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Abstract: Highly nonlinear characteristics of lithium-ion batteries (LIBs) are significantly influenced
by the external and internal temperature of the LIB cell. Moreover, a cell temperature beyond the
manufacturer’s specified safe operating limit could lead to thermal runaway and even fire hazards
and safety concerns to operating personnel. Therefore, accurate information of cell internal and
surface temperature of LIB is highly crucial for effective thermal management and proper operation
of a battery management system (BMS). Accurate temperature information is also essential to BMS for
the accurate estimation of various important states of LIB, such as state of charge, state of health and so
on. High-capacity LIB packs, used in electric vehicles and grid-tied stationary energy storage system
essentially consist of thousands of individual LIB cells. Therefore, installing a physical sensor at each
cell, especially at the cell core, is not practically feasible from the solution cost, space and weight
point of view. A solution is to develop a suitable estimation strategy which led scholars to propose
different temperature estimation schemes aiming to establish a balance among accuracy, adaptability,
modelling complexity and computational cost. This article presented an exhaustive review of these
estimation strategies covering recent developments, current issues, major challenges, and future
research recommendations. The prime intention is to provide a detailed guideline to researchers
and industries towards developing a highly accurate, intelligent, adaptive, easy-to-implement and
computationally efficient online temperature estimation strategy applicable to health-conscious fast
charging and smart onboard BMS.

Keywords: electric vehicles; machine learning; Kalman filter; thermal modelling; online prediction;
electromagnetic impedance spectroscopy; computational cost

1. Introduction

Lithium-ion batteries (LIBs) are widely used in electric vehicles (EVs), grid-tied sta-
tionary energy storage systems, and several other consumer electronics primarily due
to their high voltage rating (>4 V/cell) and high energy density (~265 (W h) L−1) and
longer operational life. The use of LIBs in automotive and aerospace applications has led to
larger cell sizes and large battery packs for a higher driving range and the requirement for
more aggressive charging and discharging. However, thermal instability and temperature-
dependent nonlinear behavior is some of the common concerns behind the safe and reliable
operation of LIB systems. It is noticed that the operation of batteries outside the safe
operating temperature directly affects the performance of LIBs, such as cycle life, efficiency,
reliability and safety. Researchers investigating the thermal performance of LIB showed
that the best operating temperature range is from 25 ◦C to 40 ◦C [1,2]. Richardson et al. [3]
demonstrated that the difference between the core and surface temperature could reach
more than 10 ◦C during real-life applications, especially during the high discharging condi-
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tion and fluctuating load current demand. The excessive temperature difference and the
accumulation of a large amount of heat inside the cell could lead to thermal runaway or
even explosions and fire [4]. That necessitates the employment of a battery management
system (BMS) for effective monitoring of battery parameters (current, voltage, temperature),
estimation of battery states (state of charge (SOC), state of health (SOH), remaining useful
life (RUL), state of temperature (SOT) [5]). Research studies demonstrated that SOC [6],
SOH [7], and remaining storage capacity [8] are a function of temperature; thus, the esti-
mation of the battery states also depends on the accurate estimation of cell temperature.
The Columbic efficiency of a cell is greatly affected by the cell temperature during the
charging and discharging period. Few other popular functionalities of BMS include cell
balancing [9] and fault detection/diagnosis [10] to ensure optimum capacity utilization,
operational safety, reliability, and longer battery life often requires temperature information
of an individual cell and battery pack as well. Therefore, accurate information of core and
surface temperature is highly crucial for effective thermal management and safety of a
LIB pack. Moreover, in cold climate areas, the battery capacity is drastically reduced due
to low-temperature operation that requires preheating the battery to a suitable range for
optimum performance [11,12]. It is also evidenced that for every 0.1 ◦C beyond the safe
operating region the battery capacity degrades by about 5% [13]. It is evidenced that maxi-
mum heat is generated during the discharging period especially with fast discharging [14].
Therefore, accurate temperature estimation is essential for effective thermal management
and safety during fast charging and discharging and preheating of the cell to minimize
capacity fade.

In summary, it could be stated that the accurate information of cell temperature is
undoubtedly serving as the essential basis for the thermal management and safety of LIB.
While the surface temperature of each cell can be measured by installing a temperature
sensor on each cell, the core or internal temperature measurement directly using physical
sensors is challenging. Moreover, installing a temperature sensor on each cell surface is not
practically feasible from a system cost, space and weight point of view as any high-capacity
battery pack used in EVs and grid-tied systems essentially consists of thousands of individ-
ual cells. Researchers have also incorporated multi-dimensional sensing and self-healing
functions into a single battery cell to develop a smart battery [15–18]. Smart cells are typi-
cally capable of parameter measurements and estimation of cell states including the state
of temperature. Despite the modularized application of BMS in smart batteries, accurate
temperature estimation is still required, as otherwise installing sensors in each cell results
in high implementation cost and complexity. Therefore, researchers are struggling hard
to develop a high-fidelity, accurate, easy-to-implement, and computationally inexpensive
online temperature estimation strategy suitable for low-cost onboard BMS. Several tem-
perature estimation techniques have been proposed by researchers so far. Each different
type of method has its advantages and limitations with respect to the above-mentioned
features of an optimum BMS. Therefore, a summary of all the prominent techniques would
be very helpful to researchers and developers serving as a baseline for further research
and as a guideline for selecting appropriate techniques suitable for a specific requirement.
However, such a summary with detailed discussion on current progress and explanation of
the existing issues, challenges and future research scopes has not yet been presented in the
literature. Therefore, this article covered the research gap by conducting a comprehensive
review of the state-of-the-art temperature estimation strategies reported in the literature
so far.

The paper is organized as follows: In Section 2, generic temperature estimation strat-
egy of LIB is presented. The classification of temperature estimation strategies is presented
in Section 3. Section 4 is dedicated to presenting the existing estimation techniques, their
evolutions, limitations and challenges. It should be noted that temperature estimation
strategies for LIBs reported in the literature between 2010 to 2021 are primarily consid-
ered. However, few prominent research articles published between 1990 to 2010 are also
considered for understanding the fundamentals and evolution of temperature estimation
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schemes. Commonly used search platforms, such as “Google Scholar”, “Science Direct”,
and IEEE Xplore, were used to find research articles published within this tenure. The
search criteria were “Temperature Estimation of Lithium-ion Batteries”. Section 5 discusses
the current issues, challenges and future research recommendations. Finally, Section 6 is
dedicated to a summary of the major findings and concluding remarks.

2. Generic Temperature Estimation Strategy

Irrespective of battery chemistry, heat is accumulated inside the battery during the
charging/discharging even during idle conditions, majorly due to several largely exother-
mic chemical and electrochemical reactions as well as transport processes. If the heat trans-
fer from the battery to the surroundings is not sufficient, then the heat gets accumulated
inside the battery resulting in an increase in core and surface temperature, thereby risking
thermal runaway. This phenomenon is even more prominent in the case of hard-cased
insulated batteries (as used in EVs), under fast charging/discharging and the operation
in hot environments. Heat dissipation is worse in cylindrical LIBs that are extensively
used in high-capacity LIB packs. Therefore, a typical temperature estimation scheme
consists of two models, namely, a heat generation model and a heat transfer model [19].
Often, a battery electrical model is also used to estimate the total heat generation using
Bernardi’s [20] heat generation model whereas few other models use a mathematical form
of battery electrochemistry to calculate the heat generation. Adaptive estimation strategies
also consider the influence of different battery states, such as SOC and SOH, as the battery
temperature is a function of these battery states. Then, the heat transfer model takes the
estimated total heat quantity as well as few other external measurements such as ambient
temperature to predict the temperature of that cell. Closed-loop estimation schemes use the
measured or the estimation temperature as feedback to improve the prediction accuracy. A
schematic layout of a generic temperature estimation strategy for LIB is shown in Figure 1.
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3. Classification of Temperature Estimation Strategies

