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Abstract: The building sector is one of the key energy consumers worldwide. Fuel cell micro-
Cogeneration Heat and Power systems for residential and small commercial applications are proposed
as one of the most promising innovations contributing to the transition towards a sustainable
energy infrastructure. For the application and the diffusion of these systems, in addition to their
environmental performance, it is necessary, however, to evaluate their economic feasibility. In this
paper a life cycle assessment of a fuel cell/ photovoltaic hybrid micro-cogeneration heat and power
system for a residential building is integrated with a detailed economic analysis. Financial indicators
(net present cost and payback time are used for studying two different investments: reversible-
Solid Oxide Fuel Cell and natural gas SOFC in comparison to a base scenario, using a homeowner
perspective approach. Moreover, two alternative incentives scenarios are analysed and applied: net
metering and self-consumers’ groups (or energy communities). Results show that both systems
obtain annual savings, but their high capital costs still would make the investments not profitable.
However, the natural gas Solide Oxide Fuel Cell with the net metering incentive is the best scenario
among all. On the contrary, the reversible-Solid Oxide Fuel Cell maximizes its economic performance
only when the self-consumers’ groups incentive is applied. For a complete life cycle cost analysis,
environmental impacts are monetized using three different monetization methods with the aim to
internalize (considering them into direct cost) the externalities (environmental costs). If externalities
are considered as an effective cost, the natural gas Solide Oxide Fuel Cell system increases its saving
because its environmental impact is lower than in the base case one, while the reversible-Solid Oxide
Fuel Cell system reduces it.

Keywords: NPC; LCC; hydrogen systems; SOFC; externalities; energy communities; self-consumers’
groups

1. Introduction

Global energy demand has drastically increased in recent years and projections show
that this trend is going to continue in the next decades [1].

Prior to the Covid crisis, energy demand was projected to grow by 12% between 2019
and 2030. Growth over this period is now estimated to fall between 4% and 9% (depending
on pandemic development). However, growing rates are expected to get back on the
previous track between 2023-2025 [2].

Concerning residential and commercial sectors (building sector), population and ur-
banization trends, especially in non-OECD countries, will lead to raise the energy needs [3].

Energies 2021, 14, 5847. https:/ /doi.org/10.3390/en14185847

https://www.mdpi.com/journal/energies


https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-7905-3989
https://orcid.org/0000-0003-2258-779X
https://orcid.org/0000-0002-3262-1288
https://orcid.org/0000-0003-1026-7668
https://orcid.org/0000-0001-5200-9494
https://doi.org/10.3390/en14185847
https://doi.org/10.3390/en14185847
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14185847
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14185847?type=check_update&version=3

Energies 2021, 14, 5847

2 0f 24

The IEA (International Energy Agency) estimated that the building sector will account for
over one-third of total final energy demand [4].

These previsions could lead to more emissions and even worse environmental prob-
lems. Indeed, accounting for indirect emissions from upstream power generation, building
sector generated 28% of global energy-related CO, emissions in 2019 (10 GtCO,) [5].

Scientists” attention is driven to more efficient technologies, to be implemented in the
building sector, mainly by global warming and the energy crisis.

Micro combined heat and power (m-CHP) systems are a suitable alternative for
building energy supply and their use can improve energy efficiency significantly, reducing
environmental impacts [6].

Regarding the many technologies available as m-CHPs, fuel cell micro-CHP systems
are considered as one of the most promising innovations for residential and small com-
mercial applications. A large deployment of m-CHPs can assist the transition of energy
infrastructure towards a more sustainable system. The advantages of FCs are high effi-
ciency, fuel flexibility, low pollutant emissions, excellent partial load performance and the
absence of noise and vibration problems, making them a viable option for construction
applications [6,7]. Among fuel cells, used as micro-CHP, the most common are polymer
electrolyte membrane (PEM) that operate at 60-160 °C and have the electrolyte in polymeric
materials, and solid oxide fuel cells (SOFC) which operate at 600-850 °C and are made out
of ceramic materials [8].

Solid oxide fuel cells (or SOFCs) are electrochemical conversion devices that generate
electricity, combining hydrogen and oxygen, and employ a solid oxide or a ceramic as
electrolyte material [9]. SOFC are particularly efficient in converting hydrogen to electrical
power [9]. Further, they can be fueled with natural gas, and avoid the use of expensive cat-
alyst material [10] for steam methane reforming (SMR), due to high operating temperature.
Solid oxide fuel cells can also be operated as an electrolyser (r-SOFC) for water splitting
and production of hydrogen via electrical power. In such operating mode the r-SOFC is
a SOEC (Solid Oxide Electrolysis Cell). SOECs are electrochemical cells able to convert
steam in hydrogen and oxygen when the proper electrical potential is supplied. In SOECs
hydrogen evolution reaction (HER) takes place at the cathode, oxygen ions migrate through
electrolyte to the anode, where they recombine with electrons generating molecular oxygen
(OER, Oxygen Evolution Reaction) [11]. r-SOFCs show higher efficiencies, compared to
low temperature electrolysers (PEM and alkaline), reaching around 98% of conversion at
650 °C [9]. However, the water electrolysis process is usually more expensive than SMR
methods and its impact on the environment depends on the energy mix of each country [12].
Therefore, hydrogen can be considered effectively “clean” only if production comes from
renewable energy sources [12]. In this respect, employment of reversible SOFC in domestic
application, as support for generation of renewables, appears to be highly desirable.

Due to their capacity to use and/or produce hydrogen, SOFCs are expected to play
an important role in the energy transition that Europe is going to face. In fact, hydrogen
is deemed as a key contributor to solve the challenges posed by the European Union,
offering a future solution with several advantages [13]. While environmental sustainability
of SOFC systems, based on LCA, is widely discussed in literature ([14] and references
therein), there are only few studies that merge a complete environmental analysis with an
economic one: Strazza et al. (2015) evaluated a 230 kW SOFC system and compared it with
a conventional technology, combining both LCA and LCC. Their results are presented in a
toolbox embedding eight sustainability indicators for decision making and show that the
SOFC system presents benefits for household application. However, cost resulted to be the
most sensitive bottleneck for benchmarking with traditional energy systems [7].

During the last decade, to let environmental-favourable energy systems penetrate the
residential sector, several incentives were introduced by governments. Support schemes
can be divided into two broad categories: investment grants and operating support
schemes [15]. The first group provides financial aid for the purchase and the installa-
tion of the technology, the second one refers to the tariff recognized for the electricity
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exported to the grid. The grant on capital cost, often, consists in a uniform time series of
payments spread over the lifetime of the good.

