
Z(i)

n (z), n = 0, 1, 2, . . .
}

, i = L, R. More
details are provided in Appendix A.

3. The BEM for Floating Twin-ull Structures
3.1. The Incidence, Diffraction and Radiation Problems

The corresponding problems of the propagating and radiation potentials ϕk(x),
k = p, 2, 3, 4, given as Equations (6) were treated by means of boundary integral equation
formulations that are based on the single-layer potential (see, e.g., [20]). Accordingly, the
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following integral representations are introduced for ϕk(x), k = p, 2, 3, 4, in the bounded
subdomain D:

ϕk(x) =
∫

∂D

σk
(
x′
)
G
(
x′, x

)
dl
(
x′
)
, x = (x2, x3) ∈ D, x′ ∈ ∂D, k = p, 2, 3, 4 (7)

where G(x′, x) = ln|x′ − x|/2π is the Green’s function of the Laplace equation in 2D free-
space; σk(x′) is a source/sink strength distribution, defined on the boundary of the bounded
subdomain D for each of the four subproblems; and dl(x′) denotes the differential element
along the boundary ∂D (see, e.g., [21,22]). Based on the properties of the single-layer
distributions, the corresponding normal derivatives of the functions ϕk(x), k = p, 2, 3, 4,
on the boundary ∂D are given by (see, e.g., [21]):

∂ϕk(x)
∂n

= −σk(x)
2

+
∫

∂D

σk
(
x′
)∂G(x′, x)

∂n
dl
(
x′
)
,
(
x, x′

)
∈ ∂D. (8)

Using the above in Equations (6b)–(6f), we obtain a system of boundary integral
equations, with support on the different sections of ∂D for the determination of the corre-
sponding unknown source distribution σk(x), x ∈ ∂D, k = p, 2, 3, 4, for each of the potential
functions ϕk(x), k = p, 2, 3, 4. The final system read as follows for k = p, 2, 3, 4:

− σk(x)
2 +

∫
∂D

σk(x′)
∂G(x′ ,x)

∂n d`(x′)+

−µ
∫

∂D
σk(x′)G(x′, x)d`(x′) = 0, x ∈ (∂D2 ∪ ∂D4 ∪ ∂D8), x′ ∈ ∂D,

(9a)

− σk(x)
2

+
∫

∂D

σk
(
x′
)∂G(x′, x)

∂n
d`
(
x′
)
= 0, x ∈ ∂D6, x′ ∈ ∂D, (9b)

− σk(x)
2

+
∫

∂D

σk
(
x′
)∂G(x′, x)

∂n
d`
(
x′
)
= Nk(x), x ∈ (∂D1 ∪ ∂D3), x′ ∈ ∂D, (9c)

− σk(x)
2 +

∫
∂D

σk(x′)
∂G(x′ ,x)

∂n d`(x′)+

−TL

[ ∫
∂D

σk(x′)G(x′, x)d`(x′)

]
= Qk, x ∈ ∂D5, x′ ∈ ∂D,

(9d)

− σk(x)
2 +

∫
∂D

σk(x′)
∂G(x′ ,x)

∂n d`(x′)+

−TR

[ ∫
∂D

σk(x′)G(x′, x)d`(x′)

]
= 0, x ∈ ∂D7, x′ ∈ ∂D,

(9e)

From the above systems’ solutions σk, k = p, 2, 3, 4, the corresponding potential
functions ϕk(x), k = p, 2, 3, 4 and all quantities associated with them were calculated using
Equations (7) and (8) in the bounded subdomain D. The solutions of the system consisting
of Equations (9a)–(9e) are obtained numerically by means of a low-order boundary element
method based on simple (Rankine) sources (see also [23]). The geometry of the different
sections of ∂D is approximated using linear segments on which the source distribution is
taken to be piecewise constant. In this case, the boundary integrals in Equations (9a)–(9e)
associated with each element’s contribution can be analytically calculated (see, e.g., [24])
and the systems of boundary integral equations reduce to an equal number of algebraic

systems, whose unknowns are the vectors
{

σk j

}M

j=1
, k = p, 2, 3, 4 with M being the number

of linear boundary elements used to approximate the geometry of ∂D.
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3.2. Equations of Motion