As shown in Figure 1, typically, a temperature estimation scheme consists of a heat
generation model and a heat transfer model. The heat generation models reported in the
literature can be broadly classified from two different aspects; based on modelling strategy
and based on the source of heat generation. Heat generation models based on modelling
strategy can be classified into three groups, physics-based electrochemical models [21–24],
equivalent circuit models (ECM) [25–27], black-box models [28–30]. In contrast, based
on the source of heat generation, these models can be grouped as a concentrated model,
distributed model [31] and heterogeneous model [25,32]. The concentrated heat generation
model considers that all heat is generated at the core only, usually considered to reduce the
modelling complexity. The distributed heat generation model considers that uniform heat
is generated throughout the entire cell geometry whereas the heterogeneous model can
capture different heat generation from difference cell layers usually resulting in temperature
and current density gradients inside the cell. The heterogeneous models are more detailed
thus can produce highly accurate predictions; however, these are most complex and require
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extensive experiments for modelling. Distributed heat generation models are a balance
between the concentrated and heterogeneous models. The heat transfer models can be
classified into finite element analysis (FEA)-based models [27,33–36], heat capacitor-resistor
models (lumped or distributed parameter) [28,37–40], and data-driven techniques. Heat
capacitor–resistor-based models use the analogy between electrical and thermal systems.
A heat capacitor–resistor can be further classified as mentioned in Figure 2. Lumped
parameter models are simple and useful for online applications, however, only one or two
average temperatures can be predicted with these models whilst the battery temperature
distribution is not spatially uniform, especially in larger capacity cylindrical LIB cells. On
the other hand, complex distributed models [41,42] can describe the detailed temperature
distribution in a cell, however, they are not suitable for online application due to their
computational complexity. Several other detailed models of LIB accounting for the thermal
characteristics of different layers are studied in [43–48]. A two-state/node model provides
information on core and surface temperature whereas a one-state/node model can provide
only core temperature.
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The heat transfer model where the total heat generation is one of the input parameters
is collectively called the battery thermal model where the total heat generation is estimated
by the battery heat generation model. The thermal modelling of LIB is a separate area
of study and is not under the scope of this study. It deals only with the temperature
estimation strategies. However, as most of the temperature estimation strategies are
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extensively depending on thermal modelling, an overview of each modelling technique is
also discussed with the respective temperature estimation strategy for better understanding.
Researchers employed different types of heat generation models with different kinds of
heat transfer models to come up with a temperature estimation scheme. Therefore, it is
challenging to classify these estimation strategies. Broadly, the temperature estimation
schemes can be grouped into electrochemical thermal modelling-based, equivalent electric
circuit model (EECM)-based, machine learning (ML)-based, numerical-model based, direct
impedance measurement-based, magnetic nanoparticles-based schemes. The families of
the LIB heat generation model, heat transfer model and temperature estimation strategy
are illustrated in Figure 2.

4. Comprehensive Review of Temperature Estimation Strategies
4.1. Electrochemical Thermal Modelling-Based Temperature Estimation

Researchers started thermal modelling in the early nineties, those are mostly coupled
with an electrochemical model to simulate the temperature profile of a battery under differ-
ent operating conditions, geometries or cooling rates. There are simple one-dimensional
(radial direction) models [37,49–54] to complex three-dimensional thermal models [55–59].
Researchers have primarily used different analytical techniques to mathematically model
the electrochemical behavior of the cell. One-dimensional models typically assume isother-
mal, constant current operation of the battery and lumped thermophysical properties
and constant heat generation rates. Highly complex three-dimensional models require an
in-depth understanding of the thermodynamic properties of battery materials and parts to
consider the heat effects caused by ohmic resistance, chemical reactions, mixing processes,
polarization and electrode kinetic resistance. Often, temperature estimation using such
highly complex models is very accurate, however, such detailed models are essential for
battery design purposes. Those are not compatible with temperature estimation using
onboard BMS with low computational resources. These complex models are capable of
accounting for the time-varying nonlinear battery performance. However, they typically
require several system properties, operational parameters which require extensive exper-
imental measurements. While, at the same time, quantitative estimation of some of the
properties, such as transport properties, thermodynamic properties and heat effects are
highly challenging.

Thomas and Newman [60] introduced an electrochemical modelling-based detailed
heat generation model of LIB to estimate the total heat generation during the charg-
ing/discharging period. The fundamental equation of the total heat generation inside the
LIB cell as proposed by Thomas and Newman reads

Q = I(V − Uavg) + IT
∂Uavg

∂T
− ∑i∆Havg

i ri −
∫

∑j(H j − Havg
j )

∂Cj

∂t
dv (1)

In Equation (1), Q is the rate of heat generated or consumed inside the cell, V and U
are the cell voltage and equilibrium potential, respectively, I is the charging or discharging
current, T is the cell temperature. ∆Hi represents the changes in enthalpy of the chemical
reaction i and ri is the rate of reaction i. ∆H j represents the partial molar enthalpy of
species j and cj is the concentration of the species. t and v represent the time and volume
of the cell, respectively. All the properties are mentioned based on the volume-averaged
concentration, thus the superscript “avg” is used. The model can provide accurate informa-
tion on heat generation only, temperature estimation is not presented in this study. Their
heat generation model was extensively used by several other researchers. Modelling is
very detailed thus highly complicated and not suitable for online application owing to
the computational burden. One of the widely-used electrochemical models commonly
known as the Doyle–Fuller–Newmann model [37,61] is extensively referred to and also
used for thermal modelling. It consists of nonlinear partial differential-algebraic equations
to describe the internal characteristics of LIB. It is also referred to as the pseudo-two-
dimensional (P2D) model. The major limitation of the model is its high computational
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burden which limits its application in online state estimation in embedded BMSs. Here,
Al Hallaj et al. [53] showed that a simplified transient one-dimensional thermal model
with lumped parameters is sufficient for cell design purposes, especially to simulate the
thermal behavior of scaled-up LIBs. Detailed knowledge of the role of different cell com-
ponents, such as electrodes, electrolytes and separators in heat generation is also not
necessary. Few researchers used this type of complex electrochemical model to explore
pulse power limitations to prevent thermal runaway and to design thermal management
systems [62,63]. Those are mostly used for designing LIB cells as well as LIB packs. A
lumped electrochemical-thermal-coupled model was used to predict the thermal perfor-
mance of LIB alongside the performance of individual electrodes at various operating
temperatures by Fang et al. [64]. The model was validated against the experimental data
for constant current and pulsing conditions characteristic of hybrid electric vehicle (HEV)
which are merely providing the laboratory experimental results instead of a real-work
application scenario. The impact of charging current on internal temperature behavior
was investigated in [65]. Gerver et al. [66] included more detailed information and cell
characteristics to develop a multi-dimensional electrochemical thermal model of LIB to
analyze the thermal performance and heat generation more accurately. Despite estimation
accuracy, the modelling complexity and computational burden limit its application in
embedded BMS.

