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Abstract: Connected communities potentially offer much greater demand response capabilities
over singular building energy management systems (BEMS) through an increase of connectivity.
The potential increase in benefits from this next step in connectivity is still under investigation,
especially when applied to existing buildings. This work utilizes EnergyPlus simulation results on
eight different commercial prototype buildings to estimate the potential savings on peak demand
and energy costs using a mixed-integer linear programming model. This model is used in two cases:
a fully connected community and eight separate buildings with BEMS. The connected community
is optimized using all zones as variables, while the individual buildings are optimized separately
and then aggregated. These optimization problems are run for a range of individual zone flexibility
values. The results indicate that a connected community offered 60.0% and 24.8% more peak demand
savings for low and high flexibility scenarios, relative to individually optimized buildings. Energy
cost optimization results show only marginally better savings of 2.9% and 6.1% for low and high
flexibility, respectively.

Keywords: demand response; connected communities; building energy management systems;
air-conditioning; coincidence factor; peak demand reduction; electricity cost reduction

1. Introduction

The introduction of distributed energy resources (DERs), high levels of variable gener-
ation, and the common goal to reduce greenhouse gas (GHG) emissions have presented
numerous challenges, both political and technical. Politically, local and national govern-
ments need to find a way to support lowering GHG emissions in a manner that is equitable
to society [1]. Technically, there are an overabundance of improvements that are necessary
to continue replacing fossil fuel generation while maintaining a reliable grid. The variable
sources of renewable energy, solar and wind, have achieved competitively low costs in
comparison to natural gas and coal; however, their impermanent and sometimes volatile
nature still prevent a complete transition. Achieving this transition will not rely solely on
advancements in solar and wind technologies, but more so on the creation of technologies
and methods that make the grid more flexible [2]. A flexible grid can change its demand
timing, plan for uncertainties, store energy, and take away many of the responsibilities
that traditional generation creates. Ways of accommodating these variable sources are now
being explored extensively by both utilities and the scientific community. These accom-
modations can take many forms including grid-connected equipment, modeling software,
control schemes, and various combinations of these. One of the primary mechanisms in a
flexible grid will be demand response (DR). DR is the management of the electrical demand
for the purpose of meeting the goals of the supply side. DR encompasses a wide range of
strategies involving different types of equipment, customers, and financial structures. It can
be used in planned scenarios like peak shaving or congestion management [3], as well as
to fulfill immediate needs like voltage regulation [4]. The capabilities of DR extend further
through connectivity and data analysis, enabled by building energy management systems
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(BEMS) and even more so in connected communities. Thermostatically controlled loads
(TCLs) are one category of DR-capable equipment that holds a lot of potential, specifically
heating, ventilation, and air-conditioning (HVAC) equipment.

Air-conditioning (AC) is one of the largest energy consumers and is projected to grow
faster than all other uses of energy in buildings [5]. Heating and cooling loads have great
potential as DR devices due to their inherent flexibility gained from the building’s thermal
inertia. The building acts as a thermal battery in which the minimum and maximum charge
states, or the energy that can be manipulated, are determined by the thermal comfort region
of the occupants. AC and other TCLs in buildings are already shown to have an impact in
field experiments [6] and the DR market. Aggregators can manage many DR customers at
once and sell their TCL’s flexibility to the wholesale ancillary service market [7]. Modelling
of TCL control and uncertainties for DR purposes has been extensively researched, showing
its potential in many settings [8–12]. Through this research and many implemented projects,
however, obstacles with AC DR have been discovered.

DR programs, through both aggregators and utilities. have been offered for several
years. As such, they are an important potential asset to increasing renewable penetration
and resolving grid-related issues. Therefore, it would be expected that the participation in
these programs as well as the flexible capacity would grow, but this has not been the case.
Customer enrollment in DR programs, between 2013 and 2019, for the commercial and
industrial sector has decreased by 29% and 66%, respectively, and the actual peak demand
savings have not grown in the U.S. [13]. For commercial and residential customers, AC
is most likely the largest, and one of the only energy consumers that they can offer for
DR. There are bound to be many reasons for such low participation, differing for each
program, but little compensation along with unrealistic expectations are sure to be a cause.
Commercial customers were paid on average 46.70/kW of actual peak demand savings
or 1.05/kWh of energy savings in 2019 [13]. On top of this, customers are rarely called
upon to provide DR. For thermostat programs, the average number of annual events is
8.9, with an average event duration of 2.6 h [14]. Such a small number of events may be
necessary, as each event aims for each customer to shift a large amount of energy for the
event duration. For AC, the average event duration is very long for the average building
to mitigate usage, especially during the hottest times in the summer, when these events
are called. Events can easily cause prolonged discomfort of occupants and could be the
reason for such few events, saved only for the most critical times in the year. These high
expectations of large energy shifting is a barrier to entry for the average building as well as
a disincentive for those capable. In a high renewable penetration scenario, we would need
to rely on DR daily and much more consistently through automated actions using building
energy management systems.