The total hydrodynamic loads (forces and moment) on the twin-hull structure consist
of the Froude-Krylov loads, which are solely due to the undisturbed incident field ϕI(x),
the diffraction loads caused by the pressure field generated by the presence of the fixed
floating body and the radiation loads due to the pressure fields of the wavefields “radiated”
by the oscillating body. Based on the calculated propagating potential ϕp(x)(consisting
of the incident and diffraction potentials), the summation of the Froude-Krylov and the
diffraction-induced hydrodynamic forces, as well as the corresponding moment (Fk,
k = 2, 3, 4), are calculated using surface integration, as follows:

Fk = iωρ
∫

∂D1∪∂D3

ϕP(x) ·Nk(x)d`(x), k = 2, 3, 4, x ∈ (∂D1 ∪ ∂D3) (10)

where ρ denotes the fluid (water) density and Nk, k = 2, 3, 4, is the generalized normal
vector on the wetted surface (also defined in Section 2). Moreover, from the radiation
potentials ϕk(x), k = 2, 3, 4, the hydrodynamic coefficients are calculated using:

ω2 Akl + iωBkl = iωρΠk l , l, k = 2, 3, 4, where (11a)

Πkl =
∫

∂D1∪∂D3

ϕl(x)Nk(x)d`(x), l, k = 2, 3, 4, x ∈ (∂D1 ∪ ∂D3) (11b)

In the above expressions, A(3×3) is the (symmetric) matrix of the added inertial
coefficients, which, for each frequency, corresponded to the proportion of the radiation
loads in phase with the structure’s acceleration (in the frequency domain). B(3×3) is the
corresponding matrix of hydrodynamic damping coefficients, which consists of the part
of the radiation loads in phase with the structure’s velocity. Details about the definitions
of the hydrodynamic forces and coefficients, as well as the system of equations of motion,
can be found in [15] or in ship hydrodynamics textbooks (see, e.g., [16,24]). The latter
quantities allow us to formulate and solve the equations of motion of the floating body in
the inhomogeneous domain. The general form of the equations of motion in the frequency
domain for the 2D twin-hull structure considered is:{

−ω2[M + A(ω)]− iω B(ω) + C
}

ξ = F (12)

where C is the hydrostatic restoring forces and moments acting on the structure.
Due to the symmetry of the body with respect to the vertical axis x3, the component

N3 of the generalized normal vector is symmetric, while the components Nk, k = 2, 4, are
antisymmetric. Assuming that the seabed profile variations do not significantly alter the
radiation potentials ϕk(x), k = 2, 3, 4, near the floating structure, the potential function
ϕ3(x) is also symmetric and the functions ϕk(x), k = 2, 4 are antisymmetric. This fact
implies that Π32 = Π34 = 0 and Π23 = Π42 = 0. Therefore, the dynamic equations of
motion relating to the oscillations of the body are simplified in the following form, where
the heaving motion (ξ3) is decoupled from the sway and roll motions (ξ2, ξ4) of the twin
hull: [

−ω2(M + A22)− iωB22

]
ξ2 −

(
ω2 A24 + iωB24

)
ξ4 = F2, (13a)[

−ω2(M + A33)− iωB33 + 2ρgB(H)

]
ξ3 = F3, (13b)(

−ω2 A42 − iωB42

)
ξ2 +

[
−ω2(I44 + A44)− iωB44 + Mg · GM

]
ξ4 = F4, (13c)

where B(H) is the breadth of each individual hull and GM denotes the metacentric height.
The total mass equals M = ρ · ∇, referring to unit length in the transverse direction (kg/m),
where ρ denotes the fluid’s density and ∇ is the displacement volume of the structure.
Moreover, due to the symmetry of the floating structure, its center of buoyancy (B) is
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located on the vertical line x2 = 0 and its x3 coordinate is calculated as the center of area of
the submerged volume’s cross-section. The center of gravity (G) is also located at x2 = 0
due to symmetry of the configuration and its x3 coordinate is considered to be located
at the waterplane (x3 = 0). A total radius of gyration per unit length in the transverse
direction of RG =