Due to a lack of clear understanding of the electrochemical processes inside the LIB
and their corresponding mathematical equations alongside to reduce the computational ex-
penses, often all heat generation sources were not modelled/considered. These unmodeled
heat generation behaviors lead to significant errors in temperature estimation. Regarding
this, Zhang et al. [67] developed a two-state thermal model utilizing discretization and
inverse model techniques which do not require prior knowledge of thermal boundary
conditions. Moreover, the model is capable of estimating the total heat generation of a
battery cell, thus, thermal modelling of each heat source is not required and abnormal
heat generation can also be detected from the estimation results. The effectiveness and
robustness of the model were tested for varying thermal boundary conditions and fast
charging conditions. While the strategy is designed for self-heating pouch cells, a sim-
ilar approach could also be adapted for other types of LIBs. Thus, further research is
recommended here. A high-fidelity electrochemical model and onboard measurements
such as terminal voltage and current were used by Wang et al. [68] to estimate the cell
temperature at a wide range of C-rates during the charging/discharging period. They
have also used a dual ensemble Kalman filter (DEKF) which incorporates enhanced single-
particle dynamics to relate terminal voltage to battery temperature and Li+ concentration.
Besides, modelling complexity and high computational cost, the accurate determination
of lithium (Li+) concentration is challenging. Therefore, the application of the model in
real-life online prediction is questionable. The spatial distribution of internal temperature
in LIB was estimated using a pseudo-2D electrochemical model and soft-constrained dual
unscented Kalman filter (DUKF) by Marelli and Corno [69]. It is mainly developed to
estimate the Li+ concentration and modelling complexity and computational expenses
are very high. However, the approach could be extended for temperature estimation.
Smith et al. [62] developed a one-dimensional electrochemical, lumped thermal model to
explore pulse power limitations and thermal behavior of a LIB pack. The electrochemical
thermal modelling-based temperature estimation strategies proposed by different authors
are summarized in Table 1 for a quick reference to the readers. In general, the major
limitations of any electrochemical model-based strategies are the modelling complexity
and high computational cost making these models unsuitable for online prediction and
application at low-cost onboard BMS.
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Table 1. Summary of electrochemical thermal modelling-based temperature estimation strategies.

Reference Types of Models Important Note

Thomas and Newman [60] One-dimensional
electrochemical model Not used for temperature estimation

Doyle–Fuller–Newmann model
[37,61]

Pseudo-two-dimensional
(P2D) model

Not used for temperature estimation but several other
researchers used

Al Hallaj et al. [53]
A transient one-dimensional

thermal model with
lumped parameters

Detailed information of electrodes, electrolytes and
separator were considered in heat generation model

Fang et al. [64].
Lumped parameter

electrochemical-thermal-
coupled model

Can estimate one or two average temperatures,
performance of individual electrode at various operating

temperatures, constant current and pulsing conditions
characteristic were considered, experimentally validated

Gu and Wang [41]
Thermal energy generation model,

multiphase micro-macroscopic
electrochemical model

Temperature-dependent physicochemical properties and
thermal behaviors under various charging conditions

were considered. Capable of predicting the average cell
temperature as well as the temperature distribution inside
a cell, volume-averaging technique, numerical simulations

Kumaresan et al. [42] One-dimensional thermal model
Thermal dependence of various parameters in the model

on different discharge profiles was assessed, validated
using experimental and simulation results

Kim et al. [65] Two-dimensional modelling +
Finite element method (FEM)

Able to provide temperature distribution based on
potential and current density distribution, MATLAB,
validated using experimental and simulation results

Gerver et al. [66] A multi-dimensional
electrochemical thermal model

Thermal properties of each cell layer are considered,
experimentally validated

Wang et al. [68]

High-fidelity electrochemical
model + onboard measurements +

dual ensemble Kalman
filter (DEKF)

Wide range of C-rates during the charging/discharging
period, MATLAB, validated using experimental and

simulation results

Marelli and Corno [69]
Pseudo-2D electrochemical model

and soft-constrained dual
unscented Kalman filter (DUKF)

Can provide information on the spatial distribution of
internal temperature, MATLAB Simulation

Smith et al. [62]
A one-dimensional

electrochemical lumped
thermal model

Adaptive to different drive-cycles, tested and validated
with FUDS and HWFET drive cycles,

experimentally validated

4.2. Equivalent Electric Circuit Model-Based Temperature Estimation

An equivalent electric circuit model (EECM) represents the thermal dynamics of
LIB using electrical system parameters to develop a heat capacitor–resistor-based battery
thermal model. Depending on the number of heat capacitors (number of energy storage
elements) two types of models, namely, the first-order model and second-order model have
been developed so far in the literature. The first-order model consists of one thermal energy
storage element whereas a second-order thermal model consists of two heat capacitors,
typically, one for the heat capacitance of the core and the other one is for the cell surface [13].
The second-order model can capture more dynamics than the first-order model. The first-
order and second-order thermal models of a LIB cell are shown in Figure 3a,b, respectively.
In Figure 3, Q represents the heat generation rate, Cc and Cs are the heat capacitance of core
and surface, respectively, Tin and Tout are the temperatures of core and surface of the cell,
respectively. Tamb is the ambient temperature.
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Further, depending on the modelling complexity, EECM could be also classified as
lumped-parameter and distributed parameter models. Lumped-parameter models are
used for simplification and thus low computational cost compared to detailed distributed
models. Computationally efficient lumped thermal models are developed using single
temperature as input to capture the model parameters [70] while some researchers used
both surface and core temperatures of the cell to construct the lumped thermal models.
Some also considered the correlation between cell geometry and other physical properties
with thermal modelling [71]. However, several assumptions were made during modelling
leading to inaccurate temperature estimation compared to detailed thermal modelling.
Further, thermal models that only estimate the core temperature are considered as single-
state/node [72], whereas if the model can estimate both surface and core temperature
then it is termed as two-state/node [67] thermal model. The parameters of the EECM
are identified through ranges of experimental studies such as electrochemical impedance
spectroscopy (EIS) or utilizing externally measurable quantities, such as voltage, current,
and temperature. Few studies also considered various conditions of SOC, SOH and
estimated surface/core temperatures to make the model more robust. It is very difficult
to group those thermal models because lumped models are used in both single-state and
dual-state modelling and the model could be first-order and second-order. Therefore, the
literature is grouped into cell-level and pack-level temperature estimation schemes that are
discussed below.

Typically, these EECM models determine the value of Q using Equation (2) as formu-
lated by Bernardi et al. [20]:

Q = I(V − VOCV) + ITc
dVocv

dTc
(2)

where Vocv represents the open-circuit voltage of the battery cell and the term dVocv
dTc

is the
entropy coefficient. Finally, Tc and Ts are estimated using the mathematical form of the thermal
models shown in Figure 3. Mathematical equations for temperature estimation using the first-
order and second-order thermal model are represented by Equations (3) and (4), respectively.