Concerning operational incentives, the following schemes can be identified: the
Purchase & Resale (P&R) support scheme and the net metering (NM). According to P&R,
producers can sell the unused energy at any moment, and it is accounted as soon as it is
exported to the grid. Differently, the net metering (NM) offers the possibility of exchanging
electricity produced and exported to the grid with electricity imported from the grid at
different times. As a result, NM incentive works as a partial reimbursement of the quantity
of energy purchased from the network. Indeed, the refund is the minimum between the
economic value of the imported electricity and the exported one. The scope of NM is to
increase the quantity of self-consumed energy by the user. Finally, there is the Feed-in
Tariffs support scheme [16,17]. It is composed by two parts: a quota, that pays the energy
produced and immediately consumed (equally it is possible to store energy and use at a
second moment as well), and a second quota, that pays the amount of electricity exported
to the grid. Together with environmental performance, it is necessary to evaluate economic
feasibility and the effects of incentives for application and diffusion of these systems in
the building sector. Assuming that consumers’ decisions are driven mainly by economic
rationality, in the acquisition and utilization of energy technologies they are going to choose
the cheapest system.

Therefore, it is crucial to integrate environmental and economic analysis, that can
provide consumers and decision makers with a balanced set of information, to consider
the costs as well as the environmental impacts. Results from a use-phase assessment
(i.e., not including capital cost) show that m-CHP systems generate significant emissions
and cost reductions (when a financial support mechanism is included) [18]. Nevertheless,
the base case is more profitable over a 15 years’ period NPV (Net Present Value) analysis,
even though SOFC generates annual savings, due to its high capital cost [18]. A financial
appraisal of different m-CHP configurations for reducing emissions for a domestic user
in the UK shows the computation of the NPC (Net Present Cost) for 20 different config-
urations and normalizes them with the base scenario [19]. Among others, four system
options based on solid oxide fuel cells were investigated and the authors concluded that, if
UK Government subsidies are included, these systems are profitable compared to a con-
densing boiler and grid electricity. Different configurations for a small scale trigeneration
power plant based on FCs are also assessed in Italy [20], designing a 10-apartment cluster
scenario. Their analysis is performed following two different control strategies: the former
minimizing the daily costs, the latter minimizing the daily primary energy consumption.
Economic results are provided in terms of economic saving, primary energy consumption
reduction and simple payback period. Scenarios regarding Italy, Germany and Denmark
are simulated in Pellegrino et al. (2015) [15], where the impacts of different supporting
schemes are discussed, both on the technical and the operational layout and on the retail
price of m-CHP units based on SOFC in the residential sector. Utilizing large family users’
load as well as average family users’ load, the retail prices that yield a five years’ payback
period are obtained for each configuration. An optimization model using the Mixed Integer
Non-Linear Programming (MILP) to a SOFC based m-CHP system case study of a hospital
in Shanghai [6] is also reported: the results indicate lower environmental impacts and lower
costs in terms of levelized cost of electricity (LCOE), than the conventional energy system.

Moreover, in recent years many studies were conducted with the aim to explore FCs
flexibility, coupling them with a variety of renewable energy systems. Several different
optimization models are used for on-grid [21-27] and off-grid [28-32] hybrid systems.

An analysis of an integrated CHP system based on a fuel cell (alternatively SOFC
and PEMFC) and a heat pump for residential application, is performed by Sorace et al.
(2017) [33]; the computation of the NPV of the systems, including projections for three
different scenarios (current, short term and long term) are performed and compared to
the base case. Both systems show PBT (payback time) lower than three years for each
time scenario.
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As previously detailed, most of the economic studies on simple m-CHP systems
(i.e., non-hybrid) are focused on size optimization and on carbon savings, while there are
a few fully integrated economic and environmental sustainability appraisals. Moreover,
most of the studies for residential m-CHP systems, that combine SOFCs with renewable
power sources (i.e., hybrid-CHP), are mainly based on optimization, sizing, operation
techniques, and cost analysis are accordingly assessed [21]. Regardless, most of them miss
an integrated and detailed LCA analysis. The aim of the study presented in the following
sections is to integrate a previous LCA assessment of a FC/PV hybrid m-CHP system for a
house located in Italy, with a detailed economic analysis.

Financial indicators (NPC, PBT) are used for studying two different investments:
reversible-SOFC (r-SOFC) and natural gas SOFC (ng-SOFC) in comparison to a base case
scenario, using a user perspective approach. Moreover, two alternative incentives scenarios
are analysed and applied. For a complete LCC, environmental impacts are monetized with
the aim to internalize (consider them like a direct cost) the externalities (environmental
costs). The objective of the present study is to assess the economic profitability of two SOFC-
based micro-CHPs for residential buildings, considering different incentives scenarios. A
special emphasis is given to understand if the new Italian incentive framework, intended
to stimulate the rise of self-consumers’ groups and energy communities, favours the
deployment of r-SOFC, as a technology for energy storage. As an integral part of the
objectives of the study, there is the evaluation of externalities due to systems’ operation.

2. Materials and Methods
2.1. Case Study
The case study considers the fulfilment of the thermal and electric energy demand,

deriving from a house with eight rooms, a floor area of 200.0 m?, and net height equal to
3.0 m, located in the Italian climatic zone E, in Milan.

2.1.1. Electrical and Thermal Load: User Load Profiles

The annual thermal and electrical demand has been taken from [14]. Here, the house
energy demand was estimated by simulation with TRNSYS software. Table 1 provides data
related to the case study.

Table 1. Case study data.

Floor Area and Height 200.0 m2, 3m
Number of occupants 5
Climatic Zone E (Milan, Italy)
Annual thermal energy demand (kWh/year) 7260 kWh
Annual electrical energy demand (kWh/year) 13,640 kWh

The electricity demand is built on hourly base, considering the number of occupants,
the use of domestic appliances and the lighting system. Electricity loads related to appli-
ances and lighting systems are differently scheduled for weekdays and for weekend days.

The hourly thermal demand for space heating and space cooling is computed assum-
ing a weekday, a weekend day, and a peak day for each month.

Domestic hot water hourly energy demand is also included in the computation but it
is assumed to be constant for each day of the year. Further information is available in [14].

2.1.2. Systems Layout

Two different grid-connected layouts have been developed with the purpose of meet-
ing the energy requirements of the user. In addition, a base case scenario is introduced in
this paper, for a complete investment evaluation from a private perspective (i.e., by the
homeowner).
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The first layout includes: a flat plate photovoltaic system (PV), a r-SOFC with relative
BoP (Balance of Plant), a tank for hydrogen storage, a thermal energy storage system (TES),
a DC bus and a nanogrid management system (NMS).

In this scheme the energy sources are represented by the r-SOFC, the PV and the
external grid.

The r-SOFC can operate as a standard fuel cell and, alternatively, as an electrolysis
cell [21]. The produced hydrogen is stored in appropriate vessels and used when the
fuel cell operates in standard mode, producing electricity and heat. The thermal power
generated is stored in a hot water tank, including an auxiliary electric heater. In Di Florio
et al. (2021) [14] system operation has been simulated, on an hourly basis over one year,
following a two-step procedure and the main results of the simulation are shown in Table 2.

Table 2. Energy demand and production from [14].

Case Study Features r-SOFC System ng-SOFC System Base Case

AC Primary Load 13,640 kWh 13,640 kWh 13,640 kWh
phermaland Auwdliary electric 8621 kWh 6591 kWh -

Thermal Load - - 7260 kWh

Electrolyser input 11,675 kWh - -
PV 14,308 kWh 14,308 kWh -

Sources Grid 17,354 kWh 8653 kWh 13,640 kWh
SOFC 3792 kWh 8738 kWh -

Natural gas - 1398 m3 865 m®

The r-SOFC operates with 0.70 kW power and its total efficiency is equal to 46.9 %,
while in electrolyser mode its maximum power is 5 kW.