(
B(T) − B(H)

)
/2 is considered about the longitudinal axis (x1), where

B(T) is the total breadth of the twin-hull structure and, therefore, I44 = M(RG)
2. The

metacentric radius was evaluated as BM = I/∇, where I is the second moment of area of
the waterplane, calculated using applying Steiner’s theorem as:

I = 2

[(
B(H)

3

12

)
+ B(H) ·

(B(T) − B(H)

2

)2
]

, (14)

which also refers to the unit length in the transverse direction (x1). Finally, the metacentric
height was calculated as GM = KB + BM− KG, where K is a reference point with coordi-
nates (0, x3). The above equations can also be modified to include other external forces,
as e.g., mooring forces or spring terms (see, e.g., Section 3.5 of [25]). The solution of the
above system (13) provides us with the complex amplitudes of the corresponding motions
of the twin hull: ξk, k = 2, 3, 4. Then, the total wave potential is obtained using Equation
(4), from which the hydrodynamic pressure is obtained using Bernoulli’s theorem. The
wave loads on the floating structure are calculated using pressure integration on the wetted
surface ∂D1 ∪ ∂D3.

4. Numerical Results
4.1. Comparison with Other Methods and Verification

The results obtained by the previously described numerical model are here compared
to previous research for verification purposes. The results concern a twin-hull floating
structure whose individual hulls are cylindrical, with a draft equal to the radius, which
results in wetted surfaces whose cross-section shapes are semicircles. Numerical results
regarding the above configuration were presented by Ohcusu [26] in 1969 and Rhee [27] in
1982 concerning the amplitude ratio of the radiated fields’ wave height away from the body
divided by the amplitude of the forced oscillation that excites the field itself in calm water.

Figure 2 illustrates the aforementioned ratio regarding the heave and sway motions
in the case of unit amplitude of the twin-hull structure. The wetted surface of each hull is
semicircle of radius R in the x2x3 plane, while each of the two semicircles’ centers are at a
distance P from the origin, following the notation of Rhee [27]. Therefore, the two centers
are at a distance 2P apart and the configuration is defined so that 2P/R = 3. The results
concern the radiation fields that propagate in deep water, which is achieved in the present
numerical model by setting the depth as a constant and equal to half the wavelength,
for each simulated frequency, as calculated from the dispersion relation for deep-water
(λ = 2πg/ω2).

Figure 2. Amplitude ratios for heave and sway for a twin-hull floating structure with semicircle hull
cross-sections (2P/R = 3, h/R = ∞).
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The domain extends to three wavelengths away from the floating body in both direc-
tions and the free surface elevation is evaluated by the discrete BEM model at the last free
surface boundary element away from the structure (adjacent to the first boundary element
of the radiation boundary). The amplitude ratios of Figure 2 are presented as functions of
the non-dimensional frequency parameter ω2R/g.

Indicative results are illustrated in Figure 3 concerning wave fields generated by unit-
amplitude forced oscillations of the twin hull in sway and heave, with the non-dimensional
frequency parameter ω2R/g set to 1. The amplitude ratios are equal to 0.992 and 0.520 for
sway and heave, respectively, as also shown in Figure 2.

Figure 3. Sway and heave radiation fields for 2P/R = 3, h = λ/2 and ω2R/g = 1. (a,b) Real
and imaginary part of the normalized sway field ϕ2(x) and corresponding free-surface elevation.
(c,d) Real and imaginary part of the normalized heave field ϕ3(x) and corresponding free-surface
elevation.

An identical twin-hull structure was studied by Dabssi et al. [28] in 2008 regarding
its hydrodynamic coefficients. Figure 3 illustrates the added mass and damping of the
floating structure in heave (ξ3). The added mass (A33) has been divided by the structure’s
mass, while the damping coefficient for heave (B33) has been divided by the mass times
the angular frequency ω so that all presented quantities are non-dimensional. It is noted
that the displacement in this case does not need to be numerically calculated since it equals
the sum of volumes of two half-cylinders of radius R that were considered to extend to unit
length in the transverse direction (x1) and therefore is equal to πR2. The results of Figure 4
concern the heaving motion of the twin-hull in a finite water depth h, where h/R = 2. The
calculated data sets are presented as functions of the non-dimensional wavenumber kR.