4.2.1. EECM-Based Cell Temperature Estimation

One of the prime challenges of any EECM-based strategy is model parameter iden-
tification. Forgeze et al. [43] used transient experiments by applying current pulses of
different magnitudes to increase the internal temperature and the model parameters, heat
transfer coefficients and heat capacity were determined to construct a lumped parameter
thermal model. This study used EIS for parameter identification where current pulses at
2 Hz were used to increase the internal temperature. The Tc was estimated based on the
measured surface temperature using the lumped parameter thermal model. The entropy
change was also taken into account while modelling. They developed a first-order thermal
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model as shown in Figure 3a. The mathematical representation of the first-order thermal
model as used by Forgeze et al. reads

Tin = Ts

(
1 +

Rin
Rout

)
− Tamb

Rin
Rout

(3)

The strategy developed by Forgez et al. lacks quantitative analysis of the influence
of heat generation. The operating current is much higher compared to the very low
current value used in EIS. Therefore, model parameters determined using EIS are not
appropriate for capturing the thermal dynamics accurately. Moreover, they have considered
uniform internal temperature, however, more than 10 ◦C temperature difference among
different internal points of a cell has been reported in the same study. This strategy
requires surface temperature measurement by installing a temperature sensor at each cell,
thus scaling-up is impractical. Maleki and Shamsuri [73] developed a thermal model of
notebook computer LIB-pack to understand the thermal response under various operating
conditions aiming to reduce the battery pack designing cost and time. They revealed that
the temperature rise during charging is dominated by heat dissipation from the control
power electronics while during discharging it is dominated by the heat generated inside
the LIB cell. These relevant observations must be considered while designing an effective
thermal management system of LIB pack, especially for health-conscious fast charging.
Surya et al. [13] developed a second-order thermal model for core and surface temperature
estimation scheme using KF. Here, the least square (LS) algorithm was employed to identify
the battery thermal parameters. Despite the simplicity and good accuracy, environmental
uncertainties were not considered during modelling. Moreover, they presented the results
based on simulation study alongside very simple and low-current discharge profile was
used for model validation, thus, the accuracy in the real-world applications needs further
investigation. Previously, models were validated using a simple charging/discharging
current profile. However, the load profile in real-life applications much deviates from
those simple loading profiles. Therefore, a second-order thermal model and ECM-based
two-state thermal model of cylindrical LIB cell were validated with two basic drive-cycle
tests, covering an SOC range 25–100%, temperature 5–38 ◦C, and maximum C-rate of 22 by
Lin et al. [74]. The influence of the constantly varying temperature and SOC on the EECM
parameters and consequential effect on battery thermal performance was investigated
by Lin et al. [74]. The model demonstrated good prediction accuracy and robustness.
However, testing using standard internationally referred drive-cycles was not conducted.
Thus, accuracy and robustness in practical scenarios need further investigation. EECM
parameters are influenced by cell ageing, thus, Li and Yang [75] considered the influences
of ageing and heat transfer conditions on thermophysical model parameters. Li and
Yang identified the parameters of the extended lumped parameter model online where a
forgetting factor recursive least squares (FFRLS) algorithm was employed.

Further to this research, the uncertainties in practical operation were considered by
Lin et al. [45,76] alongside the impact of cell ageing during online parameter identification.
As an up-gradation, the commonly deployed LS algorithm was augmented with non-
uniform forgetting factors to track the time-varying internal parameters making the model
adaptive to cell ageing and other uncertainties. In [77], only two lumped models were
used to approximate the core and surface temperatures, respectively, which may not be
suitable for a large capacity LIB pack due to strong spatiotemporal thermal distribution.
While the influence of overpotential entropy changes on battery heat generation was
considered, core temperatures estimation of only a single cell was considered. Sun et al. [78]
developed a second-order lumped parameter thermal model with the KF technique for
core temperature estimation only (single-state). They used an ECM-based heat generation
model to mathematically model the accumulation of the total heat generation at the cell
core. As an improvement of previous studies, this study considered the influence of
entropy changes and overpotential on cell thermal behavior and was quantitively analyzed
to develop an online internal temperature estimation strategy. This strategy utilized surface
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and ambient temperature for core temperature estimation during charge and discharge
cycles where the KF was used for adaptive estimation by the process of state and time
update in real-time. The impact of unmeasurable modelling error, the initialization error
and the possible time-varying external thermal resistance on the temperature estimation
accuracy were considered by Dai et al. [79]. In that paper, a second-order lumped parameter
thermal model, as shown in Figure 3b, was developed for adaptive core temperature
estimation based on the KF. Further, joint Kalman filtering (JKF) was used to simultaneously
estimate both core temperature and time-varying external thermal resistance online. The
mathematical equation employed by Dai et al. for core temperature estimation can be
represented as Equation (4):

Tin(s) =

(
1 + Rin

Rout
+ CsRins

)
CsCcs2 +

(
Cs + Cc +

RinCc
Rout

)
s + 1

Rout

Q(s) (4)

where s is the Laplace operator. Other parameters are the same as mentioned in Figure 3.
The LS algorithm based on the experimental data was also used to determine the

lumped parameters of the thermal model. Dai et al. enhanced the modelling accuracy by
constructing a separate thermal model for core and battery shell alongside considering
the external heat exchange coefficient as time-varying. The authors simply stated that
the proposed method computes efficiently, however, no information about computation
time, hardware requirement was presented. Several assumptions were also made during
modelling, leading to inaccurate estimation in real-life applications.

A trade-off between the detailed and lumped parameter thermal modelling ap-
proaches was considered by Doughty et al. [80] and Park et al. [71]. They developed
a two-state thermal model that predicts the surface and core temperature of LIB. The novel
intention was to provide more information compared to the lumped model while reducing
the computational cost. Few researchers also termed the lumped parameter model as
a reduced-order model (ROM). Whilst the primary intention is same, that is, to reduce
the complex thermal problem into a simplified heat transfer problem characterized by a
reduced set of thermal parameters. A combination of lumped parameter two-state thermal
model with 2RC (second-order) ECM along with a joint Kalman filter (JKF)-based core and
surface temperature estimation strategy was proposed by Chen et al. [72]. The simulation
and experimental test were conducted to verify the adaptiveness of the model to constantly
varying temperature and SOC and, finally, the prediction accuracy was also assessed. It
was also demonstrated that the proposed model has higher prediction accuracy compared
to previously discussed EECMs. It was also demonstrated that the model is highly robust
against automatic correction for surface thermal resistance.

To provide more detailed information on the temperature distribution in cylindrical
LIB, Xie et al. [81] developed a one-dimensional (radial) lumped parameter thermal model
with a dual Kalman filter (DKF). As an improvement, this model is capable to provide
temperature information at three different points of the battery, compared to only core
and surface temperature. Thus, the researchers termed this modelling as a three-node
thermal model. In this study, the anisotropy of thermal conductivity was also considered in
identifying internal resistance and SOC during the temperature estimation to enhance the
prediction accuracy and robustness. The impact of different charging/discharging current
conditions was not considered. Moreover, 1-RC ECM-based heat generation model is
considered, thus presumably, the accuracy can be further improved with the application of
the 2-RC ECM-based heat generation model. Online parameter estimation using a particle-
swarm algorithm with pulse discharge experiments under different ambient temperatures
was employed by Pan et al. [19]. A combination of 2RC ECM and a multi-node heat
transfer model based on the battery geometry was employed in the study to obtain a more
detailed temperature gradient inside the large prismatic LIB. The research showed that the
hybrid model could provide similar results to the finite element method (FEM), however,
the computational burden was reduced by around 90%. They also revealed that the cell



Energies 2021, 14, 5960 11 of 25

geometry has a strong influence on the cell temperature profile. Despite good accuracy, the
effect of cell ageing and the effort of developing pack-level thermal modelling were not
considered in this study.