The second layout consists of a ng-SOFC and its BoP. Other components are the same
of the previous layout (i.e., PV, NMS, TES, DC bus).

Simulation results are obtained performing the same procedure, assuming continuous
operation of the SOFC, and they are summarized in Table 2.

The natural gas fed system operates with a power of 1 kW and an efficiency equal to 63.3%.

In addition to these layouts a base case scenario is defined, which is the one “without”
the investment. In this scenario electricity is provided by the grid and heat is provided
by a traditional natural gas fed boiler. From yearly data of Table 2 it is possible to define
an energy performance parameter (EPI) for the household, to measure the energy savings
correlated to SOFC-based micro-CHP systems. The EPI is calculated as the ratio between
yearly energy consumption of analysed system and energy consumption of base case, that
is the reference. Energy consumption may occur through electrical energy, supplied by
national grid, and/or natural gas. Both energy vectors have been included in a unique EPI,
adding to electricity the energy content of the consumed natural gas. Therefore, the EPI is
defined as:

(Egrid + ENG)

(Egrid + ENG)

with Eg;z being the electrical energy and Eng the natural gas energy. The results show
that EPI"~SO9FC = 0.830 and EP["8~50FC = 0.832. Although both systems have very
similar EPIs, the way such result is attained is different: the r-SOFC system has a higher
consumption of electricity, but it completely rids off natural gas (see Table 2), while ng-
SOFC uses more natural gas than the base case, but much less electricity from the grid is
needed (Table 2). However, the overall behaviour is very close for the two micro-CHPs
and it corresponds to net energy savings of about 17%.

system

EPI =

)

baseline
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2.2. Economic Analysis

The economic analysis is performed from a homeowner viewpoint. The alternative
systems are evaluated and compared using two different indicators: NPV and PBT.

As the installations provide a service rather than a product, the NPV are likely to be
negative, so they are considered as net present cost (NPC). NPC is defined as the actual
value of all the cash flows involved in an investment. It is an index of the lifetime costs
used for comparing alternative investments among them and to the base case (without
investment). It is defined as follows:

Cy RV,

NPC=Co+Y ., Terf @er (€) )

where Cj is the cost of capital (purchase and installation of components) (€).

Cy is the cash flow at the k-th year of system lifetime (€).

RV, is the residual value of components at the n-year (last year) (€).

n is the system lifetime (assumed to be 10 years for our systems).

r is the discount rate, assumed equal to 3% in our case.

Payback Time is defined as the time revenues needed to cover capital and maintenance
cost (PBT is equal to the reciprocal of another largely used indicator, Return on Investment,
ROI). Its general formula is:

PBT = % (years) ©)]

where Cj is the cost of capital (purchase and installation of components) (€).

S is the average annual saving compared to the base case (€).

The yearly cash flows (Cy) related to the investments (shown in Equation (2)) are
divided in:

Cup: costs of the use phase. I: revenues from incentives on electricity produced and/or
sold to the grid (see Section 2.2.2.2).

Ck = Cup -1 (€) (4)
The term Cyy, is calculated as follow:
Cup = Cee + Cng + COeM (€) (5)

where C;,¢ is the yearly cost of natural gas (€), C is the yearly cost of the electricity bought
from the grid (€) and Cp,p is the operation and maintenance cost (€).

The term I refers to the money received by the homeowner for the production of
energy. It is evaluated following two different incentives scenarios available in Italy and
described in Section 2.2.2.2.

The lifetime of the project is 10 years, equal to the lifetime of the fuel cells, so no
replacements are needed in this time horizon.

The residual value (RV}) in Equation (2) is the value remaining in a component of the
power system at the end of the time window. It is computed assuming linear depreciation
on capital cost.

For example, as concern PV system:

va

RVn,pv = (P‘/lt - n) X P‘/lt

(€) (6)

where 7 is the analysis time frame, PV}, is the photovoltaic lifetime and Cp, is its capi-
tal cost (€).

2.2.1. Cost of Capital: Inventory

Cost of capital refers to the purchase and installation of main components: PV, fuel
cells, boiler, and Hj vessels. Data are collected from partner companies. When primary
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data are not available, they are selected from previous studies. All costs are reported
in EURzozo.

Photovoltaic panel system has 10 kW power. Scanning recent studies on PV home
systems [34,35] a price of 2270 EUR/kW is estimated.

Concerning the r-SOFC, primary data about cost have been provided by research
centre Fondazione Bruno Kessler (FBK), located in Trento (Italy). Starting from factory data,
FBK estimates the cost of producing r-SOFC on a large scale, using Wright’s Cumulative
Average Model. The price of the r-SOFC, including BoP and installation, reduces by
10%-every time production is doubled. In this work we choose a value of 12,000 EUR,
reached for a mass production of 16,000 items (optimistic scenario).

Concerning the ng-SOFC, key performance indicators of fuel cells for stationary
application (residential and commercial building) are published in [13]. Data are sourced
from the MAWP (Multi Annual Work Plan) of the FCH2-JU (Fuel Cell and Hydrogen Joint
Undertaking). The price indicated for a SOFC (<5 kW power) is 10,000 EUR/kW. Capital
costs are based on 100 MW /annual production volume for a single company and on a
10-year system lifetime running in steady state operation. In this study balance of plant
components are included in the 10,000 EUR/kW capital cost.

The cost of the thermal energy storage system, consisting of a commercial one-
serpentine hot water tank including an auxiliary electric heater is obtained from company
Boilernova (Italy).

The r-SOFC layout involves a hydrogen storage system composed of 25 vessels, 80 L
capacity each, containing approximately 8 Kg Hj. Recent study by Duman et al. (2018) [32]
suggests a capital cost for hydrogen storage system around 500 USD/kg. In this study total
cost amounts 3600 EUR (i.e., 450€ per kg of stored hydrogen) and it is coherent with other
data from literature review [36].

2.2.2. Use Phase

Use phase costs are divided in energy cost (electricity from grid and natural gas) and
operation and maintenance cost (in Table 3).

Table 3. Components costs including lifetime and maintenance.

Component Price OeM Lifetime Source
PV (10 kW) 22,700€ 1% 25 [3,37]
ng-SOFC (1 kW) 10,000€ 1% 10 [13]
r-SOFC (0.7 kW) 12,000€ 1% 10 Primary data
Tank 200 L 600€ - 15 Primary data
H2 storage (25 vessels, 80 L) 30 bar 3600€ - 20 [32]

2.2.2.1. Electricity and Natural Gas

Prices of energy are sourced from the Italian Regulatory Authority for Energy Net-
works and the Environment [38] and reported in Supplementary Materials (SM). The price
of electricity is composed of raw material, cost of transport and other charges.

Annual cost of electricity (Ce in Equation (5)) is computed, using this formula:

Cee = Z?:l Zlg:l fl4:1 Ejri/h (Pj/irh + T + O) (€) (7)

where j is the quarter, i is the slot and & are the hours. E is the electricity purchased from the
grid (kWh), P is its price (EUR/kWh), T is the cost of transport and management (€/kWh),
and O is the component “other charges” (EUR/kWh).