To do so, AC DR needs to first transition to a more comfort-oriented position, allowing
its utilization more frequently without contravening the customer. There are little known
works focusing on comfort-oriented DR models; however, they show that significant
load reduction is still possible for an aggregation of AC loads while minimizing the
number of comfort violations [15]. Unfortunately, this route requires more data, better and
simpler modeling, and a more connected structure, taking into account both the needs
of the grid as well as the constraints of the customer [16]. Simplified building energy
models that are data-driven are already proven to perform well against their physics-based
counterparts [17,18]. The major missing elements inhibiting this reality are structure, both
financial and control, as well as connectivity. There are many research-staged structures
developed in the literature, resolving many of the issues discussed, while still being unique
and prioritizing different objectives [19–22]. The benefits of connectivity, however, are
relatively unexplored, especially for comfort-oriented control schemes.

BEMS are proficient in optimizing a building’s AC energy consumption with respect
to the utility rate structure and the inputted comfort settings. Its scheduled usage of equip-
ment, however, may coincide with that of other surrounding buildings, diminishing its
effectiveness from the perspective of the utility. The lack of connectivity between buildings
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creates random occurrences of high coincidence factors (CFs) within the population of
the building. The CF is defined here as the percentage of the total population load that is
active at any time. Connecting these buildings and making decisions with respect to all
loads in the population creates a connected community. Connected community projects like the
Alabama Power Smart Neighborhood are emerging across the U.S. and the results show
great improvement in efficiency and capability to be driven primarily on renewable energy,
storage, and natural gas turbines [23]. The connectivity of data from each building enables
a centralized planning or agent-based system to coordinate with equipment and maximize
efficiency for the entire micro-grid [24–26]. Many of these projects are based on residential
buildings and most are using new construction with state-of-the-art systems (AC, lighting,
etc.). It is difficult, however, to project these results onto the scenario of retrofitting existing
buildings into a connected community. These projects mostly use the traditional AC planning
scheme of peak/load shifting, pre-cooling buildings during solar hours, and riding through
the evening. As mentioned earlier, this strategy is either infeasible or too undesirable for
many existing buildings and occupants. A slightly different control strategy is introduced
and applied in this paper.

This paper aims to answer whether or not a connected community offers better perfor-
mance in peak demand and cost savings than individually optimized buildings. Connected
communities with centralized decision-making may offer significantly improved benefits
in certain areas of DR. BEMS have shown great results, but are blind to the operation of
neighboring buildings, and it is questioned if this impacts the full potential of DR. In other
words, the savings potential of a single optimized schedule for all cooling loads in a popu-
lation is expected to be significantly greater than that of several individual (per building)
optimized schedules. In this paper, simulation results from EnergyPlus are used to outline
the capabilities and needs of a population of buildings and constrain the optimization mod-
els. The optimization models are based around a more comfort-oriented control strategy
that requires very little individual load flexibility. This work will also show how individual
flexibility affects the results between the connected community and individual BEMS.

This work contains many sections from this point on. First, all simulations and param-
eters used in the study are justified in Section 2.1. The following Section 2.2 describes the
control scheme used in all optimization models in this paper. Section 2.3 defines the opti-
mization models used for both the peak demand minimization and the cost minimization.
The results are separated into two main sections, Sections 3.1 and 3.2. Each of these sections
contains the baseline demand for the group of buildings and two optimized solutions, one
for individual BEMS and the other for the Connected Community. Sections 4 and 5 includes
insights obtained from the analysis and concluding remarks on the findings.

The main scientific contributions of this study are as follows:

• Effectiveness of a high-resolution demand planning control scheme for air-conditioning
demand response for a range of building zone flexibilities;

• Theoretical demand reduction improvement potential of connected communities over
individual BEMS for a range of building zone flexibilities;

• Theoretical nodal cost reduction improvement potential of connected communities over
individual BEMS for a range of building zone flexibilities.

