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Abstract: In this paper, three main approaches (univariate, multivariate and multistep) for electricity
consumption forecasting have been investigated. In fact, three major algorithms (XGBOOST, LSTM
and SARIMA) have been evaluated in each approach with the main aim to figure out which one
performs the best in forecasting electricity consumption. The motivation behind this work is to
assess the forecasting accuracy and the computational time/complexity for an embedded forecasting
and model training at the smart meter level. Moreover, we investigate the deployment of the most
efficient model in our platform for an online electricity consumption forecasting. This solution
will serve for deploying predictive control solutions for efficient energy management in buildings.
As a proof of concept, an already existing public dataset has been used. These data were mainly
collected thanks to the usage of already deployed sensors. These provide accurate data related to
occupancy (e.g., presence) as well as contextual data (e.g., disaggregated electricity consumption of
equipment). Experiments have been conducted and the results showed the effectiveness of these
algorithms, used in each approach, for short-term electricity consumption forecasting. This has been
proved by performance evaluation and error calculations. The obtained results mainly shed light on
the challenging trade-off between embedded forecasting model training and processing for being
deployed in smart meters for electricity consumption forecasting.

Keywords: energy efficient buildings; electricity consumption forecasting; univariate and multivari-
ate time series; multistep forecasting; XGBOOST; LSTM; SARIMA

1. Introduction

During the last few decades, big importance has been given to electric load prediction
and forecasting. It represents an important parameter used by many electric utilities for
optimal planning and operational decisions. However, it was noticed that the level of
management of these utilities has shifted from large-scale management of the entire grid to
a small household level scale. This is mainly due to: (i) an energy market transition from
centralized electricity production to decentralized or distributed production, and (ii) the
load control, which is required for demand-side management [1]. Nevertheless, accurate
load forecasting for limited population sizes (e.g., residential buildings or dwellings) is
much more complicated because of the high volatility of data, related to the electricity
usage [2]. In fact, the non-linearity of household consumption data and rapid fluctuations
are caused by many exogenous factors, such as occupants’ behavior, the impact of calendar
periods and the uncertainty of weather information [3,4].

A significant prerequisite for smart energy management is the identification of effec-
tive models for forecasting electricity power usage. This identification of load forecasting
techniques is not limited to the most famous forecasting models being implemented, but
in particular to the most suitable and efficient model for the specificity of each case study.
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Recently, the classification of load forecasting methods in response to very specific prob-
lematic has been specifically investigated in accordance to their suited methodologies [5].
The classification of techniques, mainly used for load forecasting, is primarily based on
two fields. The first is related to the forecast horizons (i.e., short, medium, long), while the
second corresponds to the techniques’ category (e.g., probabilistic, deterministic). For in-
stance, unlike deterministic, probabilistic techniques provide information on uncertainties,
which are related to the expected values. According to their importance in the planning
and operational behavior of energy systems [6], these probabilistic methods have recently
gained popularity, especially with their adaptability to the emerging context, mainly the
integration of renewable energy systems. On the other hand, current research work has
recently focused on an alternative methodology for increasing forecasting accuracy, which
involves combining the best features of multiple single models and hybridizing them to
compensate for the drawbacks of individual methods. For instance, the authors in [7]
propose a hybrid architecture for short and long-term energy prediction for residential
and commercial sectors. Convolutional LSTM was used for data extraction and encoding,
whereas bidirectional LSTM is utilized for decoding and learning sequential patterns. This
technique significantly improves forecasting performance when compared to benchmark-
ing single methods (Table 1).

Table 1. Forecasting methods for different application domains.