As shown in Equation (7), components T and O are constant. A 10% VAT must be
added to the final cost of electricity.

According to [38], natural gas price varies as a function of the consumption quota, the
quarter, and the reference region. In this study, the considered price refers specifically to
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the geographic region where the house is located. Northeast Area (includes Milan) and a
consumption quota between 481 and 1560 kWh are considered for the selection of the tariff.
A fixed cost of 100 EUR/year is added as indicated by ARERA [38] along with
10% VAT.
The equation for computing the annual price of natural gas is:

Cog = Y11 G % (B+Tj+0) +C5 (€) ®)

where j is the quarter. G refers to natural gas purchased (m?), P is its price (EUR/m?), T and
O are accessories costs (EUR/m?) and depend on the quarters differently than electricity
ones, finally, Cris the fixed cost (EUR).

The economic analysis is run for a 10 years’ time horizon. Therefore, the energy price
needs to be projected for this time horizon as well. The price of energy is generally difficult
to predict because it is widely volatile [15]. Recent projections state an increase in energy
price due to several factors [33,39-41]. Concerning electricity, the increase is mainly due to
capital cost and governmentally influenced cost components, such as taxes on fuels and
ETS (emissions trading system) payments [39].

After 2020, natural gas prices are also expected to grow constantly. This increase
is driven by high growth in natural gas consumption in developing countries and the
constantly increasing international oil prices [40].

In the present study constant energy increase is applied to the “raw material” com-
ponent (i.e., P in Equations (7) and (8)) of electricity and natural gas price, assuming that
transport cost and other charges remain unchanged. Between 2020-2030, an increase rate
of 0.8%/year is assumed for electricity price as indicated for the households’ sector [40].

Instead, the natural gas price increment rate is fixed to 1%/year. Previous stud-
ies [33,39] consider higher increase rate for energy prices than this study.

2.2.2.2. Incentives on Electricity Sold to the Grid

For sake of simplicity, incentives on purchase and installation of technologies are not
considered. The grant on capital cost, often, consists in a uniform time series of payments
spread over the lifetime of the good. In Italy, the energy efficiency policy provides a return,
in percentage between 50% and 110% of the investment to be corresponded in at least
10 annuities.

This study focused on two different operating support schemes related to the electricity
produced and exported to the grid: (a) net metering and (b) self-consumers’ groups and
energy communities.

(a)  Net Metering

Techno-economic terms concerning the first scheme are defined by [42].
This incentive consists of two different compensations. One compensation is defined
using the following formula:

Cs = min [Og; Cgf] + CUy x Es (€) )

And the other is:
L =max [0; Cg; — Og] (€) (10)

In these equations:

Op=Y12, Z?l-:l Epr,m(fi) X PUN,, (f;) is the economic value of electricity purchased
from the grid (£).

Cpr = 2,1112:1 Z?‘i:l Epm(fi) x P, is the economic value of electricity fed into the
grid (EUR).

Es = min [Ej; Ep,] is the minimum between the quantity of electricity purchased and
the quantity of electricity fed into the grid (kWh).
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CUg (in Equation (9)) is a fixed price index, representing accessories cost avoidance,
thanks to electricity production by homeowners (EUR/kWh).

The economic values of electricity (Of; Cgj) are computed considering different tariffs,
in respect to the hour (fi) and the month (m) electricity is provided. Costs are differentiated
by the component price that is higher (PUN) for Of than for Cg; (P;). Therefore, a lower
price is assigned to the energy produced and fed into the grid than the purchased electricity.
P, is projected for ten years following the same increase rate of electricity. The energy flows
related to Net Metering scenarios (NM) are described in Table 4.

Table 4. Energy flows in NM scenarios.

r-SOFC ng-SOFC
PV °“tpuﬂ;g?2‘;g‘ed by the 8012 kWh (56% of PV output) 6868 KWh (48% of PV output)
PV output consumed by o
the electrolyser 5837 kWh (41% of PV output) -
SOFC output self-consumed 3336 kWh (88% of SOFC output) 5242 kWh (60% of SOFC output)
Total Grid Sales (Ej) 984 kWh 10,324 kWh
Grid Purchase (Ep,) 17,354 kWh 8653 kWh

(b)  Self-consumers’ groups and energy communities

Recently in Italy methods and conditions for the creation of self-consumers’ groups
and renewable energy communities have been introduced [43]. This starts the experimen-
tation of a framework of rules, aimed at stimulating final consumers and energy producers
to “share” the electricity produced locally by new small-scale renewable power plants.

In this study one scenario assumes the user (homeowner) to be a renewable energy
self-consumer, i.e., someone, who produces renewable electric energy that satisfies his
demand and who stores the produced energy or sells it to another self-consumer. A
group of self-consumers is a set of at least two self-consumers, who act jointly. The 2009
European Directive on Renewable Energy (REDII), revised in 2018 [44], aims at rising
the quota of consumed renewable energy in the European Union. The articles 21 and
22 of the 2018/2001 EU Directive [44] give a definition for self-consumers’ group and
renewable energy communities and introduce the main framework to determine incentives
for consumers, that member States should implement. A group of self-consumers is
a group of at least two renewable energy self-consumers, that act collectively and live
in the same building or apartments block, while an energy community is defined as
the association of members and shareholder, all placed in the neighbourhood of some
renewable energy production plant, owned by the same energy community. Members of
an energy community can be final customers, small and medium enterprises (SME) and
local authorities. In Italy, the implementation of these articles of the European 2018/2001
Directive is introduced with the law [43] and the guidelines [42]. The economic incentives
will be rewarded for a period of 20 years, with a Feed-in-tariff for shared energy of 100
EUR/MWh for self-consumers’ groups (110 EUR/MWh for energy communities) [42]. The
incentive scheme is aimed at new renewables power supply systems with a maximum
power of 200 kW. The guidelines [42] also specify how to calculate the shared energy,
the unitary coefficient ((EUR/kWh) for self-consumed energy and when rewards can be
combined with other incentives. Essentially the incentive framework is in a pilot stage [43]
and monitoring procedures are foreseen too [42,43].

ARERA [42] has defined the economic aspects relating to a group of renewable energy
self-consumers that act collectively.

The incentive provides three components as follow:

Cac = CUns X Eac + ) (Each X cpri X Pay) (€) (11)
T
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Inc = TPac X Eac (€) (12)
RAC =P, x EI (€) (13)

where CUyy is the fixed price index representing accessories cost avoidance thanks to
electricity sharing (EUR/kWh), E4c is the electricity shared on hourly base by the group
of self-consumers (kWh), C, is a coefficient representing avoided electricity grid losses
and P;, is the zonal hourly tariff (EUR), TP 4¢ is the incentive premium on shared electricity
(EUR/KkWHh), E; is the energy produced and exported (kWh) and P, is the export tariff paid
for energy produced (EUR/kWh).