2. Materials and Methods

This section covers the methodology used for estimating the potential savings, both
peak demand and cost, from the optimization models proposed. This includes an explana-
tion of the data used for the constraints as well as the baseline energy consumption and
cost. The control strategy implemented in the optimization, as well as the full mathematical
formulation, will be explained thoroughly.

2.1. Description of Simulation Data

EnergyPlus is an open source building energy modeling engine developed by the
U.S. Department of Energy (DOE). The buildings used in the simulation come from the
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Commercial Prototype Building Models published by the DOE. The set used here is from
the ANSI/ASHRAE/IES Standard 90.1-2019 prototypes [27]. These are designed with the
construction and AC equipment based on data for buildings in the U.S. in 2019. A variety
of building types were used in the model with the number of each type varying to create a
community of buildings. Specifications on the buildings used can be found in Table 1.

Table 1. Building prototype specifications.

Building Type Zones per Building Buildings in Model Total Zones

Full-service Restaurant 2 3 6
Small Office 5 7 35

Medium Office 3 1 3
Large Office 4 1 4
Strip Mall 10 1 10
Hospital 8 1 8

Large Hotel 10 2 20
Secondary School 9 1 9

Total 17 69

The simulations were conducted for 1 June 2019 for the whole 24-h period in Phoenix,
Arizona, using the typical meteorological year 3 (TMY3) weather-file from Sky Harbor
International Airport. We used 1 June as it has high peak temperature and solar insolation,
as well as a low-enough minimum temperature that it is close to the comfort regions of the
building. A 24-h period was used and seen as the maximum feasible planning period that
is useful for demand response planning. Operating under independent system operators
(ISOs), day-ahead pricing, and therefore planning, is very common. Run-times shorter
than 24 h could also be considered in later studies, for example, to target peak-pricing
periods in the day. This generates the scenario of a very high ambient temperature and solar
insolation during the middle of the day, where AC must be used near capacity in many
cases. The simulation was run considering 1-min time intervals, capturing a high-resolution
AC energy profile for every zone. Each zone is either maintained by an independent source
of cooling or a shared or centralized source. EnergyPlus results can show how much
cooling energy each zone is responsible for, even for centralized cases. Most loads in the
model are variably controlled and few are simply on/off operation. Figure 1 shows the
baseline demand profile broken down by building type.

The variety of buildings leads to a mix of unique energy profiles, half of which do not
operate for the entire day (small office, medium office, strip mall, secondary school). Many
of these loads increase at different times in the day, for example, hotels peak much later in
the evening than most buildings, most likely due to their housing nature. The secondary
school is the second largest load in the community, but is not active all day, causing the
aggregate load to drop significantly at 8:00 p.m. The number of buildings (of certain types)
was increased for small load buildings, to have an aggregated load and energy cost that
was not insignificant in comparison to the community. Figure 2 shows the distribution
percentage of the peak demand (left) and the day’s energy cost (right).

Not every building or load peaked in demand at the same time. Figure 2 (left)
represents the distribution when the aggregate signal was at its highest during the day or
the aggregate peak demand for the day. Although small offices have the highest number of
buildings, as well as zones, they only account for 5% of the peak demand. On the contrary,
the hospital and secondary school are responsible for nearly 60% of the peak demand, but
only have 16% of the zones. For the most part, the energy cost distribution is reflective of
the demand distribution with some significant changes.
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Figure 1. Baseline demand profile broken down by building type for 1 June 2019 in Phoenix, AZ, USA.

Figure 2. (left) Demand distribution for aggregated peak demand by building type for 1 June 2019
in Phoenix, Arizona, U.S. (right) Energy cost by building type for 1 June 2019 at node MESACAL
6 N004.

Two buildings see major differences from the peak demand pie graph to the energy
cost pie graph. The secondary school accounts for 27% of the peak demand but only 18%
of the energy cost. The hotels account for only 6% of the peak demand but are responsible
for 13% of the cost. This is due to their very different profiles, where the school operates
only in the middle of the day, hotels have their peak demand in the evening. A locational
marginal price (LMP) node was chosen arbitrarily from the California Independent System
Operator (CAISO) database. An LMP indicates the wholesale cost of electricity at a
specific node in the grid. The LMP is a combination of three cost components: energy,
congestion, and losses. Energy costs are primarily determined by the contracted generation
sources, while congestion and losses are determined by network conditions and the flow
of electricity. The node chosen was MESACAL 6 N004, and is near Los Angeles, California.
California utilizes more renewable electricity generation and is thought to better represent
a high-renewable-penetration scenario of nodal pricing. The 15-min ahead LMP price data
for 1 June 2019 was taken to calculate the cost of electricity for the day. The baseline model,
for all buildings, cost USD 416.60 for the day. Looking at the LMP for the day in Figure 3, it
is apparent why the hotel has an inflated price and the school has the reverse.
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Figure 3. LMP for 1 June at node MESACAL 6 N004.