Ref.
Forecasting Method

Application Domain
Univariate Multivariate One-Step Multistep

[8] SARIMA Electricity consumption
[9] ANN District energy management

[10] Nonlinear ANN Wind Forecasting

[11] ARIMA_KNN
SVR_RF Solar power generation

[12] ARIMA Micro-Grid Systems

[13] RNN_CNN
SARIMAX Commercial buildings load

[14] LSTM (MISO) &
(MIMO) HVAC systems

[15] SVR
XGBOOST District heat systems

[16] ANN Energy demand forecasting

Nowadays, loads forecasting in households are becoming more and more crucial
in order to manage electric consumption of equipment while ensuring energy efficiency.
For instance, a forecasting approach based on unsupervised clustering technique was
introduced in [17]. The authors in [18] also investigated, using the Kalman Filter method,
the effect of sampling intervals on prediction accuracy. Moreover, several studies require,
as a starting point, applying classification techniques before proceeding to the forecasting
of electricity consumption. The aim was to address the irregularity of household electricity
data. For instance, we can start by mentioning the dynamic time warping techniques [19]
for clustering related energy consumption curves according to their shapes. Besides,
the availability of detailed information on energy consumption, as a result of the recent
deployment of domestic smart metering infrastructures [20], has facilitate grouping and
clustering consumers’ common consumption habit [21]. In particular, these clustering
techniques help in detecting typical consumption patterns, which considerably enhance the
overall performance [22]. Last but not least, other approaches were presented in [23,24] for
solving irregularity issues. The first one is based on a frequency decomposition using the
wavelet technique in order to differentiate the regular load pattern from noisy components.
As for the second, it is based on the Fourier’s transform method for extracting the frequency
components of household consumption data, which are required to cluster the most
relevant periodic patterns.

In order to anticipate energy consumption, for better home energy management, it is
primordial to predict the usage of appliances in dwellings [25]. Besides, integrating the
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usage patterns of appliances instead of the usage of standard non-intrusive load monitoring
(NILM) techniques, based on only gathered measurement, is advised to improve the load
forecast performances. On the other hand, another NILM-based method consisting of
forecasting the consumption of each household’s appliance separately, then regrouping
them to have a forecast of aggregate accurate consumption, has been proposed in [26].

The strategies discussed in the literature for load forecasting are univariate, multivari-
ate, one-step, multistep ahead, as shown in Table 1. The forecast of future values relies
uniquely on its previous historical data in the univariate approach. The multivariate one,
however, takes into account additional features, which are usually referred to as explana-
tory variables. Besides, several studies addressed load forecasting at the next time step,
usually known as one step ahead. Forecasting several steps in the future, however, remains
an open challenge.

This article proposes a comparison of various time series forecasting methods and
approaches using empirical evaluation. Different approaches are used to forecast household
load. The first one, which is the univariate approach, consists of the prediction of the
house’s aggregated power consumption using the historical total power data for the
horizons of one step ahead. Besides, the second approach (i.e., the multivariate approach)
concerns the forecasting of the house’s total power consumption for one step ahead but
by using the appliances’ disaggregated power data as inputs. Finally, the third approach
(i.e., the multistep approach) concerns the prediction of the house’s aggregated power data
for multiple steps ahead. Therefore, two main contributions of the current work from the
literature are summarized as follows:

• Investigation of the three approaches, univariate, multivariate and multistep, for
efficient load forecasting.

• A comparative analysis of three representative algorithms: LSTM, SARIMA and XG-
BOOST, have been examined in terms of accuracy and computational time/complexity.

This study aims to investigate load forecasting methods, which could be used for
real-time prediction and context-driven control of building appliances. It will help selecting
the most suitable method for being deployed in our platform for energy management and
predictive control.

The reminder of this paper is organized as follows: Section 2 presents a brief classifica-
tion of existing forecasting methods. Section 3 presents methods and materials including
the used dataset, its preprocessing, together with features engineering, approaches and
methods used for house’s power consumption. Section 4 presents the results and discussion.
Conclusions and perspectives of this work are given in Section 5.

2. Forecasting Methods: An Overview

Over the last decades, a wide variety of deterministic methods for load forecasting
has been proposed. We can classify them into five categories, as shown in Figure 1:
persistence-based methods, statistical-based methods, artificial intelligence-based methods
(AI), tree-based methods, and image-based methods.

Persistence-based or naïve forecasting methods are the simplest methods, which are
used for producing forecasts. They are considered as a baseline or a reference in evaluating
and comparing the accuracy of other models forecast. These naive forecasting methods
predict the expected values for the next time step based on values of the previous time
step. They are mainly based on the assumption that the forecasted conditions would
not alter. These methods have the advantage of being easier to implement than other
methods because they do not depend on weather forecast data or software toolkits for
implementation. As a result, incorporating them into an embedded system is simple [27].
However, the persistent model’s accuracy degrades as forecasting time rises, and they do
not account for any potential changes in electric power demand data related to external
environmental factors.
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Figure 1. Classification of load forecasting methods.