This mechanism is like FIT (Feed-in-tariff), introduced in the UK. Py tariff is recognized
for all the electricity produced by the self-consumers group (E;) while the incentive (TP 4¢) is
applied to the part of produced energy that is self-consumed instantaneously and computed
on hourly base (i.e., the minimum between produced energy and purchased energy at any
hour). Incentive’s parameters are provided in SM. To assess the economic viability, it is
necessary to define the configuration, where the house is part of a self-consumers group.
In such scheme, the energy generation (PV) is placed in front of an exchange meter whit
the public grid. All the community users, like the studied case, are placed behind this
exchange meter. Concerning the SOFC systems, we choose to analyse the possibility to
install the fuel cells in the same branch of PV system—in front of the exchange meter—or
together with the user’s appliances—behind the exchange meter.

Therefore, economic assessment has been evaluated considering four possible configurations:

- house provided with r-SOFC (i) in front of the meter (FTM) (Figure 1A) or (ii) behind
the meter (BTM) (Figure 1B)

- house provided ng-SOFC (iii) in front of the meter (FTM) (Figure 1A) or (iv) behind
the meter (BTM) (Figure 1B)

Energy flows for the economic model (Ep,, E; and E4c) are influenced by layout’s

configuration and they are shown in Table 5.
]L\
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Figure 1. (A) Configuration with the fuel cells in front of the meter (i-iii). (B) Configuration installing
the fuel cell behind the meter (ii-iv).
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Table 5. Energy flows related to self-consumers group scenarios.

-SOFC FTM (i) 1-SOFC BTM (ii) ng-SOEC FTM (iii) ng-SOEC BTM (iv)
Total Electric Energy 24,546 kWh 31,029 kWh 22,262 kWh 14,357 kWh
Purchased (Ep,)
Total Electric Energy fed 8395 kWh 14,687 kWh 23,046 kWh 15,141 kWh
into the grid (Ey)
Total Electric energy 6991 kWh 13,089 kWh 12,982 kWh 5312 kWh

self-consumed (E 4¢)

In Figure 1A the configuration (i) PV output is partially used as electrolyser energy
input. The remaining part of PV energy output is exported to the grid as well as the total
r-SOFC output. The energy purchased from the grid is the sum of total AC load (+ auxiliary
electric heater) and the remaining energy input (part is covered by PV) needed by the
electrolyser. Concerning the other configuration (iii) the energy exported to the grid is
obtained by adding the total PV output and the total ng-SOFC output, while the AC load
(+auxiliary electric heater) is totally covered by electricity purchased from the grid.

In Figure 1B when the r-SOFC is installed behind the meter (i.e., configuration ii) the
total electrolyser energy input is taken from the grid and the total PV output is fed into the
grid. The AC load (+auxiliary electric heater) is partially covered by the r-SOFC output,
and the remaining part is purchased from the grid. The energy surplus of the r-SOFC is
sold to the grid. In the last configuration (i.e., iv) the ng-SOFC leads to the following energy
flows: total PV output is exchanged with the grid; the purchased energy from the grid
is equal to the AC load (+auxiliary electric heater) minus the part that is satisfied by the
ng-SOFC; and surplus output produced by the SOFC is fed into the grid.

2.3. Externalities

In economics and public policy, the concept of externalities has become increasingly
popular [45,46]. An externality, identified by Stiglitz (2000) [47] as one of the “market
failures”, occurs anytime an economic agent is affected by environmental damages, but he
does not receive any compensation for the damage he suffered.

By definition, an externality is a transaction between two economic agents, which
affects, at least a non-participating one (i.e., third person) without any money transfer [48].
Externalities can be either positive or negative. In the environmental context this notion
refers mainly to negative externalities, also defined as external costs, since they represent
real cost to the society, even though they are not reflected in the market price of an economic
commodity or a service [49]. These external costs need, thus, to be borne by society in
the form of taxes, medical expenses, insurance payments, and losses in life quality and
natural capital [50].

Many recent studies have highlighted the importance to account into the price of
goods and services the cost deriving from negative externalities. Such environmental costs
can be attributed to energy generation too [45]. While the inclusion of externalities appears
crucial for decision making, there are still difficulties due to the related uncertainties.
Unfortunately, so far, no consensus about how to monetize environmental impacts has
been reached within the scientific community.

All the nine existing monetization methods used in LCA have been compared qual-
itatively and quantitatively in a recent review [51]. The authors used seven comparison
criteria and concluded that methods use a wide variety of valuation approaches differen-
tiating for: cost approaches, geographical scope, AoPs (area of protections), discounting,
equity weighting, marginality or not and uncertainty.

When the optimal monetization method has been chosen it is necessary to find an
“economic instrument” to internalize externalities [52]. The rationale of internalization,
according to Prud’homme (2001) [53], is to make economic agents aware of the costs they
inflict upon society, and to induce them to change their choice towards more sustainable
products or service.
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Some consumers start to choose between different alternatives (products or services)
following a rationality driven by environmental sustainability [37]. Although, to politically
drive the market towards socially optimal production and consumption (internalizing
externalities) a variety of instruments can be introduced by the government among others,
ecological fees, tolls and environmental tax reform as listed in [54].

Arendt et al. (2020) [51] states that geographical reference has the biggest influence
on the monetary factor and suggests paying attention to the coherence of the underlying
reference region of monetization methods and the case study analysed. For this reason, the
monetization of the environmental impacts of the systems has been calculated using three
different European models: EVR (eco-costs value ratio) [55], Environmental Prices [56]
and MMG (Milieugerelateerde materiaalprestatie van gebouwelementen, Environmental
Material Performance of Building Elements) [57].

Moreover, the selected methods can significantly influence both the absolute value of
alternatives and the ranking among them. Hence, the monetization is performed by means
of different methods in order to reflect the uncertainty at the state of the art, to compare the
different results obtained and to verify their consistency.

Environmental assessment usually uses several categories to quantify the damage im-
parted to the environment, ecosystems, etc. Therefore, methods for calculating externalities
try to find monetization factors for each impact category.

The monetary value of each environmental category is computed, then, multiplying
the score for the environmental damage and the relative monetization factor, according to
the following formula:

EC = LCA score;. x Monetization Factor;, (€) (14)

where ic is defined as the environmental impact category and LCA score are obtained from
LCA analysis of the different systems [14] and of the base case.

Monetization factors are summarized in Table 6. All monetary factors are presented
in €2020.

Table 6. Monetization factors.

Midpoint Envn‘opmental MMG EVR Unit
Category Prices
Climate change 0.06 0.05 0.12 €/kg COzeq
Terrestrial
acidification 7.84 0.46 9.01 €/kg SOzeq
Freshwater 0.64 21.38 429 €/kg PO,e
eutrophication ’ ’ : & t4eq
Human toxicity 3656.93 61,810.00 82,452.42 €/CTU Cancer
Photochemical
oxidant 2.32 0.51 9.31 €/CoyHy
formation
Particulate 146.72 36.34 36.04 €/PM; seq

matter formation

3. Results and Discussion
3.1. Economic Analysis

An LCC analysis over a 10 years’ period has been performed, calculating the total NPC
values (Figures 2 and 3) and the NPC values of the operational phase only (without Cy)
(Figure 4). The analysis has been carried out considering alternative incentives: “net
metering” (Figures 2 and 4) and “self-consumers group” (Figures 3 and 4).
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Figure 2. Costs and incentives of the systems in the “net metering” scenario.
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Figure 3. Costs and incentives of the systems in the self-consumers group scenarios.
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Figure 4. Normalised “operational phase” NPC values in each scenario.