This price curve has the characteristics of the “duck curve” with its small hump in
the morning followed by a dip and then an extreme ramp up to the peak in the evening.
A profile shape similar to this can be expected for higher renewable scenarios; however,
the minimum and maximum price contrast could extend further as more solar power
is connected to the grid. Demand response, like AC management, has the potential
to take advantage of these price differences throughout the day. The following section
explains a control strategy that could be used for both peak demand reduction and energy
cost reduction.

2.2. Control Strategy

For any number of loads, the coincidence factor (CF) describes the percentage of the
full load that is in demand at any point in time. Most electrical loads will operate at partial
loads, however, throughout time, high points in some loads coincide with high points in
others, creating an unnecessarily high CF. In the case of AC, the CF can change drastically
from one moment to the next, especially for a population of systems that have on/off
operations. This is still true, but less so, for variable systems. High CFs in a population of
AC equipment are, of course, very dependent on the ambient conditions of the buildings,
as well as lighting, occupancy, and indoor equipment. They are also, however, caused by
the lack of communication between systems. BEMS have introduced this communication
within buildings for many years now, proving its capability to manage a network of AC
equipment for demand response, and still has new methodologies being introduced to
improve them [28–31].

In this paper, managing CF takes a different perspective on traditional load shifting
strategies. The control strategy used in this paper will be referred to as coincidence
minimization (CM), which is a high resolution optimal scheduling strategy. Traditional load
shifting for AC has always sought to displace large amounts of energy, and thus, demand,
outside of certain relatively large time regions. It is common in electricity demand response-
related literature for studies to be conducted in hourly or even in 15-min intervals [31,32].
This involves buildings having extremely wide ranges of thermal comfort so that they
can be pre-cooled and then passively heat up during critical times. This form of demand
response is only plausible for buildings with extreme amounts of flexibility. CM only
requires a small amount of flexibility to be used as a control strategy, but is, of course,
much more complex in scheduling. Load shifting is typically controlled using hourly
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time intervals, which is in line with how most pricing schemes are established, while
CM relies on time intervals as small as one minute. Load shifting and CM follow the
same general concept of displacing some load and compensating it elsewhere, however,
the high resolution of CM allows for smaller load shifts to smaller time shifts. There are
very few studies in the literature that use intervals smaller than 15 min in this field [33–35].
Two studies utilized 5 min intervals in order to operate with the real-time energy market
both for market-clearing and household scheduling [33,34]. This makes it possible for
less flexible buildings to participate in demand response and still provide significant
impact without compromising comfort. The scheduling is optimized using a mixed-integer
linear programming (MILP) model. MILP models have been used extensively for solving
scheduling problems related to energy and demand response [36–40].

The flexibility term used in this work is based on an energy budget dictated by the
simulation results. Flexibility is defined differently in many published works but its basic
concept is the same [41–46]. The flexibility of an electrical load is a user-defined attribute
describing its ability to be manipulated. In this work specifically, the flexibility will be
defined as the maximum allowable deviation from the simulated building’s baseline energy
consumption per zone. This energy range is essentially an energy budget that the model
cannot go over or under. This is depicted in Figure 4.

Figure 4. Example of energy budget used in model formulation.

In Figure 4, the energy budget range is indicated by the space between the two
hollow red circles for each time step. This range is determined by the difference in the
energy consumption of the model versus the baseline, as well as the flexibility value.
At any point the energy consumption of the model could be less than or greater than the
baseline. The allowable difference from the baseline is determined by the flexibility. Thus,
the available decision space is dependent on both the allowable difference as well as the
model’s current position in energy consumption with respect to the baseline. Both the
individual BEMS and connected community cases will have a decision for each 1-min interval
and have the same operational capabilities as one another. The green filled circle in Figure 4
indicate the decision made by the optimization, and thus, the demand. The red filled circle
is an example of a decision in which the demand exceeds the allowable energy budget
for that time. These red hollow circles represent a major constraint in the optimization
problem. The energy budget for each time step is constantly changing depending on the
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previous demand decision as well as the demand from the baseline data. It is assumed
that if a model with low flexibility abides by the energy budget, that comfort violations are
unlikely based on the fact that the baseline profile guarantees comfort. A low flexibility
model will follow the baseline quite closely with minor adjustments avoiding unnecessary
coincidences in demand. How the energy budget and flexibility are used will be explained
more in the mathematical formulation section.