Figure 4. Added mass and damping coefficient of heave, for a twin-hull floating structure of
semicircle hull cross sections (2P/R = 3, h/R = 2).

4.2. Hydrodynamic Analysis of Floating Twin-Hull Structure in Waves

The effect of sloping seabed environments on the hydrodynamic characteristics of a
twin hull is here illustrated by considering the case of a structure of non-dimensional total
breadth equal to B(T)/h = 2/3, with the non-dimensional breadth and draft of each hull set
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to B(H)/h = T/h = 1/10, where h denotes the mean water depth of the inhomogeneous
domain D. The individual hulls that make up the twin-hull layout were modeled via the
cross-section of a Wigley hull at x1 = 0, which is given by the analytical relation:

x2 = ∓
B(H)

2
·
[

1−
( x3

T

)2
]

. (15)

The configuration is considered to be located in an inhomogeneous region (see
Figures 5 and 6). The center of gravity was selected to coincide with the center of flotation.
The center of buoyancy (B), which is calculated as the center of area of the submerged vol-
ume’s cross-section, is located at (x2 = 0, x3 = −0.375 · T) and, thus, the non-dimensional
metacentric height of this layout is GM/h = 1.179.

Figure 5. Outline of the modeled configuration and basic dimensions.

Figure 6. (a) Floating body and domains of transmission (B(T)/h = 2/3, B(H)/h = T/h = 1/10).
(b) Hydrodynamic forces F̃k, k = 2, 3. (c,d) RAOs in sway and heave motions, respectively.
(e,f) Hydrodynamic coefficients A22, B22 and A33, B33, respectively. All quantities were plotted vs.
the non-dimensional wavelength λ/h, where h denotes the average water depth.
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Numerical results are presented in Figures 6 and 7 concerning the hydrodynamic
behavior of this floating structure in constant depth and over two linear shoals characterized
by (constant) bottom slopes of 10 and 20%, respectively (see Figure 6a). The shoaling
environments were achieved using a linear depth reduction of 2h/3 and 4h/3, respectively,
over a depth variation distance of 10B(T), with the mean water depth of all three domains
of transmission being equal to h. The results concerning the homogeneous domain were
plotted using solid lines, while the results concerning the inhomogeneous transmission
domains with bottom slopes of 10 and 20% were plotted using dashed lines and dotted
lines, respectively.

Figure 7. (a) RAO in roll motion. (b) Hydrodynamic moment F̃4. (c,d) Hydrodynamic coefficients
A44, B44 and A24, B24, respectively. All quantities are plotted vs. the non-dimensional wavelength
λ/h, where h denotes the average water depth.

In particular, Figure 6b illustrates the normalized hydrodynamic forces as functions
of the non-dimensional wavelength λ/h for all three considered domains of transmission,
where λ = 2π/k0 is the wavelength corresponding to the mean water depth h, as obtained
through application of the dispersion relation: ω2 = k0g · tanh (k0h). The normalization
used for the hydrodynamic forces is F̃k = Fk/ρghA, k = 2, 3, where A is the incident wave
amplitude.

Figure 6c,d depict the twin hull’s response amplitude operators (RAOs) associated
with its two linear motions, i.e., sway (ξ2) and heave (ξ3). The body’s linear responses
were normalized as RAOk = ξ̃k = |ξk|/A, k = 2, 3. Finally, in Figure 6e,f corresponding
results concerning the hydrodynamic coefficients are presented. The matrix A(3×3) of
added inertial coefficients and the matrix B(3×3) of hydrodynamic damping coefficients
were normalized as:

~
A =

A
ρ

 h−2 h−2 h−3

h−2 h−2 h−3

h−3 h−3 h−4

,
~
B =

√
h
g
· B

ρ

 h−2 h−2 h−3

h−2 h−2 h−3

h−3 h−3 h−4

. (16)

Figure 7a illustrates the twin hull’s RAO associated with the angular motion, i.e., roll
(ξ4). The body angular response is normalized as RAO4 = ξ̃4 = |ξ4|/kA, with k being the
wavenumber corresponding to the mean water depth h. The corresponding normalized
hydrodynamic moment F̃4 = F4/ρgh2 A is shown in Figure 7b. Figure 7c depicts the
diagonal elements (A44, B44) of the added inertia and damping matrices. Moreover, the
(non-diagonal) elements of the symmetric added inertia and hydrodynamic damping
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matrices are shown in Figure 7d. All results are plotted as functions of the non-dimensional
wavelength λ/h.