Statistical-based methods include approaches based on mathematical equations. For
instance, linear regression [28], the autoregressive integrated moving average (ARIMA),
seasonal ARIMA [28], SARIMAX with exogenous variables and exponential smoothing
(ES) techniques [29]. The use of those methods and their effectiveness primarily depend
on the availability, quality and quantity of historical data, which are used as inputs. The
key concept behind statistical-based methods is that they consider the used data linear
by default. Otherwise, in satisfactory forecasting results may be obtained due to the
non-linearity of the load data pattern [30].

However, if willing to consider the data as non-linear, artificial intelligence-based
methods could be considered. These methods, such as neural network models, support
vector regression (SVR) and fuzzy logic, are considered as data-driven approaches. In
fact, these approaches utilize historical data learning process to capture even complex
relations between inputs and futures outputs. Nevertheless, some of these techniques
(e.g., Neural network models) suppose that no dependencies exist between the inputs
and outputs, which is, in most cases, not true (e.g., sequential data) [31]. The AI based
approaches also include a deep architecture neural network method, which is long short-
term memory (LSTM). This method [32] has been proposed to solve the vanishing issues,
and its effectiveness has been proved in diverse applications as well as in load forecasting
field. LSTM model has been also used to tackle the multi-step ahead forecasting problem,
as presented in [32], due to its ability to learn and to capture time series dependencies
even for long-term horizon. Nevertheless, as presented in [33], LSTM has a significant
computational time.

The fourth category groups tree-based methods, such as random forest, XGBOOST,
classification and regression tree (CART), and LightGBM [34]. The tree-based methods are
known not only for their remarkable performance in many machine-learning problems, but
also for their ability to evaluate the features importance used in the forecasting process [35].
For instance, the XGBOOST model is an improvement of gradient boosted decision trees,
which is basically developed by Chen and Guestrin [36,37] for both classification and
regression. Its efficiency and accuracy in load forecasting exceed random forest, k-nearest
neighbours (KNN), and SVM model, as stated in [38]. Nevertheless, tree-based meth-
ods are vulnerable to overfitting and underfitting, especially when dealing with limited
datasets [39].

In recent research studies, an increasing interest in image-based approaches has been
noticed. The image or graphical-based methods are presented in those studies according to
two major strategies. The first one uses graphical-based methods for data preprocessing
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and then machine learning algorithm fore forecasting. For instance, Authors in [40],
instead of depending on manual selection of the features, suggest first to encode the
time series into images to automatically extract the features for being used in forecasting
models; i. Similarly, three encoding methods (Gramian angular summation field (GASF),
Gramian angular difference field (GADF), and Markov transition field (MTF)) were applied
to convert a multivariate time series into a 2D image, which is used as an input to a
convolutional neural network (ConvNet) [41]. The obtained results prove that these
transformations have no effect in prediction results. The second strategy, presented in [42],
relies completely on methods from image processing field, without resorting to other
models for pre-processing and forecasting.

The work presented in this paper investigates three major algorithms from three
categories, XGBOOST (tree-based), LSTM (AI based) and SARIMA (statistical based), for
load forecasting. The aim is to evaluate them in order to figure out which one performs the
best in forecasting electricity consumption, but with lower computational complexity. It is
worth noting that other algorithms from image-based are under development and will be
further considered in our ongoing work.

3. Materials and Methods

The procedure outlined in this paper, as presented in Figure 2, is structured into
four main steps. The first step presents the dataset and tools we have applied for its
preprocessing. The second step aims to explore forecasting approaches while using three
different forecasting techniques. The forecasting horizons and strategies are developed in
the third step. The last step addresses the performance evaluation by two key elements,
precision or accuracy and computational time/complexity.

3.1. Power Consumption Dataset

Recently, several energy datasets have been publicly released as a result of non-
intrusive load monitoring (NILM) research. In fact, these datasets provide fine-grained
information about load consumption at aggregate level and household appliances level.
Several characteristics differentiate these available datasets, such as the number of targeted
houses, the number of installed sensors, the quality of the collected data, the measurement
duration, and the sampling frequency.

The used dataset as a proof of concept for this comparative study is the Dutch Resi-
dential Energy Database (DRED) [43], which is publically available. This dataset contains
several information, mainly aggregated and disaggregated electricity data, number of
occupants, indoor temperature, and weather data. Actually, the dataset provides several in-
formation about electricity consumption at aggregate level and household appliances level
(e.g., TV, fridges, washing machines, microwave, central heating, laptops). The available
data of a single house were measured using smart plugs, which are installed in different
locations in this house, and are collected for 12 successive days with a sampling frequency
of 1 s.