2.3. Mathematical Formulation

This section describes the optimization models for both the peak demand minimiza-
tion, as well as the energy cost minimization. Both models will use the same CM control
strategy and be solved for a range of individual flexibility values.

2.3.1. Peak Demand Minimization

The goal of the peak demand minimization model is to minimize the highest value of
the aggregate demand,

minimize P (1)

where P is the peak demand (kW). The following constraint implies that P is dependent on
the variable set Dz,t:

P ≥
Z

∑
z=1

Dz,t, ∀t (2)

where Dz,t is the decision variable for demand for each zone z and time interval t. Dz,t is a
semi-continuous variable which can be written as D ∈ 0∪ [lb, ub]. This means that Dz,t can
equal 0 or any value between lb and ub. This is tied to the loads’ operational constraints.
AC equipment will typically have minimum operating loads which are represented by
lb. The load will have to go to zero if it needs to go below lb, and of course, there is an
upper bound, ub, representing the maximum loading. lb and ub were determined from
the prototype models that generate the data, and loading that was due to obvious inrush
current was not considered as ub.

Zones are categorical, so the summation includes all zones within the building for
the individual BEMS optimization, and all zones entirely for the connected community case.
This is strictly the only difference in the optimization models between the two cases. This
forces P to equal the maximum value of the aggregate demand found in all time intervals.
The rest of the following constraints focus on constraining Dz,t further. The first constrains
Dz,t within the energy budget range as shown in Figure 4:

fl × EBz,t ≤ EMz,t + Dz,t ≤ fu × EBz,t, ∀z, t (3)

where EBz,t is the energy consumed by the baseline for zone z at time t, EMz,t is the energy
consumed by the model for zone z at time t, and fl and fu are the lower and upper flexibility
values, respectively. Flexibility values will vary between ±0.5% and ±10%. For example,
a flexibility of ±10% makes fl = 0.90 and fu = 1.10. The next equation simply ensures that
the total energy from the baseline and the model are equal by the end of the day:

EBz,T ≡ EMz,T ∀z (4)

where T is the last time interval to be scheduled. As mentioned previously, the energy
budget is also determined by the previous decisions of the model which are reflected
in EMz,t:

EMz,t ≡ EMz,t−1 + Dz,t−1 ∀z, t (5)
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The next constraint is strictly to control the variability of the decisions. Without it,
there is no deterrent for the signal to ramp up and down at extreme rates. This is imposed
on the aggregate signal rather than the individual zones z:

Cl ×
Z

∑
z=1

Dz,t−1 ≤
Z

∑
z=1

Dz,t ≤ Cu ×
Z

∑
z=1

Dz,t−1 ∀t (6)

where Cl and Cu are the lower and upper control fractions. It was found that a Cl of 0.97 and
a Cu of 1.03 were suitable, controlling the variability without making the problem infeasible.
Greater values showed repeated spiking both upward and downward in demand that was
unnecessary. There were a few cases in which ∑Z

z=1 Dz,t−1 = 0, specifically for buildings
that did not operate the entire day. In this case, a very small constant was added to the term
Cu ×∑Z

z=1 Dz,t−1 only to start operating. Most loads continued operating after starting.
To summarize, the peak demand minimization model formulation can be simplified

as minimizing Equation (1), subject to constraints (2)–(6).

2.3.2. Energy Cost Minimization

A locational marginal price (LMP) node was chosen arbitrarily from the California
Independent System Operator (CAISO) database. The node chosen was MESACAL 6 N004,
and is near Los Angeles, California. The 15-min-ahead LMP price data for 1 June 2019 was
taken to calculate the cost of electricity for the day. The baseline model for all buildings
cost USD 416.60 for the day.

All constraints for the energy cost minimization model are the same as the peak
demand minimization model, excluding Equation (2). The objective equation is the primary
difference:

min
T

∑
t=0

Z

∑
z=1

LMPt × Dz,t (7)

where LMPt is the LMP for time t.
To summarize, the energy cost minimization model formulation can be simplified as

minimizing Equation (7), subject to constraints (3)–(6).

3. Results
3.1. Peak Demand Minimization

The first important result is to show the difference in management of the loads
throughout the day for all three cases: baseline, individual BEMS, and connected community.
Figure 5 shows a comparative graph of demand profiles from the optimization models.