In Figures 2 and 3 the total NPC values are presented, including: the net cost of capital,
i.e., the sum of first and third term in Equation (2), the energy expense, the maintenance
expense, and the savings due to incentive.

Figure 4 shows the NPC values concerning the energy demand expenses (i.e., the
energy cost of Figures 2 and 3), the maintenance expense and the incentives, excluding
the cost of capital. The NPC values have been normalised with the base case scenario, so
any value lower than 100% represents an economical saving for the homeowner over a
10 years’ period.

Moreover, all the NPC values are calculated for the two different incentive scenar-
ios: “net metering” (NM) (Figures 2—4) and for the four configurations, namely FTM
(i and iii) and BTM (ii and iv), concerning the “self-consumers group” (SG) incentive
(Figures 3 and 4).

As shown in Figure 2, the total NPC (green bars) of the r-SOFC system in the NM
scenario is higher than the one of the ng-SOFC and they are, respectively, 47,817 EUR and
32,238 EUR.

This is due to higher net capital cost (27,277 EUR) and also to higher “operational
costs” of the r-SOFC system, resulting from higher energy costs (18,186 EUR) and a lower
amount of incentive (1118 EUR), that is 13% of the ng-SOFC one (8595 EUR). Indeed, total
expenses (Net Cy + Energy cost + Maintenance cost) for the r-SOFC system are around
20% higher than expenses for the ng-SOFC system, however this gap increases to around
48%, when considering NPCs. The explanation for such divergence is due to the different
rewards from incentive scheme: essentially the r-SOFC system in the NM scenario does
not get any appreciable saving (2.3% of total expenses), while the ng-SOFC gets savings
for 21% of total costs. Furthermore, it is noticed that net capital cost represents the largest
contribution to total expenses, being around 56% for both systems (57% and 71% of NPC
respectively for r-SOFC and ng-SOFC systems).

In Figure 3 the details of the total NPC values relative to the self-consumers’ group
scenarios are presented. In this case, the NPC values of the r-SOFC systems are: 46,018 EUR
(configuration i) and 44,074 EUR (configuration ii); and the NPC values of the ng-SOFC
systems are: 32,544 EUR (configuration iii) and 35,214 EUR (configuration iv). As first
observation we notice that, compared to the NM incentive scheme, the r-SOFC system prof-
its from SG incentive, lowering its NPC, especially in the behind-the-meter configuration
(ii), while the ng-SOFC system does not gain any benefit, thus having a constant NPC (in
front-of-the-meter configuration iii) or a worse NPC (behind-the-meter iv). These trends
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are the consequence of the specific management of energy fluxes and rewards in the SG
incentive scheme. Indeed, from Figure 3 it is possible to notice that for all configurations
and for both systems the energy costs are larger than in the relative NM scheme, but, at
the same time, the savings coming from incentives are bigger. Larger costs for energy are
essentially due to increased amount of kWh computed in the SG scheme as sold to the
grid (see Tables 4 and 5 in Section Materials and Methods). On the other hand, electric
energy fed to the grid (Table 5) is higher than grid sales (Table 4) particularly for the r-SOFC
system. Moreover, there are electric energy flows of similar magnitude, corresponding to
self-consumed energy (Table 5), which are also rewarded by SG scheme. Consequently,
for the r-SOFC in the best performing configuration (i.e., configuration ii), the savings are
almost 17 times larger than in the net metering incentive scheme, thus determining the
lower NPC value. On the contrary, the ng-SOFC system shows in the front-of-the-meter
configuration (iii) savings about 2.6 times higher than in the NM, not enough to compensate
the increase in energy cost, that is almost 2 times larger in configuration (iii) than NM.

From the economic analysis it comes out that the best configuration, i.e., the config-
uration with the lowest NPC, for r-SOFC is the one adopting SG incentive scheme (ii),
while for ng-SOFC it is the NM incentive scheme. However, when compared to the base
case (NPC 18,481 EUR), both m-CHP systems, even in the best case, show higher NPC,
respectively 2.4 times (r-SOFC) and 1.7 times (ng-SOFC) higher. As already noted for NM
incentives (Figure 2), also for SG incentives the total NPCs (Figure 4) are affected by capital
costs (Cp), always above 60% of total NPC, thus highlighting that high investment costs are
still a barrier for the diffusion of such technologies. The capital cost for the r-SOFC system
is higher than the ng-SOFC ones, because of the higher cost of r-SOFC and the additional
equipment of vessels for storing hydrogen. This results in a net cost of capital over the ten
years’ period of 27,277 EUR for the r-SOFC and of 23,016 EUR for the ng-SOFC.

To evidence the effects of the incentives, the analysis has been restricted to the opera-
tional costs and the results are shown in Figure 4. The NPC values of the operational phase
are normalised with respect to the base case. The results show that the ng-SOFC in the NM
scenario is the configuration with the lowest cost and it is 50% lower than the base case
(Figure 4).

Differently, the cost of the r-SOFC system in NM scenario, without the inclusion of
capital cost, is 11% higher than the base case; as stated before, this is due to high energy
expenses (orange bars Figure 2), resulting in a low amount of energy sold to the grid.

In the case of SG incentive scenarios, the r-SOFC has an “operational phase” NPC of
91%, thus below the NPC of the base case, when the r-SOFC is installed BTM (ii), showing
a better performance compared to the scenario with the r-SOFC installed in FTM (i).

This trend is due to an increase of the self-consumed quota (E ¢ in Equations (11) and (12),
Table 5), which is the subject of the incentive, deriving from the large amount of electricity
used by the r-SOFC in electrolyser mode and considered, in this configuration, as self-
consumed energy.

On the contrary, when the r-SOFC is installed FTM (configuration i), the amount of
incentive is smaller because of the lower amount of self-consumed energy as well as a
lower amount of energy fed into the grid.

As shown in Figure 3 (yellow bars) the incentives relative to the configuration i
(r-SOFC FIM) is 10,134 EUR and the incentives relative to the configuration ii (r-SOFC
BTM) is 18,595 EUR.

When a ng-SOFC is installed, the NPC “use phase” value in the NM scenario is at the
lowest (50%) (Figure 4), while the values of a ng-SOFC in the SG scenarios are respectively
52% (FTM, iii) and 66% (BTM, iv) of the base case (Figure 4).

Comparison of the two incentives scenarios reveals that, self-consumers’ group sce-
narios (SG) benefit the layout with the r-SOFC and penalize the layout with the ng-SOFC.
This result is consistent with the different technical hallmarks of the two SOFC systems,
and with the scope of the SG incentives scheme. Indeed, r-SOFC is a storage system,
where surplus renewable energy is used to produce hydrogen and use it afterwards. In
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other words, the r-SOFC layout implements a method which consists in deferring use of
renewables and maximizing self-consumption. In the ng-SOFC case, the system produces
electrical energy, using fossil fuel, and its economic performance is maximized in a scheme
which encourages energy production (NM). Although SG incentives make the adoption
of r-SOFC favourable in configuration ii (compared to the base case), a layout consisting
of ng-SOFC still remains the most advantageous. The reason lays in the large use of grid
electricity for satisfying the entire energy demand (appliances + electrolysers + auxiliary
electric heater).