3.2. Dataset Sample Preprocessing and Feature Engineering

The preprocessing is one of the most common basics of time series analysis, presenting
then good practices in machine learning [44]. This technique directly influences the quality
of the forecast even if it consumes a significantly long period of time. In fact, the selected
energy dataset does not need data cleaning methods since it has already been preprocessed.
In this study, a data sample of five working days was extracted from DRED dataset,
and then was re-sampled with a sampling frequency of 20 min in order to reduce the
computational time, which is required to speed up the training process of used methods.

This data has been first analyzed using the exploratory data analysis functions. Among
these functions, we have initially applied the summary statistics method, which includes
eight statistical calculations of each variables (e.g., count, mean, standard deviation, min-
imum and maximum values, 25th, 50th and 75th percentiles), to the used data. Then,
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a graphical analysis tool, especially the histogram function, which provides a general
insight into the shape of the consumption of each appliance, has been applied to this data.
The additive decomposition tool, with the use of seasonal decompose function, has been
afterwards applied in order to observe the seasonality, trends and randomness of the used
dataset, as shown in Figure 3. It is to note that the values on the horizontal axis correspond
to the time in minutes, starting from the 10th July 2015 at 01:00 AM, until the 14th July 2015
at 23:40 PM.
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Secondly, we have used the augmented Dickey Fuller (ADF) function, which is a
statistical test, in order to check the stationary of the used dataset. In fact, we have
found that the p-values are less than 0.05. This proves that the used data is, indeed,
stationary [45]. This allows us to say that data structure is time independent. Furthermore,
the autocorrelation function (ACF) and the partial autocorrelation function (PACF), which
are two methodical approaches used to interpret auto regressive (AR) and moving average
(MA) terms for ARIMA or SARIMA models, were investigated. Thirdly, the normalization
of the used data has been performed, so we can use the machine learning and tree-based
methods. The normalization of the dataset has been performed by Min-Max Scaling
function of scikit-learn library for the purpose of univariate and multivariate energy power
forecasting. Then, the conversion of the normalized dataset into a supervised machine
learning problem has been conducted. This conversion has been performed using the lag
feature, which is a classical engineering procedure. Finally, a feature extraction method
was used for the XGBOOST model in order to add time-based observations.

3.3. SARIMA, LSTM and XGBOOST

In this section, we provide a brief overview of the three considered methods. For
instance, SARIMA is a statistical method, which relies on defining the SARIMA hyperpa-
rameters. These latter are tuned by the auto-arima function from the pmdarima statistical
library. Using the stepwise model, it was deduced that the optimum selection for the
SARIMA parameters is (0, 1, 2) (1, 1, 1)7.

The second experimented forecasting method was the LSTM. It is a particular version
of recurrent neural network, which has a specific characteristic of taking into consideration
the temporal correlations between past and present data. This ability is more convenient for
forecasting household power consumption and it is modeled by setting up the look-back
function. Our neural network architecture was developed using a sequential approach,
with four neurons for the hidden layer and one neuron for the output layer. The model
was trained for 100 epochs while using 1 for batch size. To obtain those optimal values,
Hyperopt, a Python library, which implements a Bayesian optimization model to identify



Energies 2021, 14, 5831 7 of 16

the best hyperparameters for a machine learning model, was employed. Also, our model
was compiled by using the Adam algorithm [46], as a stochastic optimization technique.
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The third experimented forecasting method is a highly performing implementation of
gradient boosted trees, which is XGBOOST. This latter requires several hyperparameters
while being constructed, since these parameters’ settings have a significant effect on its
performance. An automated optimization technique was implemented to appropriately
configure the parameter values. In fact, we have used the grid search method through
GridSearchCV function, which determines the optimal parameters combination yielding,
therefore, to more accurate results. It was noticed that the highest test score was reached
when the number of decision trees defined by n-estimators is equal to 400, and the size of
tree (max_depth parameter) is limited to six.

As for the second approach, instead of using only the aggregate energy data, twelve
measurements of the household appliances were used to train the three models. Firstly,
the seasonal ARIMA with exogenous regressors model was developed to deal with that
multivariate time series. To serve this purpose, the consumption of 12 household appliances
was integrated, after proving their stationarity. In order to investigate the best parameters
for the seasonal ARIMAX models, a grid search was performed based on the lowest result
of the Akaike information criterion (AIC).