The individual flexibility had a large impact on the demand reduction for both the
individual BEMS and connected community cases. The individual BEMS case was capable of
reducing the peak demand by 6.8% in the low flexibility case ( f = ±1%). This increased
significantly to 23.3% peak reduction for the high flexibility case ( f = ±10%). In compari-
son, the connected community substantially outperformed the individual BEMS in the low
flexibility case, attaining a peak reduction of 17.0%. However, the performance difference is
not so drastic in the high flexibility case. The connected community reduced its peak demand
by 31.0%, only 24.8% better than the individual BEMS. This is quite the contrast to the
60.0% increased performance seen in the low flexibility case.

In both flexibility cases, the connected community schedules more energy consumption
prior to the peak demand. This is equivalent to a small amount of pre-cooling, a typical load-
shifting strategy. The effect of the increased energy budget in the high flexibility case can
be seen, with both the connected community and individual BEMS having a larger amount
of energy consumption, higher than the baseline before 8:00 a.m. With low flexibility,
both optimal schedules follow the baseline energy consumption closely after the peak
demand. With high flexibility, the optimal schedules both allocate significant increased
energy consumption after 8:00 p.m., which is previously a region of very low demand for
all cases.
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To further investigate these changes in performance, the optimization was run for
several different flexibility values between f = ±0% to f = ±10%. The results are shown
in Figure 6.

Figure 5. (a) Baseline and optimized (for peak demand) demand profiles under low flexibility
( f = ±1%) conditions. (b) Baseline and optimized (for peak demand) demand profiles under high
flexibility ( f = ±10%) conditions.

Figure 6. Peak demand reduction in individual BEMS and a connected community as a function of
individual zone energy flexibility.
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As depicted by Figure 5, there is a significant difference in the initial jump in demand
reduction for the two cases. The individual BEMS slowly gets closer to the connected
community reduction as flexibility increases. This makes sense because in a case where
all the energy is flexible, the optimum result would be a flattened demand equal to the
average demand of the baseline. This is the absolute minimum demand with complete
flexibility. This would be achieved by both the connected community and the individual
BEMS optimization. The connected community can manipulate all the loads to make a
flattened demand. In the individual cases, the result of each optimization would be a
flattened demand of that building. Aggregated, this would be equal to the average demand
of the group, and result in the same answer.

For the connected community to achieve an aggregated peak demand that is lower
than the baseline, there is a higher number of choices than individual BEMS. For example,
the connected community may force a particular building’s loads to all increase in demand
to 100% CF in preparation for mitigating the group’s demand later. This would go against
the objective of the individual BEMS. Closer inspection of the individual building controls
that were applied was performed, and the peak demand of each building for every case is
displayed in Table 2.

Table 2. Individual building performance for peak demand minimization (C.C. = Connected Community).

Demand (kW)
Building Type Baseline C.C. BEMS C.C. BEMS

( f = 0.01) ( f = 0.01) ( f = 0.01) ( f = 0.01)

Full-service Restaurant 129 99 84 96 72
Small Office 56 56 49 56 42

Medium Office 79 81 72 81 57
Large Office 85 109 83 109 75
Strip Mall 71 55 50 55 41
Hospital 350 373 321 372 258

Large Hotel 178 198 120 198 96
Secondary School 289 292 232 292 190

The difference in control is quite clear in most building types. For only two buildings
the connected community had a lower individual peak demand than the baseline. In contrast,
the individual BEMS acquired lower peak demands in every building; however, this is
obvious as it is the objective to lower its peak demand. The connected community adopts
the additional flexibility of raising the demand of certain buildings beyond typical CFs in
order to mitigate the aggregate demand later. This can still occur on a zonal basis for each
building, where a zone would exceed the expected baseline demand; however, the limited
number of zones in each building creates less opportunities. An opportunity is created
when a zone is capable of increasing demand while another decreases, shifting some
individual load, while keeping the aggregate load from increasing significantly. The range
of time that the shifted load can be scheduled is a function of the flexibility and, in other
words, how long the zone can refrain from using that energy while staying within the
energy budget. The individual BEMS have the additional constraint of their respective
building’s baseline demand. Opportunities to shift the load, while increasing a building’s
demand past its baseline demand, only exist for the connected community.