The payback periods, resulting from actual capital cost and annual savings, are
much higher than the lifetime of the total installation. As already pointed out, this is a
consequence of the elevated net capital cost (Cy) of both m-CHP systems. Under these
circumstances the investment would be pointless, without further incentive on system’s
purchase. Although we did not extend our analysis to public incentives aimed at facilitating
the purchase of such systems, in Italy as well as many other different countries exist several
schemes [15,17,37] to stimulate acquisition of such technologies. For the systems analysed
in the present work, an acceptable payback period (that should be at least equal to the
lifetime of the investment) can be obtained only with a public contribution (or equivalently
a price reduction) on the Cy of about 70% for the ng-SOFC system (in the best configuration,
i.e., NM) and of about 96% for the r-SOFC one (in the best configuration, i.e., SG ii).

3.2. Sensitivity Analysis

A sensitivity analysis has been performed to assess the variation of NPC values as a
function of energy prices (electricity and natural gas), to identify if they are critical variables.
A critical variable is defined as a variable whose positive or negative variation significantly
influences the performance indices (i.e., a variation of +1% of the variable changes the
NPC by £5%) [58].

Energy price affects only the energy part of the total expenses (see Figures 2 and 3).
Therefore, the sensitivity analysis has been carried out on the NPCs of the operational
phase. The NPC values have been computed varying the component named “raw material”
in the energy cost (i.e., P in Equations (7) and (8)).

Six different scenarios have been simulated: 2 scenarios with 5% reduction of energy
price (one regarding electricity price and one natural gas price), one scenario with 5%
reduction of both electricity and natural gas price and the corresponding 3 scenarios with
5% increase of energy price.

Figures 5 and 6 show NPC variations for each scenario. Figure 5 refers to NM incentive
and Figure 6 to SG incentive.

Results of sensitivity analysis in Figures 5 and 6 are reported as percentage variation
of the relative NPC value. Positive values represent an increase of NPC; negative values
represent its reduction.
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Figure 5. Sensitivity analysis (NM) with £5% variations of energy price. Pgg: price of electricity.PNg: price of natural gas.
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Figure 6. Sensitivity analysis (SG) with £5% variations of energy price. Pgg: price of electricity. Png: price of natural gas.
Both: price of electricity and price of natural gas.

First, it is evident that SG incentive scenarios are more sensitive than NM ones. Their
variations reach values above 15% while, concerning NM, maximum change is below 3%.
This result is explained by the larger volume of energy passing through the meter in the SG
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configurations. For these layout schemes the energy flows, computed as purchased or fed
into the grid, are bigger than purchased and sold electricity of NM scheme (Tables 4 and 5).
Of course, incentives are calculated based on those flows and, consequently, a variation
of energy price affects the scheme with larger exchange through the meter. However, in
Figure 6 we notice some differences for the two systems: a change in Pgg (both & 5%) has
a stronger influence on the r-SOFC than the ng-SOFC system. Only when both Pgg and
Png are changed, variations become closer. Of course, changes in natural gas prices do
not affect r-SOFC NPC, because this system does not use this fuel at all. To explain overall
these trends, it is possible to look at the different terms of the energy balance (Table 5).
Considering that a fixed reward (100 EUR/MWh) is attributed to the self-consumed energy;,
the sensitivity to electricity price is correlated to purchased and fed into the grid flows.
Substantially the sensitivity does not depend on the total amount of traded energy, but
more properly on the difference of those two parameters (Epr-Ej). Indeed, this difference
is rather pronounced in the r-SOFC system and quite small for the ng-SOFC system, thus
determining the higher sensitivity of the former system. In a very similar way, it is possible
to explain why in Figure 5 for the ng-SOFC a variation in electricity price corresponds to an
opposite change of the NPC. This system has a positive difference between grid sales and
grid purchase (Ej-Epr from Table 4), which means it earns from selling electricity and an
increase in electricity price has the beneficial effect of lowering the NPC. On the contrary,
for the r-SOFC it is the opposite (Figure 5). In SG scenarios the NPC of the r-SOFC is
affected by the electricity price and they are directly correlated. If electricity prices rise by
5% the r-SOFC NPC rises by 16% and when the price falls by 5%, the r-SOFC NPC reduces
by 12%. Finally, higher sensitivity is linked to the electricity price than to the natural
gas one, in both incentive cases. In conclusion, considering the possibility of the future
oscillation of energy prices, costs of raw material cannot be considered critical variables for
the investment.

3.3. Monetization of Externalities

In this section results concerning the monetization of the externalities using three
different methods are analysed and compared. Previous study on monetization state that
the selection of the method can significantly influence not only the absolute value of the
single score of a single product, but also the relative ranking among alternatives [54].

For this reason, to minimize the uncertainty, three different monetization methods
(Environmental Prices, EVR and MMG) have been used as described in Section Materials
and Methods.

The LCA scores refer to the impact of the systems over one year, including use phase,
using as functional unit the fulfilment of the whole energy demand.

The following LCA ReCiPe 2008 Midpoint categories have been included into the compu-
tation of externalities: “Climate Change”, “Terrestrial acidification”, “Human Toxicity”, “Photo-
chemical Oxidant Formation”, “Particulate Matter Formation” and “Freshwater eutrophication”.

LCA scores for each system are shown in Table 7.

Table 7. LCA scores calculated with ReCiPe 2008 Midpoint method.

Midpoint Category Unit ng-SOFC r-SOFC Base Case
Climate change kg COzeq 5436.66 8561.40 10,673.67
Terrestrial acidification kg SOzeq 28.25 74.64 50.46
Freshwater eutrophication kg PO4eq 3.98 12.45 592
Human toxicity CTUh 4.80 12.11 14.64
Cancer
Photochemical kg CoHy 2.02 5.67 3.30

oxidant formation

Particulate matter formation kg PM; seq 0.72 2.21 0.39
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Results of the three different monetization methods are shown in Figure 7.

As can be seen in Figure 7, by all three methods the ng-SOFC is evaluated to have
the lowest total environmental cost, followed by the base case scenario and the r-SOFC.
The largest contribution to the environmental damage is given by electricity consumption
in all the three scenarios, e.g., with Environmental Price method, 88% for the r-SOFC
(electricity+H, production), 66% for the ng-SOFC and 77% for the Base case. Higher
electricity consumption, for AC loads and appliances as well as for hydrogen production,
and higher environmental impacts for maintenance phase determine the gap between
the r-SOFC and the ng-SOFC. Of course, the ng-SOFC system makes use of natural gas,
nevertheless the relative environmental cost is rather limited: 22% with Environmental
Price, 32% with MMG and 33% with EVR. “MMG” results in lower total environmental
costs than the “Environmental prices” method. The r-SOFC is still the most expensive
alternative but the gap between one alternative and another is reduced by approximately
a half.