The impact of heat dissipation through radiation from the surface of the cell was
introduced in the thermal modelling of LIB by Sun et al. [82]. A lumped thermal model
considering the radiation effect was then used for core temperature estimation with the
help of an Extended Unscented Kalman Filter (EUKF). The sensor bias was augmented as
an extended state to enhance the prediction accuracy and model robustness. While the
load profile of residential energy storage was tested, the suitability in commercial vehicle
applications was not tested. Further, model parameters were assumed to be constant
irrespective of environmental uncertainties which may be in conflict with the facts when
the operating conditions will vary significantly. Zhu et al. [83] developed a lumped two-
state thermal-electrical model for estimating both the surface and the core temperatures
where the thermal impact of the adjacent cell was also considered during modelling.
Further, an extended state observer (ESO) with the feedback of the surface temperature was
employed to address the model uncertainties and time-variant parameters in the estimation
model. This approach is specifically designed for rapid self-heating of self-heating batteries.
The concept of model-based virtual thermal sensors (VTS) was introduced by Xiao Y. [84]
that combines the tuned thermal model with a KF observer along with an online parameter-
identification algorithm for surface and core temperature estimation utilizing a single
temperature sensor input. While the strategy is adaptive to environmental uncertainties,
it still requires a sensor for feedback; thus, the strategy cannot be termed as completely
sensorless. Despite that it minimizes the sensor requirement and enhances the model
adaptability, the concept is similar to other lumped parameter EECM-based methods.
The effect of fast-discharge on core temperature of LIB was demonstrated by Surya and
Mn [14] where a combination of 1-RC ECM, single-state thermal model and KF was used
for core temperate estimation. They used a recursive least square (RLS) algorithm to
identify model thermal parameters. However, further research is recommended to develop
health-conscious BMS suitable for fast charging/discharging.

4.2.2. EECM-Based Temperature Estimation of LIB Pack

Most of the research studies covered only the temperature estimation of a single cell.
Thermal modelling and temperature estimation of a LIB pack were seldomly reported.
A ROM of a LIB pack considering the characteristic of the inner electrical resistance of
the battery was used for core temperature estimation by Ma et al. [85]. Here, RLS was
used for the thermal parameter identification. In this study, several assumptions were
made while establishing ROM of a battery pack such that parameters of each cell are the
same and the thermal behavior of each cell row is same. The heat transfer among cells
via conduction through tabs and wires were neglected which could give rise to the error
in temperature estimation. Thermal modelling of a LIB pack by scaling-up a single cell
thermal model was investigated by Ismail et al. [86] using a simulation study. Considerable
accuracy has been noticed, however, several assumptions were made to scale up the
single-cell model to battery pack models, such as uniform cell characteristics, constant
ambient conditions and 100% efficient discharging process that are far from the real-life
scenario. Therefore, the accuracy of the temperature estimation strategy in real-world
applications needs to be further explored. Therefore, from the above discussion, it can be
stated that the pack-level estimation schemes need significant further research. The EECM-
based temperature estimation strategies proposed by different authors are summarized in
Table 2 for a quick reference to the readers. One of the major limitations of EECM-based
temperature estimation techniques is the requirement of online sensor feedback. This
is because the estimation accuracy is completely relying on accuracy of the knowledge
of the cell thermal properties, heat generation rates, and thermal boundary conditions
represented in terms of electrical parameters that are subjected to change due to cell aging,
operating temperature and other practical uncertainties.
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Table 2. Summary of EECM-based temperature estimation strategies.

Reference Types of Models Important Note

Mahamud et al. [70] Lumped Parameter heat
capacitance–resistance thermal model

ANSYS (Ansys, Inc., Canonsburg, PA, USA) FLUENT
Simulation, validated using Experimental and

simulation results

Forgeze et al. [43] Lumped Parameter, Single-State,
First-order model Entropy changes are considered, experimentally validated

Surya et al. [13] Lumped Parameter, Two-State,
Second-order model + Kalman Filter (KF) SOC, Surface temperature variation, MATLAB Simulation

Lin et al. [74] Lumped Parameter, Two-State,
Second-order model

High current rate, varying temperature, SOC,
experimental validation using electrochemical impedance

spectroscopy data

Li and Yang [75]
Extended lumped parameter, Two-state,
Second-order model + Forgetting factor

Recursive Least Square (FFRLS)

Temperature variation, cell ageing, SOC, Heat transfer
modes, ANSYS Multiphysics Simulation, validated using

experimental and simulation results

Lin et al. [45,76]
Lumped parameter, Two-state model +

Least square (LS) algorithm +
Nonuniform forgetting factors (NUFF)

Cell ageing and uncertainties in practical operation,
validated using experimental and simulation results

Lin et al. [77] Lumped-parameter model +
Closed-loop observer

Influence of overpotential entropy changes, validated
using a simulation study

Sun et al. [78] Lumped parameter, Second-order, Single
state thermal model + KF

Influence of entropy changes and overpotential, surface
and ambient temperature variation, charge/discharge

current profile, MATLAB simulation and
experimental validation

Dai et al. [79] Lumped parameter, Second-order,
Two-state model + JKF + LS algorithm

Initialization error and the possible time-varying external
thermal resistance, validated using experimental data

Doughty et al. [80] and
Park et al. [71]

Lumped parameter, Two-state model +
Extended KF

Ambient temperature variation, SOC, validated using a
simulation study

Chen et al. [72] Lumped parameter, Two-state thermal
model + Joint KF (JKF)

Constantly varying temperature, SOC, Surface thermal
resistance, experimentally validated

Pan et al. [19]
Lumped Parameter, Second-order,

multi-node model +
particle-swarm algorithm

Battery geometry, charge/discharge profile, Comparison
with an FEA model, experimentally validated

Xie et al. [81]
One-dimensional (radial) lumped

parameter, Three node model + Dual
KF (DKF).

Anisotropy of thermal conductivity, SOC, external
temperature, FEM and Computational Fluid Dynamics

(CFD), experimental validation

Sun et al. [82] Lumped parameter, single-state model +
Extended unscented KF (EUKF)

Sensor bias, Considered heat radiation from the surface,
MATLAB simulation and experimental validation

Zhu et al. [83] Lumped parameter, Two-state model +
extended state observer (ESO)

Thermal impact of an adjacent cell, Model uncertainties
and time-variant parameters, MATLAB simulation,
validation and comparison using electrochemical

impedance spectroscopy data

Surya and Mn [14]
Lumped parameter, Single-state thermal

model + KF + Recursive Least Square
(RLS) algorithm

Effect of fast-discharge, MATLAB Simulation

Xiao Y. [84] EECM-based virtual thermal sensors
(VTS) + KF

Environmental uncertainties were considered, validated
using experimental and simulation results

Ma et al. [85] and
Ismail et al. [86]

ROM of a LIB pack for a central
temperature of LIB pack + Recursive least

square (RLS)

Temperature, SOC, validated using experimental and
simulation results
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4.3. Numerical Analysis-Based Temperature Estimation

Numerical method-based techniques were successfully implemented for tempera-
ture estimation of different chemistries and shapes of LIB cells and even LIB packs. So
far, the finite element method (FEM) [87–90] and finite volume method (FVM) [91] were
extensively used for temperature estimation. Numerical analysis-based techniques try to
mathematically describe the thermal dynamics inside the battery using nonlinear partial
differential equations (PDEs) such as used by Du et al. [89]. They have employed FEM anal-
ysis with a three-dimensional model and Bernardi equation-based internal heat generation
rate. Typically, the PDEs have complex boundary conditions that are infinite-dimensional.
The fundamental mathematical equation as employed by Du et al. can be represented as
Equation (5)

ρCp
∂T
∂t

= λx
∂2T
∂x2 + λy

δ2T
δy2 + λz

δ2T
δz2 + Q (5)

where ρ, Cp represent the mean density and mean specific heat of the cell, respectively. λ is
the heat conductivity coefficient of the surface material of the cell and Q is the same as in
Equation (1).