3.2. Energy Cost Minimization

The energy cost minimization results are in the same format as the prior results.
Figure 7 shows the low and high flexibility demand profiles for all three cases.
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Figure 7. (a) Baseline and optimized (for cost) demand profiles under low flexibility ( f = ±1%) conditions.
(b) Baseline and optimized (for cost) demand profiles under high flexibility ( f = ±10%) conditions.

It is very clear from both the low and high flexibility demand profiles that the connected
community and individual BEMS case performed similarly when energy cost is minimized
rather than peak demand. For the low flexibility case shown in Figure 7a, the connected
community attained energy cost savings of 6.9% while the individual BEMS attained 6.7%
savings. An area of intended DR can just barely be made out in the evening of the low
flexibility case. This is where the LMP peaked according to Figure 3. There was still
significant necessary load, according to the baseline data, in this area, and with such low
flexibility, it would be impossible to capture the whole higher-priced time region.

The high flexibility case shows results similar to that of a traditional load shifting
problem. A very large amount of energy is shifted to either side of the peak price point.
This was accomplished by both the connected community and the individual BEMS cases,
attaining 18.1% and 17.0% energy cost savings, respectively. This is only an improvement
for the connected community of 2.9% and 6.1%, respectively. The similarity in results can
be seen in Figure 8.

In the low flexibility region, the energy cost savings are roughly the same for the two
cases. The difference grows, in favor of the connected community, very gradually as the
flexibility increases. This is opposite to the peak demand minimization in which larger
flexibility resulted in closer values between the two cases. The results were further broken
down to the per building level. As expected, this similarity in the aggregate demand is
reflected in the comparison of each building. In all building types, the connected community
and individual BEMS produced approximately the same demand profile and, therefore,
the same cost. This is due to the objective function being rooted in energy consumption
rather than demand manipulation. Savings based on energy consumption do not rely
on any coordination between zones. The actions of each zone are independent, and the
savings value of each zone can be measured. The nature of the objective is quite different
to peak demand savings, where savings are only counted by the actions of every zone.
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Figure 8. Electricity cost reduction in individual BEMS and a connected community as a function of
individual zone energy flexibility.

4. Discussion

The results of this work showed that the connected community performed better in
peak demand reduction and only slightly better in energy cost reduction, relative to
individual building control. Even in the case of low individual flexibility, the visibility
of every load in the population still seemed to enhance the capabilities of the connected
community. Although many of the buildings’ peak demands coincided with the aggregate
peak demand, the individual BEMS case failed to flatten the demand in the area where
it needed to. It is highly likely this is due to the lack of information transfer between
buildings, since all buildings had the same capabilities in both cases. Buildings with
few loads had greater trouble mitigating the peak demand on their own. As mentioned
previously, it is thought that a high resolution control scheme can provide more flexibility,
especially to highly constrained loads. This increased flexibility could be attributed to the
increase in decision variables, and, in other words, possible combinations. In that case,
more zones would also increase the flexibility. This is not to say that increasing the total
time period of the problem results in more flexibility. In a low flexibility case, the decisions
made an hour prior will not have an effect on the current state. It is likely the system had
already bounced off both comfort boundaries several times within the hour. It is more
likely that decisions close to the surrounding ten minutes has an effect. Let us assume a
system must run four of those minutes at 70% part-load in order to stay within the energy
budget. If the load can be variably driven, there are an infinite number of combinations,
taking into account which time slots are active, as well as what partial loading it will be on.
With increasing flexibility, the amount of surrounding time where the decision has an effect
will also increase. Traditional load-shifting fails to capture additional flexibility, typically
because the time intervals considered are too large and it takes a great amount of individual
flexibility to attain more available time slots. To summarize this point, individual flexibility
only determines the time range that is effective, which is maximum at the time it takes
to go from one comfort boundary to the other. The scheduling resolution can increase
flexibility further, although this will be computationally more expensive.

In the high flexibility scenario for peak demand reduction, both cases achieve a
flattened demand, but the connected community leads to a bit lower than the individual
BEMS. In this scenario, it is clear that most of the loads are approaching their upper
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flexibility limit. This is assured by the large amounts of demand still being drawn for 2 h
after the baseline has dropped significantly. The ±10% flexibility is certainly enough for
large load-shifting, or peak shavings, as it achieved both the peak reduction and the cost
reduction cases. It creates fantastic results; however, how feasible is it to the buildings
that are around now is unsure. It is likely that only newer and modern buildings could
accomplish this comfortably. Projects like the Alabama Smart Neighborhood will provide
a lot of knowledge in the systems being used; however, their performance cannot be
representative of normal buildings. To reach the goal of a highly renewable energy-driven
world will require buildings to be retrofitted with new technologies and provide the
services needed to supplement renewable sources. There needs to be more emphasis
on accessibility in regards to both DR technologies as well as DR methodologies and
frameworks. Growth in DR capacity is practically stagnant according to EIA reports and
the compensation is minuscule to most participants, other than industrial and very large
commercial [13]. Compensation may improve through new frameworks, and through
direct wholesale participation; however, the accessibility of control schemes and DR in
general is not discussed enough. A highly accessible and highly rewarding market could
increase participation substantially and considerably improve the flexibility of the grid.