According to the EVR method the ranking is confirmed. The ng-SOFC is the cheapest,
followed by the base case and the r-SOFC. In this method, and to a smaller extent in MMG
method too, the natural gas has a larger impact, leading to a greater contribution to the
environmental cost for the ng-SOFC and the base case. As a consequence, with the EVR
method the difference between the base case and the r-SOFC layout is the lowest among all
the applied methods. Furthermore, the electricity is more impactful using this method that
leads to raise the gap between the base case and the ng-SOFC, because the latter consumes
a lower amount of energy overall.

r-SOFC ng-SOFC Base case r-SOFC ng-SOFC Base case r-SOFC ng-SOFC Base case
Env.PricesEnv.PricesEnv.Prices MMG MMG MMG EVR EVR EVR

mMAINTENANCE

MONETIZATION METHOD

m H2 PRODUCTION EHOT WATER CONSUMPTION mELECTRICITY ENATURAL GAS

Figure 7. Total environmental costs for each method.

In conclusion, the ranking between alternatives is the same using any of chosen mone-
tization methods and, therefore, it can be considered a robust and reliable classification;
differently, the single score values show a great variability.
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EURO (€)

For elaborating the idea of including a “corrective tax” in the energy bill, to adjust the
private cost with the aim of incorporating the externalities, environmental costs have been
added to other costs in the computation of the NPC. The environmental costs have been
computed using the values obtained by the EVR monetization method because it presents
the highest environmental costs.

The total impact is:

1. 2142.75 €/year for the r-SOFC.
2. 1062.47 €/year for the ng-SOFC.
3.  2038.57 €/year in the base case scenario.

The introduction of a tax equal to the externalities modifies total saving of the systems
as shown in Figure 8. The new total saving is computed as the difference between opera-
tional costs (energy cost + externalities) of the base case and operational costs (energy cost
+ externalities) of each fuel cell system over ten years.

When externalities are not considered (blue bars), the r-SOFC system results in nega-
tive total saving in the NM scenario and in the configuration i of SG incentive (i.e., there
are not savings compared to the base case) while in configuration ii of SG incentive the
total saving is 1685 EUR.
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. __ =
ng-SOFC r-SO! i r-SOFC ii ng-SOFC ng-SOFC
N NM iii v
-5000
INCENTIVE SCHEME
m Total Saving (operation) m Total Saving (operation + externalities)

Figure 8. Comparison of total saving with and without externalities in the different incentive scenarios.

When externalities are included (orange bars) the total saving of the r-SOFC system
reduces (796 EUR) because of its higher environmental costs than the base case.

On the contrary the total saving of the ng-SOFC is always positive and the best
scenario is obtained using NM incentive. In this case the total saving is 9260 EUR, when
externalities are not computed, and it increases by 89% (17,586 EUR) including externalities
into the computation.

The analysis of these results shows that the inclusion of a tax equal to the environmen-
tal damage into the equation of NPC reduces the total saving of the r-SOFC system and
increases total saving of the ng-SOFC.
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An acceptable payback period (that should be at least equal to the lifetime of the
investment) is obtained with a 50% Cy reduction (or public contribution) for the ng-SOFC
in the NM scenario with the inclusion of the tax on externalities.

4. Conclusions

This work aims at establishing the economic feasibility of two hybrid CHPs for
residential application and, further, to evaluate the effectiveness of new Italian incentives
for self-consumers’ groups and energy communities in reducing operational costs, when
an energy storage technology is adopted (in the present case via hydrogen production by
r-SOFC).

In order to fulfil the energy demand, two fuel cells (ng-SOFC and r-SOFC) are alter-
natively used and coupled with a PV system. Three different configurations have been
analysed for each fuel cell: one concerning the net metering incentive and the others con-
cerning the self-consumers’ group incentive. The economic feasibility of these systems is
assessed, comparing them to a base case in which electric demand is provided by national
grid and thermal demand is fulfilled by a natural gas boiler.

The results show that economic performance of the operational phase, i.e., with-
out capital cost, obtains savings for the ng-SOFC, compared to the base case, in all the
configurations.

On the contrary, the r-SOFC system leads to savings only when it is installed behind
the meter and the SG incentive is applied.

Including capital cost, makes the resulting PBT to be much longer than the lifetime of
the investment. This is in line with previous studies on these systems and highlights the
needs of reducing costs of installation and purchase.

Comparison of the two incentives scenarios reveals that:

1. The r-SOFC maximizes its economic performance when the self-consumers’ incentive

(SG) is applied.

2. The ng-SOFC maximizes its economic performance when the net metering incentive

(NM) is applied.

The r-SOFC layout essentially includes an energy storage system, that allows to raise
the use of solar energy and maximize self-consumption. Such management of renewable
energy is coherent with the scope of the SG incentives and, therefore, is rewarded by the
incentive scheme. On the other hand, the ng-SOFC system produces electrical energy, using
fossil fuel, and its economic performance is maximized in a scheme which encourages en-
ergy production, like NM. Although SG incentives make the adoption of r-SOFC profitable,
a layout consisting of ng-SOFC still remains the most advantageous.

With respect to externalities, we analyse variations of annual savings by the intro-
duction of a tax (equal to the environmental impact) on the price of the systems aimed at
driving the market towards green solutions. The monetization of externalities by means of
three different methods shows that the environmental cost of the ng-SOFC system is the
lowest among the alternatives, followed by the base case and at last, the r-SOFC system.
This leads to an increase of the annual savings of the ng-SOFC system by about 50% each
year. The ng-SOFC system would be incentivized by the internalization of environmental
costs into direct costs. The r-SOFC system in this case results in higher environmental costs
than the base case.

Moreover, the sensitivity analysis shows that the energy prices are not critical variables
not significantly affecting the results. Thereafter, the general results of this paper can be
extended also to different energy markets beyond the Italian one.

Based on the present study of a hybrid m-CHP, economic analysis, incentives evalua-
tion and externalities assessment point to the conclusion that grey hydrogen (ng-SOFC)
still remains a more competitive technology than a not-fully-green hydrogen (r-SOFC).

In general, hydrogen and fuel cell technologies currently have a good level of maturity
but to become competitive for commercial purposes they need investments that offer long-
term stability, necessary to carry out large deployments. Such initiatives (governmental
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incentives, research investment etc.) may lead hydrogen and fuel cells to achieve better
costs and performances, as it has been done in the case of technologies such solar pho-
tovoltaics. In the future, fuel cell technologies, when properly supported, may represent
a complementary low-carbon alternative to be used in multiple applications throughout
the energy system. In authors’ opinion, some technological development may improve
economic and environmental performances of r-SOFC systems. For example, a higher
round trip efficiency would lower the total energy demand of the system; a smarter switch
between fuel cell mode and electrolyser mode (e.g., programming electrolyser time win-
dow with weather forecast) would lower the amount of energy taken out from the grid.
However, different storage systems can benefit from SG incentives scheme more efficiently
than the studied r-SOFC system and, this case study demonstrates how effectively SG
incentives can favour the birth of self-consumers’ groups and energy communities
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