Dong Hyup Jeon [87] incorporated a transient thermoelectric model with a porous
electrode model and conducted a numerical simulation to understand the thermal behavior
of a commercial LIB under charging and discharging conditions. He demonstrated that
temperature increase during discharging is much higher compared to the temperature rise
during charging. He also suggested that the temperature difference between charge and
discharge can be decreased with increasing C-rates. Further, Baba et al. [88] conducted
a numerical simulation of an enhanced single-particle model of a LIB to understand the
three-dimensional temperature distribution inside the cell. Numerical analysis was used
for transient behaviors of a LIB under a dynamic driving cycle by Yi et al. [90]. Double-
layer thermal capacitance was used to capture the short-term transient behavior of the LIB
chemistry. Fleckenstein et al. [91] using FVM to demonstrate that the temperature gradients
inside the cell layer result in different current densities and local SOC inhomogeneities in
LIB. These phenomena must be well-taken care of while designing an effective thermal
management system. In general, this kind of model is best for capturing both temporally
and spatially thermal distribution of the cell as the battery thermal process is a typical
distributed parameter system. Despite high accuracy and detailed information about cell
temperature gradient, these numerical method-based temperature estimation strategies are
not suitable for online temperature estimation due to high computational cost. The complex
mathematical analysis also required expertise and strong domain knowledge. Moreover,
generalization is not possible as different chemistry and cell physics affect mathematical
modelling. A summary of numerical methods-based temperature estimation strategies is
shown in Table 3.

Table 3. Summary of numerical methods-based temperature estimation strategies.

Reference Types of Models Important Note

Dong Hyup Jeon [87]

A transient thermoelectric
model with a porous electrode

model + finite element
method (FEM)

Different driving cycles, COMSOL Multiphysics (COMSOL Inc.,
Stockholm, Sweden) simulation and Experimental validation

Baba et al. [88] Enhanced single-particle
model + FEM

Three-dimensional temperature distribution inside the cell, cell
geometry, and current profile, experimentally validated

Du et al. [89]
Three-dimensional model +
ECM based heat generation

model + FEM

Different current profiles, temperature variation, COMSOL
Multiphysics simulation and experimental validation
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Table 3. Cont.

Reference Types of Models Important Note

Yi et al. [90] Transient thermoelectric
model + FEM

Transient behaviors under dynamic driving cycle
Experimentally validated

Fleckenstein et al. [91] Three-dimensional
model + FVM

Different current density and local SOC inhomogeneities at
different cell layers, MATLAB (MathWorks, MA, USA) simulation

and experimental validation

4.4. Direct Impedance Measurement-Based Temperature Estimation

Cell internal temperature estimation using a lumped-parameter thermal model and an
approximate distributed thermal model have several drawbacks. Firstly, accurate determi-
nation of thermal model parameters such as heat generation and cell thermal properties is
highly challenging. Heat generation inside the cell is typically approximated by measuring
the cell operating current, voltage and the internal resistance that are again functions of
SOC, cell internal temperature and SOH. Moreover, a cell is constructed using many differ-
ent materials combined into a layered structure and thermal contact resistances between
these layers are often unknown. Temperature estimation methods use surface temperature
measurements and even the combination of surface-mounted temperature sensor and
thermal model typically failed to detect the thermal runaway as rapid fluctuations in the
internal temperature is difficult to capture using surface mounted sensors because the
heat conduction between the core and battery surface takes a considerable amount of
time [92]. Furthermore, embedding micro-temperature sensors within the cell [93,94] is
not practically possible for a large capacity LIB pack from a manufacturing complexity
and system cost point of view. Hence, the core temperature measurement using a physical
sensor is not an appropriate method for industrial applications.

Srinivasan et al. [95,96] noticed that the phase of electrochemical impedance in the
frequency range of 40 to 100 Hz is temperature-sensitive but insensitive to changes in
other parameters such as SOC and SOH. Based on these findings, they demonstrated an
electrochemical impedance-based cell internal temperature estimation strategy. However,
they assumed the uniform internal temperature and the estimation method is only valid
in the temperature range of from −20 to 66 ◦C. The temperature estimation considering
the effect of temperature non-uniformity on electrochemical impedance was studied by
Schmidt et al. [97] based on the principle derived by Troxler et al. [98]. Both the strategy
developed by Srinivasan et al. and Schmidt et al. were only able to estimate the mean
temperature of the cell, however, in real-life application, especially in the case of cylin-
drical battery under high charging/discharging current, the difference between internal
maximum temperature, surface temperature and mean temperature are significantly high.
Therefore, Richardson et al. [3] further extended the research and developed a thermal-
impedance model by combining an EIS measurement at a single frequency with a surface
temperature measurement for precise determination of internal temperature distribution.
The fundamental steps in direct impedance measurement-based temperature estimation as
presented by Richardson et al. [3] is shown in Figure 4.

The approach of Richardson et al. does not require knowledge of cell thermal prop-
erties, heat generation or thermal boundary conditions, however, the major limitation
is the online impedance determination of each cell which is highly challenging. More-
over, uncertainties of environmental factors were not considered and a surface-mounted
temperature sensor needs to be installed on each cell which is impractical so far. Whilst
few approaches of online determination of impedance spectra across multiple frequen-
cies using onboard power electronics of EVs have been reported [99], the application of
these strategies in real-time temperature estimation has not yet been investigated. Further-
more, interpreting impedance measurements under superimposed DC currents is yet to be
systematically investigated.
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Online EIS-based temperature estimation strategy termed impedance-temperature
detection (ITD) was proposed by Richardson and Howey [100] for sensorless temperature
estimation which is adaptive to cell ageing and practical uncertainties. However, ITD
cannot provide a general solution alone, thus, such a strategy combines surface-mounted
sensors with ITD for accurate online temperature estimation [3]. Still, temperature sensors
are required to be installed. Further to this study, they integrated ITD with an electric-
thermal model along with a DEKF for online core temperature estimation of a LIB cell even
with unknown convection coefficient. They also demonstrated that the performance of the
thermal model plus ITD is almost similar to the ITD with surface thermal sensors. Despite
the advantages, the major limitations of the strategy are online impedance determination
and the requirement of an accurate electric thermal model, thus encompassing the same
drawback of conventional thermal modelling-based strategies. Moreover, although the
strategy can estimate both core and surface temperature of an individual cell, the pack-level
estimation strategy was not illustrated in this study.

The influence of cell temperature, SOC and SOH on the impedance spectrum, ex-
citation frequency and thereby estimation accuracy of cell internal temperature was in-
vestigated by Zhu et al. [101]. Here, the temperature estimation was made based on
an impedance response matrix analysis which was developed using EIS measurements.
Despite high accuracy, the effect of the nonuniformity of the cell temperature and the cor-
rection method was not considered. Moreover, an extensive experimental study is required
for modelling and the computational cost is also very high. Thus, the online application of
the strategy is challenging. Identification of suitable frequency and other EIS parameters
is very difficult whilst the estimation accuracy significantly depends on these parameters.
Moreover, accurate determination of the real and imaginary parts of the impedance is
highly challenging, whilst different decisions for these two parts leads to inaccurate tem-
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perature estimation. A combination of Linear Parameter Varying (LPV) thermal model and
a polytopic observer-based battery-cell temperature estimation algorithm was proposed
by Debert et al. [102]. The EIS-based strategy was also employed in references [3,103–106]
to estimate the core temperature. Despite high accuracy, the major limitation is the de-
termination of accurate impedance-temperature characteristics and it should be acquired
in advance through tedious preliminary tests. In addition, the impedance-temperature
characteristic of a cell is influenced by cell ageing leading to inaccurate prediction due
to SOH deterioration. A summary of direct impedance measurement-based temperature
estimation strategies is presented in Table 4.

Table 4. Summary of direct impedance measurement-based strategies.