This paper focused on finding potential savings with the CM control strategy, hind-
sight of building energy consumption, and nodal pricing. The energy budget framework
of the control is only applicable in the case of knowing baseline consumption. In practice,
control in this manner would be much more complex, as would any community-wide or
individual BEMS long-term scheduling optimization. Both cases would rely on predictive
models of energy consumption and nodal prices. Building energy modeling using data
and reinforcement learning is developing quickly [47–50]. It is possible that electricity
customers will be moved to a real-time rate structure in the future. Real-time pricing is
well-reflected in both hour-ahead and 15-min ahead wholesale pricing. Following those
wholesale prices is likely to be a good indicator of real-time prices, which can be utilized
in models. These models will enable the advanced scheduling needed to realize the full
potential within AC DR.

The energy cost savings of the connected community were marginally better than the
individual BEMS. In the low flexibility case, they were nearly identical. Both the demand
reduction and energy cost reduction problems are rooted in allocating demand; however,
there is a stark difference in results. The reason is thought to be due to the nature of the
objective functions. In the peak demand minimization formulation, the objective is to
minimize the variable, P, representative of the aggregate peak demand. The issue for
the individual BEMS case is that no singular building will have knowledge of where
the aggregate peak will lie. Instead, they only reduce their own peak demands, when,
if the building had knowledge of the aggregate peak location, it would prioritize reducing
demand in that time period. This is exactly what the connected community is good for: having
knowledge of the peak demand, and adjusting each zone to prioritize efforts toward the
aggregate, rather than their own buildings. The reason that the energy cost minimization
results are so different is because the LMP generates that time-interval priority list for
the individual BEMS. Every 15 min is essentially ranked by cost of energy, allowing the
individual BEMS to allocate demand to each 15-min segment just as well as the connected
community. It should be emphasized that demand profiles within each interval do vary
between the connected community and individual BEMS; however, energy consumption
does not. The peak demand does not matter with respect to the LMP, but it is unknown
what rate structures or customer-market relationships will exist in the future. The connected
community and individual BEMS will perform nearly identically for objectives that are based
on energy consumption rather than demand. With any sort of demand component, it is
thought that the connected community should still outperform when scheduling within those
15-min segments, handling conflicting operation between buildings that the individual
BEMS could not. A larger difference is expected if using hour-ahead price data. It is
expected that the connected community’s ability to avoid conflicting scheduling between
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buildings would have more of an impact in comparison when the priority time resolutions
are lower. In that case, individual BEMS would still prioritize the correct times for energy
consumption, but have a higher chance to fail, to avoid coincidences in demand. In general,
it seems the connected communities must have an objective demand to have any increased
performance. In addition, given a demand-related objective, it will handle more low-time
resolution objectives significantly better than individual BEMS, but perform similarly given
high resolution objectives.

5. Conclusions

Summarizing this work, the aim was to compare the potential peak demand and cost
savings between a connected community (central optimization) and individually optimized
buildings, considering different levels of flexibility and a high resolution scheduling control
scheme. The results have brought about great insights on where a connected community
excels and where the additional connections may become redundant. With the focus
of reducing the peak demand of a community of buildings, the connected community
performed exceedingly well over the individually optimized buildings. The difference
is greater when looking at a low flexibility scenario, which shows potential for more
accessible control strategies that do not rely on large amounts of flexibility, afforded by
modern buildings and expensive storage devices. The 15-min-ahead locational marginal
price (LMP) data used, created a more targeted objective function than the peak demand
minimization. The energy cost minimization results showed almost the same savings from
both the connected community and the individual building energy management systems
(BEMS). Further investigation into the exact variables that caused it is needed. Connected
communities show great promise in providing additional savings over individual BEMS, in
some cases. The future of DR planning, nodal pricing, and the participants’ role will have
a big impact on whether or not connected communities will become a great asset or just an
unnecessary expense.
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