Finally, indicative results regarding the total induced wavefields are depicted in
Figure 8 for non-dimensional wavelength equal to λ/h = 2.4. In particular, Figure 8a
illustrates the real part of the total potential ϕ(x); see Equation (4) for the three considered
cases of 0, 10 and 20% bottom slope (see Figure 6a) in the general vicinity of the floating
twin-hull structure. Figure 8b depicts the imaginary parts of the corresponding potential
functions. The configuration was made dimensional by setting h = 30 m and an incident
field of amplitude A = 1.5 m has been considered. The alterations to the wavefields
due to the non-uniform topography profiles are clearly seen, as the equipotential lines
intersect each seabed boundary section perpendicularly, which implies the satisfaction of
the impermeability boundary condition.

Figure 8. (a) Real and (b) Imaginary Part of the total complex wave potential and corresponding free
surface elevation for a twin-hull floating structure of breadth B = 20 m and three considered cases
of bottom slope 0, 10 and 20% in an environment with a mean depth of h = 30 m in the case of an
incident wave of wavelength λ/h = 2.4 and amplitude A = 1.5 m.

5. Effects of Floating Structure Response in Waves on Floating PV Performance

The energy efficiency of a floating photovoltaic (FPV) unit is based on several parame-
ters, many of which are the result of the surrounding marine environment. Some of the
factors that affect the energy efficiency of FPV are common with corresponding land-based
units, with similar power output levels, while others are absent in land installations.

In open seas, there is generally a higher level of humidity than inland, as well as
lower ambient temperatures. The decreased temperatures are a result of various factors,
which among others, include [29] the water’s transparency, which results in the incoming
solar radiation being transmitted to inner layers of the medium rather than just the surface
layer, as well as the fraction of incident irradiation that is naturally used for evaporation.
Furthermore, the wind speed is usually higher due to long fetch distances compared to
land. The above parameters can help to maintain a low operating temperature of the solar
cells, which, in turn, leads to close-to-optimal performance of the solar panel. The latter’s
efficiency decreases with increasing temperatures. More importantly, PV efficiency is
strongly dependent on the angle of incidence (AOI) of solar irradiation, which, in offshore
FPV installations, is directly affected by the dynamic wave-induced motions. In particular,
the power output of photovoltaic cells is strongly affected by the angle of incidence (AOI)
of solar irradiation and the plane of array (POA) irradiance, which is given by the following
equation:

POA = DNI cos(AOI) + DHI + RI, (17)

where DNI, DHI and RI are the direct, diffuse and reflected irradiance components on
a tilted surface, respectively. To provide indicative results regarding the effect of wave-
induced motions of the floating structure on the power output, we considered an offshore
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installation in the geographical sea area of the southern Aegean Sea. For the latter area, the
optimized values for tilt and azimuth angles of the photovoltaic installations, respectively,
are θT = 30o and θA = 135o using data extracted from the Sandia Module Database,
which is provided by the PV_LIB toolbox (https://pvpmc.sandia.gov/applications/pv_
lib-toolbox/ (accessed on 12 August 2021)).

In this work, a preliminary assessment of a floating photovoltaic system’s energy
efficiency is made for twin-hull structures, taking into account data regarding the dynamic
motions of the floating unit carrying the panels, as derived by the hydrodynamic model
presented earlier, while the interesting effects of temperature and humidity will be studied
in future work. The linear motions, i.e., sway (k = 2) and heave (k = 3), are considered to
have no important effect on the tilt angle of the panels and, therefore, the angle of incidence.
Hence the effect of the unit’s mobility is limited to the angular oscillation i.e., the roll
motion (k = 4) under excitation from the beam incident waves.