Reference Types of Models Important Note

Srinivasan et al. [95,96] Direct measurement of
electrochemical impedance Experimental validation with EIS data

Schmidt et al. [97] Direct measurement of
electrochemical impedance

Temperature non-uniformity was not considered,
experimentally validated

Richardson et al. [3]
Thermal-impedance model + EIS

measurement at single frequency +
surface temperature feedback

Independent of cell thermal properties, heat
generation or thermal boundary conditions,

experimental validation with EIS data

Richardson and Howey [100]
Online EIS measurement

(impedance-temperature detection (ITD)
+ dual-extended Kalman filter (DEKF)

Unknown convection coefficient is considered,
experimentally validated

Zhu et al. [101] Impedance response matrix analysis,
developed using EIS measurements

Influence of cell temperature, SOC and SOH on the
impedance spectrum, experimental validation with

EIS data

4.5. Machine Learning-Based Temperature Estimation

With the overwhelming complexity of the electrochemical reactions inside the battery
and the sensitivity of the battery parameters to the uncertainties of the working environ-
ment, the thermodynamic behavior varies significantly from the center region to the surface
region. Most of the existing distributed thermal models and the lumped parameter thermal
models are incapable to consider the spatiotemporal distribution of LIB packs, especially
in the case of large-capacity battery packs. Moreover, it is highly difficult to represent these
spatiotemporal dynamics by a single physics-based model. Here, the machine learning
(ML) algorithms were widely employed to preserve the local dynamics to improve the
modelling accuracy of nonlinear systems such as LIB. A schematic layout of the ML-based
temperature estimation scheme is shown in Figure 5.

Liu and Li [107] employed a hybrid model of EECM and neural network (NN)-
based learning approach to develop a spatiotemporal thermodynamic model of LIB for
accurate estimation of internal temperature distribution. The data-driven NN model used
commonly measured signals of BMS to compensate for the model-plant mismatch caused
by spatial nonlinearity and other model uncertainties. NN and support vector machine
(SVM)-based [108] LIB temperature estimation strategy was investigated by Sbarufatti
et al. [109]. A hybrid model of an radial basis function neural network (RBFNN) and EKF
was employed by Liu et al. [110] to estimate the internal temperature of LIB. While they
have considered the impact of temperature on cell behavior, the primary intention of these
models was the estimation of SOC or SOH rather than estimating the cell temperature.
One of the major challenges of pure ML-based strategies is the generalization capability.
Feng et al. [111] developed an effective electrochemical-thermal-neural-network (ETNN) by
fusing a lumped parameter electrochemical thermal, feed-forward neural network (FFNN)
and a UKF. This method demonstrated appreciable performance in predicting the state of
temperature (SOT) in a wide temperature range and large current conditions. However, the
modelling is highly complex, the accuracy over different charging current/drive cycles was
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not tested. Moreover, the computational efficiency and the suitability for online application
are questionable. The back of the ETNN is the electrochemical model thus encompassing
drawbacks similar to electrochemical models. In general, while ML-based schemes are
computationally efficient, collecting training data and model training procedures are highly
complex and time expensive. Moreover, real-life battery test data were not considered
during ML-based model training in the existing literature; therefore, the accuracy of the
existing ML-based strategies is still questionable. A summary of ML-based techniques
reported by researchers is presented in Table 5.
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One of the major challenges of pure ML-based strategies is the generalization capability. 
Feng et al. [111] developed an effective electrochemical-thermal-neural-network (ETNN) 
by fusing a lumped parameter electrochemical thermal, feed-forward neural network 
(FFNN) and a UKF. This method demonstrated appreciable performance in predicting the 
state of temperature (SOT) in a wide temperature range and large current conditions. 
However, the modelling is highly complex, the accuracy over different charging cur-
rent/drive cycles was not tested. Moreover, the computational efficiency and the suitabil-
ity for online application are questionable. The back of the ETNN is the electrochemical 
model thus encompassing drawbacks similar to electrochemical models. In general, while 
ML-based schemes are computationally efficient, collecting training data and model train-
ing procedures are highly complex and time expensive. Moreover, real-life battery test 
data were not considered during ML-based model training in the existing literature; 

Figure 5. Schematic layout of ML-based temperature estimation scheme.

Table 5. Summary of ML-based temperature estimation techniques.

Reference Types of Models Important Note

Liu and Li [107] EECM + neural network
(NN)-based learning approach

Model-plant mismatch caused by spatial nonlinearity and other
model uncertainties, NN-model was validated using

experimental data

Sbarufatti et al. [109] Neural networks + Support
vector machines

Influence of temperature, charging/discharging current, Python
(Python Software Foundation, Wilmington, DE, USA), NN and

SVM-model were validated using experimental data
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Table 5. Cont.

Reference Types of Models Important Note

Liu et al. [110] RBF neural network (RBNN) and
the extended Kalman filter (EKF)

Impact of temperature on cell behavior, validated using
simulation data

Feng et al. [111]
Electrochemical-thermal-neural-
network (ETNN) + Unscented

Kalman filter (UKF).

Wide temperature and large current conditions, Python, validated
using experimental data

4.6. Magnetic Nanoparticles-Based Temperature Estimation

The magnetization of Magnetic Nanoparticles (MNPs) is nonlinear under an ac mag-
netic field and the accurate temperature of MNPs could be estimated by using the ratio
of the third and fifth harmonic response [112–114]. Further, the temperature sensitivity of
MNPs with the increased DC magnetic field was studied by Zhong et al. [115]. They found
that the temperature sensitivity of MNPs will decrease with an increased DC magnetic
field. Further to this study, Zou et al. [116] developed an improved Magnetic nanoparticles
thermometer (MNPT) for the core temperature estimation of LIB which works based on
the temperature measurement of magnetic nanoparticles (MNPs). They also suggested
the optimal range of the DC magnetic field strength to ensure maximum temperature
sensitivity and minimum temperature error of the MNPT. It is noticed that this type of
estimation topology is very bulky and costly. Moreover, the suitability of online prediction
has not yet been assessed.

5. Discussion on Issues, Challenges and Future Research Recommendations

Temperature estimation schemes for LIBs can be designed with different levels of
complexity depending on the requirement of accuracy level and detailing of the prediction
results. Detailed model results and more accurate predictions are essential for safer and
reliable operation of BMS. However, integrating more detailed cell phenomena into the
model eventually increases the modelling complexity, computational cost while, at the same
time, reduces the suitability for online prediction and low-cost onboard BMS. For instance,
modelling complexity increases if the temperature gradient of each cell layer is considered
instead of concentrated heat generation at the core. Secondly, the heat fluxes inside
and outside the battery can be considered in both axial and radial directions instead of
considering only the radial direction for simplicity. Furthermore, detailed models typically
consider different heat transport modes, that is, conduction, convective and radiation
whereas simplified models consider only conduction heat transfer. Integrating a greater
number of phenomena in thermal modelling requires a lot of parameters, resulting in
additional requirements of experimental measurements, modelling time and solid domain
knowledge. In addition, very detailed and accurate information of cell structure, material
properties and cell assembly are also needed. However, collecting this information from
the cell manufacturer is highly challenging due to the confidentiality of the design data.
Therefore, it can be inferred from the above discussion that the detailed models could
produce highly accurate and complete insight into cell thermodynamics, however, their
computational complexity may not be suitable for online prediction and onboard low-cost
BMS. In general, most of the estimation strategies require measurements from physical
sensors, however, installing a physical sensor at each cell is not practically possible as a high-
capacity LIB pack consists of thousands of individual cells. Moreover, installing a sensor at
the cell core for core temperature measurement is highly challenging. Several estimation
schemes estimate the core temperature based on the surface temperature measurement.
However, it is very erroneous as it takes a significant amount of time for the heat to reach
the surface from the core. So far, most of the research studies have covered the temperature
estimation scheme of a single LIB cell. Temperature estimation of a LIB pack is much
more challenging. Thus, significant further research is recommended here. Moreover, the
influence of fast charging/discharging on the cell temperature has not yet been deeply
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explored. It is highly recommended to develop a health-conscious BMS. A summary of
existing issues, challenges and future research recommendations to the research community
are presented in Table 6.