For this purpose, response data was simulated by assuming specific sea conditions.
The latter are characterized by a frequency spectrum used to describe the incident waves.
We considered the floating twin-hull structure of total breadth B(T) = 20 m examined in
the previous section in constant water depth h = 30 m. The sea state is described by a
Brettschneider spectrum model (see [30], Chapter 2.3), as follows:

S
(
ω; Hs, Tp

)
=

5
16

H2
s

ω4
p

ω5 exp

[
−5

4

(
ω

ωp

)−4
]

(18)

where Hs is the significant wave height, ωp = 2π/Tp is the peak frequency and Tp the
corresponding peak period.

The roll responses calculated by the present model, as discussed in the previous
section, were used to evaluate the fluctuations of the AOI and the effect on the power
output performance of a PV system consisting of panels, with the aforementioned values
of tilt (relative to the horizontal deck of the structure) and azimuth angles. Specifically,
the roll spectrum was calculated using the RAO of the roll motion (see Figure 7a) of the
twin-hull structure using:

S4(ω) = RAO2(ω)k2S(ω) (19)

where the wavenumber k is given by the dispersion relation of water waves for the water
depth considered. Based on the calculated roll spectrum, time series of the roll motion
ξ4
(
t ; Hs, Tp

)
of the above floating twin-hull structure were simulated, for the considered

configuration (structure and coastal environment) and incident waves, characterized by
the parameters

(
Hs, Tp

)
using the random-phase model [30], Chapter 8.2, (see also [31]).

The results were normalized using the value corresponding to calm water (flat hori-
zontal deck of the structure) in the same sea environment, which results in the following
definition of the performance index:

PI(t) =
a cos(αm + ξ4(t)) + b

a cos(αm) + b
(20)

where a = DNI and b = DHI + RI for the geographical area and sea environment
considered, respectively, and αm is a representative value for the angle of incidence.

As an example, the numerical results concerning the calculated roll response of a float-
ing twin-hull structure of breadth B(T) = 20 m at depth h = 30 m with an incident wave
spectrum (dashed line) and roll angle spectrum (solid line) of the structure in the case of in-
cident waves of significant wave height HS = 0.5 m and peak period TP = (2π/ωp) = 4 s
are presented in Figure 9. Based on the calculated roll spectrum, the simulated time series
of the roll motion of the above floating twin-hull structure for the considered coastal envi-
ronment and incident waves are shown in Figure 10 for a time interval of 1 h. Furthermore,
in the same figure, a representative small interval of 3 min was obtained using the random-
phase model [30,31] for a sea state that was characterized by significant wave height HS =

https://pvpmc.sandia.gov/applications/pv_lib-toolbox/
https://pvpmc.sandia.gov/applications/pv_lib-toolbox/
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0.5 m and peak period
TP = 4 s, as generated by winds corresponding to the Beaufort scale levels BF = 1− 2.
In this case, indicative results concerning the effect of waves and roll responses of the
structure on the performance index are shown in Figure 11, as calculated by Equation (20)
using a representative value of the mean angle of incidence αm = 5◦ and omitting, as a
first approximation, the effect of diffuse and reflected irradiance components (b ≈ 0). The
value of the performance index in calm water was PICALM = 0.9962. In the considered
case of incident waves, which were characterized by a very low energy content, the RMS
value of the estimated performance index dropped to PIRMS = 0.9947. The latter’s mean
value, as well as the corresponding calm-water value, are shown in Figure 11 using cyan
and red lines, respectively.

Figure 9. (a) Roll response of the floating twin-hull structure of breadth B = 20 m at a mean depth
h = 30 m. (b) Incident wave spectrum (dashed line) and roll angle spectrum (solid line) of the structure
in the case of incident waves with a significant wave height HS = 0.5 m and a peak period TP = 4 s.

Figure 10. Simulated time series of the floating twin-hull structure’s roll motion. Total breadth
B(T) = 20 m at a depth h = 30 m in the case of incident waves with a significant wave height equal to
HS = 0.5 m and a peak period TP = 4 s. (a) A 1 h long time series and (b) indicative roll motion over
a 3 min long interval.
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Figure 11. Performance Index of FPV on the floating twin hull structure of breadth B(T) = 20 m at a
depth h = 30 m in the case of incident waves with a significant wave height HS = 0.5 m and a peak
period TP = 4 s. Roll motion time series (a) in a 1 h long time interval and (b) in an indicative 3 min
long time interval.

6. Discussion

Following previous works [32,33], concerning the investigation and modeling of
marine renewable energy systems, the present method focused on the estimation of the
effect of wave-induced responses on the performance index of a twin-hull FPV structure
in various sea conditions, as defined by the wave climatology of the offshore–coastal site
where the system was deployed. As an example, the results concerning the performance
index that is associated with the wave effects (Equation (20)) of the floating twin-hull
structure of breadth B(T) = 20 m at a water depth h = 30 m that are presented and
discussed above are given in Table 1 for wind waves corresponding to the Beaufort scale
from BF = 1 (relatively calm sea) to BF = 5− 6 conditions.

Table 1. Performance indexes for different sea conditions.

BF Sea Condition HS(m) TP(s) PIRMS

1–2 1–2 0.5 4 0.9947

3 3 1 6 0.9771

4–5 4 2 8 0.9203

5–6 4–5 3 9 0.8475

We observe that the effect of roll responses results in fluctuations of the AOI that could
cause a significant drop in the performance index as the sea condition changed from calm
to moderate and higher severities. A more complete picture of the sea state’s effect on the
FPV module’s power output, as estimated using the present method, is shown in Figure 12,
indicating its usefulness for supporting the systematic analysis and design of the system,
including the offshore structure, as well as the electric production and storage subsystems.
Although inevitable fluctuations of the AOI due to waves in offshore PV units reduce the
power output, this negative effect could be balanced or even reversed by the cooling effect
and other factors resulting from the marine environment, which is a subject that is left to
be considered in future work.
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Figure 12. Contour map of the normalized performance index as a function of the prevailing sea
state (significant wave height HS and peak period TP).

7. Conclusions

A BEM model was developed and applied to the hydrodynamic analysis of twin-hull
structures in variable bathymetry regions and was used to predict their hydrodynamic
responses and their effects concerning the power output of offshore FPV systems. The
analysis was restricted to two spatial dimensions for simplicity. After verification of the
method with comparisons against data from the literature, the method was systematically
applied and the derived numerical results are presented for floating bodies of simple
geometry, lying over uniform and sloping seabeds. With the aid of systematic comparisons,
the effects of bottom slope on the hydrodynamic characteristics (hydrodynamic coefficients
and responses) of the floating bodies were illustrated and discussed. Finally, response data
that was simulated for specific sea conditions, characterized by frequency spectra, were
considered to describe the incident waves interacting with a floating twin-hull structure, in
order to evaluate the effect of wave-induced fluctuations on the power output performance
of the floating PV system. The effects of waves on the floating PV performance are
presented, indicating significant variations of the performance index ranging from 0 to
15% depending on the sea state. Future work will be directed toward (a) the detailed
analysis of wave and wind environmental factors and their effects on the resulting system’s
performance, (b) the extension of the model to 3D including 6-DOF wave motion analysis
of the floating structures over general bathymetry and evaluation of their performance
and (c) a systematic application of the present method to realistic cases that support the
optimized design of floating PV modules in specific marine environments.
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Abbreviations

AOI Angle of incidence
BC Boundary condition
BEM Boundary element method
BM Metacentric radius
DHI Diffuse horizontal irradiance
DNI Direct normal irradiance
DOF Degree of freedom
DtN Dirichlet-to-Neumann
FPV Floating photovoltaic
GM Metacentric height
KB Distance from reference point K to center of buoyancy
KG Distance from reference point K to center of gravity
PI Performance index
POA Plane of array
PV Photovoltaic
RAO Response amplitude operator
RI Reflected irradiance
RMS Root mean square (here of the time series data)
SWL Still-water level