Table 6. Summary of major issues, challenges and research recommendations.

Strategy Major Issues and Challenges Future Research Recommendations

Electrochemical
Model-based

• Extremely detailed modelling is possible. Thus, it could
produce a highly accurate prediction, however with the
expenses of very high computational cost. Thus, unsuitable
for online prediction by onboard BMS

• In-depth prior knowledge of LIB chemistry is a must besides
expertise in mathematical modelling, resulting in dependence
on domain experts

• Extensive experiments are required to accumulate detailed
information on battery characteristics

• Modelling is highly complex
• Developing an adaptive estimation scheme is

highly challenging
• Poor generalization capability

• Significant future research is
recommended to reduce modelling
complexity and computational cost

• So far, it can produce the best prediction
results, thus could be extensively used
for the validation of other types of
models and data acquisition for
data-driven models

• LIB chemistry is highly sensitive to
temperature, battery health and other
uncertainties, thus, further research on
adaptive modelling is recommended

Equivalent Electric
Circuit (EECM)
Model-based

• Most extensively used so far due to adequate accuracy and
easy implementation, however, modelling complexity and
computational cost increase with the order of the model,
number of temperature measurement points (nodes) and the
parameter distribution

• Accurate EECM parameters are very difficult to identify,
especially online parameter estimation

• Parameter tuning using external measurement is challenging
and time expensive

• Few researchers also used electrochemical analysis for
parameter identification and determination which possesses
similar difficulties to electrochemical-based strategies

• Predictions are highly influenced by measurement noises and
often too many physical sensors are required

• Lower order models/simplified models are so far extensively
used for online prediction with the compromise of accuracy
and detailed insight

• Modelling complexity and
Computational cost can be controlled by
treading-off between accuracy
requirement and detailing of the model

• Adaptive parameterization is
challenging, however with the fusion of
advanced algorithms such as ML-based
techniques, adaptive strategies could be
developed

• These models can generate highly
accurate results at the laboratory, thus
could be used to generate data and
model validation of other strategies

• Fusion of this strategy with other
strategies such as ML-based techniques
could produce enhanced accuracy and
computational performance

• Instead of traditional filters, more
advanced adaptive filtering techniques
could be embedded for better
performance

Machine Learning
(ML)-based

• Completely data-driven black-box strategy, that is, prediction
depends on the external measurements only, thus, minimal or
no requirement of any domain-specific knowledge, however,
the major challenge is the accumulation of high-quality large
volume of training data

• No requirement of iterative complex mathematical
calculation, thus, computational cost is adequate for online
application, however, computational cost increases with the
high volume (high resolution) data and number of feature
vectors to obtain a better insight

• Accumulation of high-resolution data especially
manufacturer data and fault data are highly challenging.
These data are important for accurate and adaptive prediction

• Generalization is challenging
• Currently not used on onboard BMS due to high training time

and complex algorithm development and computational time,
whilst it is noticed that very few efforts have been made so far

• Often, external measurements by physical sensors are
required as feedback for online parameter adjustment, thus
still requires installation of physical sensors

• While it is comparatively easy to develop
adaptive models, however, very few
efforts have been made so far.

• Cell characteristics are highly influenced
by temperature, ageing and other
uncertainties, thus, further research on
adaptive modelling is recommended

• Generalization is difficult, however, with
the incorporation of advanced adaptive
algorithms, it could be possible

• With proper design efforts, it could be
used for online prediction and
implemented in onboard BMS with low
processing power

• Very promising technology could be
used for a future generation of sensorless
temperature estimation strategies. Very
little effort has been provided so far, thus,
further research is recommended
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Table 6. Cont.

Strategy Major Issues and Challenges Future Research Recommendations

Numerical Model-based

• These strategies use FEA and FVA. FEA and FVA based
temperature estimation strategies are considered the most
accurate and most computationally expensive

• Due to iterative complex mathematical calculation, its
computational cost is very high, thus not suitable for
online prediction

• Significant research and development are
required to improve computational cost
to make this suitable for online
prediction.As it is most accurate, it could
be used for other model validation and
accurate data collection

Direct Impedance
Measurement-based

• The influence of temperature on cell impedance is used for
internal temperature estimation. However, online direct
measurement of impedance using onboard power electronics
is highly challenging

• Changes in cell impedance due to temperature variation is
small, thus, accurate determination of such small changes is
highly difficult

• Existing schemes are very bulky
• Very few research efforts have so far provided, not yet

practically implemented

• Promising technology, thus, significant
further research and development is
recommended to reduce scheme size and
assess the practical applicability in
onboard BMS

• Accuracy in real-world applications
needs to be judged

• Further research into online impedance
determination using onboard electronics
is also recommended

• The cost of existing solutions is very
high, which needs to be addressed

Magnetic
Nanoparticle-based • Very new technology, it is too early to comment

• Practical applicability in onboard
low-cost BMS has not yet been
investigated. Overall, significant further
research is required

6. Conclusions

This article presented a comprehensive review of the state-of-the-art temperature
estimation strategies for lithium-ion batteries (LIBs) covering the necessity of an optimum
estimation strategy, detailed discussion on the existing strategies, current issues, challenges
and future research recommendations. It can be inferred that an accurate temperature
estimation of LIBs is indispensable for effective thermal management, operational safety
and several other crucial tasks of a Battery Management System (BMS). Measurement of
each cell temperature using physical sensors is not practically possible, especially for a
high-capacity battery pack consisting of thousands of individual cells. To develop an ideal
temperature estimation scheme, one needs to concentrate on several factors, such as high
accuracy, adaptability, small size, real-time estimation, distribution (to monitor the tem-
perature gradient of the entire cell), low cost, and easily implementable for wide adoption.
Typically, a temperature estimation scheme consists of a heat generation model and a heat
transfer model. Depending on the modelling and computation strategies temperature esti-
mation schemes can be grouped into six categories, namely, electrochemical model-based,
equivalent electric circuit model (EECM)-based, machine learning (ML)-based, numerical
analysis-based, direct impedance measurement-based, and magnetic nanoparticle-based.
So far, numerical analysis-based schemes are most accurate followed by electro-chemical
model-based schemes. However, both strategies have very high computational cost making
them inappropriate for online prediction by a low-cost onboard BMS. Moreover, mod-
elling complexity and experimental requirements are very high alongside the necessity of
domain-specific knowledge. EECM-based schemes can be designed with different levels of
complexity, accuracy level and computational cost. Simplified lower-order EECM-based
schemes are extensively used in the literature and practice. Machine learning (ML)-based
schemes are very promising due to their higher level of accuracy, ease of implementation
and adaptability. In addition, reduced or even no requirement of equivalent modelling and
domain experts. However, to obtain the feature vectors, very large volume and high-quality
data are required which are typically very challenging to acquire. Here, a hybrid strategy
combining an EECM and an ML is presumably a suitable solution. Direct impedance
measurement and magnetic nanoparticle-based schemes are very newly developed. It is
too early to assess their capability and suitability for online prediction and implementation
in onboard BMS. Therefore, systematic guidelines about open research areas and future
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research directions are highlighted in this study. It is also noticed that the majority of the
research studies proposed temperature estimation schemes of a single LIB cell whereas
temperature estimation of a LIB pack is much more challenging. Thus, significant further
research is recommended here a well.
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