Appendix A. Dirichlet-to-Neumann Operators

By projecting the terms of Equation (5a) on the orthonormal basis, spanned by the
normalized eigenfunctions Z̃(i)

n (z) = Z(i)
n (z)/

∥∥∥ Z(i)
n

∥∥∥, with
∥∥∥Z(i)

n

∥∥∥ standing for the L2−
norm of each vertical function:

∥∥∥Z(i)
n

∥∥∥ =


0∫

z=−hi

[
Z(i)

n (x3)
]2

dx3


1/2

, i = L, R, (A1)

we obtain

〈
ϕ
(L)
p (x) · Z̃(L)

n (x3)
〉
=

 exp
(

ik(L)
0 x2

)
+ C(L)

0 exp
(
−ik(L)

0 x2

)
, n = 0

C(L)
n exp

[
k(L)

n (x2 − a)
]
, n ≥ 1

(A2)

where 〈 f (x3), g(x3)〉 =
x3=0∫

x3=−ha

[ f (x3) · g(x3)] dx3. Therefore, the reflection coefficient in the

left half-strip DL is equal to

C(L)
0 =

− exp
(

ik(L)
0 x2

)
+
〈

ϕ
(L)
p (x) · Z̃(L)

0 (x3)
〉

exp
(
−ik(L)

0 x2

) , (x2, x3) ∈ DL (A3)

Moreover, by calculating the derivative of Equation (5a) with respect to the unit
normal vector n (which is directed opposite to the x2 direction on ∂D5) and replacing in
Equation (6e)

− ∂ϕ
(L)
p (x)
∂n = ik(L)

0

[
exp

(
ik(L)

0 x2

)
− C(L)

0 exp
(
−ik(L)

0 x2

)]
Z(L)

0 (x3)+

+
∞
∑

n=1
k(L)

n C(L)
n exp

[
k(L)

n (x2 − a)
]

Z(L)
n (x3) = −TL

[
ϕ
(L)
p (x)

]
−Qp, x ∈ DL,

(A4)
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and by using Equation (A2), we conclude to

TL

[
ϕ
(L)
p (x)

]
= ik(L)

0 Z̃(L)
0 (x3)

〈
ϕ
(L)
p (x) · Z̃(L)

0 (x3)
〉
+

−
∞
∑

n=1
k(L)

n Z̃(L)
n (x3)

〈
ϕ
(L)
p (x) · Z̃(L)

n (x3)
〉

,
(A5)

where
Qp = −2ik(L)

0 exp
(

ik(L)
0 x2

)
Z̃(L)

0 (x3). (A6)

Similarly, for k = 2, 3, 4, we obtain

− ∂ϕ
(L)
k (x)
∂n = −ik(L)

0 C(L)
0 exp

(
−ik(L)

0 x2

)
Z(L)

0 (x3)+

+
∞
∑

n=1
k(L)

n C(L)
n exp

[
k(L)

n (x2 − a)
]

Z(L)
n (x3) = −TL

[
ϕ
(L)
k (x)

]
−Qk, x ∈ DL.

(A7)

Using the above results, we obtain TL

[
ϕ
(L)
k (x)

]
= TL

[
ϕ
(L)
p (x)

]
, k = 2, 3, 4, and Qk =

0, k = 2, 3, 4. Similarly, for the wavefield in the domain DR:

∂ϕ
(R)
p (x)
∂n = ik(R)

0 C(R)
0 exp

(
ik(R)

0 x2

)
Z(R)

0 (x3)+

+
∞
∑

n=1
k(R)

n C(R)
n exp

[
k(R)

n (b− x2)
]

Z(R)
n (x3) = TR

[
ϕ
(R)
p (x)

]
, x ∈ DR.

(A8)

and thus
TR

[
ϕ
(R)
p (x)

]
= ik(R)

0 Z(R)
0 (x3)

〈
ϕ
(R)
k (x) · Z̃(R)

0 (x3)
〉
+

+
∞
∑

n=1
k(R)

n Z(R)
n (x3)

〈
ϕ
(R)
k (x) · Z̃(R)

n (x3)
〉

.
(A9)
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