Regarding the LSTM model, a transformation into a supervised machine learning
problem was needed before developing the RNN model for the multivariate approach.
This first data modeling was involved to predict the total power consumption at time (t + 1)
based on the energy consumed by household appliances for the prior time (t). Actually,
80% of the used dataset were taken as a training set and split into inputs and outputs. As
for the other 20%, they were used as testing set and were also split in the same way.

In response to the LSTM typical format requirement [32], input data were converted
into 3D shape. For this, three main parameters are to be defined, starting with the number
of features, which was given as 13. Besides, the time step was configured to 1 as a way to
determine the number of loop layers in our model.

The last algorithm of the second approach, which is the XGBOOST model, was applied
to process with multivariate inputs problem. Actually, the column, which contains the
house’s aggregated power consumption, was used as the target column and the 12 house-
hold’s appliances were included as features columns. As in the previous approach, the
same strategy setting has been applied to tune XGBOOST hyper-parameters. The optimal
configuration for the multivariate case was a value of 150 for the n_estimators parameter,
a maximum depth of 8 with a default setting for the max_features. A feature importance
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method was used in order to depict the usefulness of each feature during the construction
of our model according to their importance score.

The proposed study includes the third approach to forecast the DRED house’s aggre-
gated power consumption for multiple time-steps ahead. In fact, we chose to forecast the
power consumption for a period of 24 h with a sampling frequency of one hour instead
of 20 min. Although, this kind of forecast is highly requested in several research areas,
only few works discuss it in literature [47]. According to the literature reviews, four proce-
dures have been proposed to figure out multistep forecasting scenarios. Starting by the
recursive strategy, it is considered to be one of the oldest multi-step forecast strategy since
it involves the use of a single model for different forecast horizons, while significantly
reducing computational time. Nevertheless, this strategy appears to be less effective if
we raise the forecast horizon, and this is due to accumulated prediction errors, which
is associated to this increase [48]. The second strategy is the direct one, which consists
of constructing different models, one model for each forecast horizon, instead of having
a single model. More specifically, forecasting desired and future time intervals of the
house’s power consumption with different trained models. However, since the training
was carried out separately, this strategy may not guarantee any conditional dependency
between predicted values.

Another strategy, which seems to combine the efficiency of both above discussed
strategies, according to [49], is the DirRec strategy. This latter is based on the development
of different models for each forecast horizon (similar to direct strategy), but with the
condition that each model takes into consideration the prediction obtained at the prior
period as inputs for the following model.

The fourth one is the multiple-output strategy, which aims to surmount the constraints
related to the direct strategy [50]. This can be done thanks to two sub strategies, notably
MIMO (multiple-input multiple-output) and MISMO, which adds the optimal S criterion.
This latter defines the size of the outputs (forecast horizons) [51]. In the same work,
authors propose a specific way of solving the problem of conditional independence by
replacing different independent training models with one model capable of predicting
several outputs at once.

4. Results and Discussion

This section presents the results obtained for the three discussed approaches using
three representative methods, SARIMA, LSTM and XGBOOST. In order to provide sufficient
empirical evidence for the performance of each aforementioned approach, multiple error
metrics are implemented as performance indicators. In fact, to assess the accuracy of the
various methods, a set of six popular performance metrics (the mean percentage error
(MPE), the mean absolute percentage error (MAPE), the mean absolute error (MAE), root
mean squared Error (RMSE), the symmetric mean absolute percentage error (sMAPE), and
the mean absolute scaled error (MASE) [52]) have been also calculated. For comparison
reliability purposes, all the chosen developed forecasting models thereafter have been
using the same training and testing sets.

In addition, the performance of the abovementioned methods is also evaluated by the
computational complexity (CC). This latter can be calculated by dividing the computational
time necessary to accomplish the forecast by the relative time necessary for a naïve method
(e.g., ARIMA). It is worth noting that the system characteristics used to approximate the
computational time are an Intel® Core™ i5-5300U CPU @ 2, 30 GHz, 16.00 GB RAM,
x64-based processor.

4.1. Univariate Timeseries Forecasting

In the first experiment, we predict the house’s aggregated power consumption using
only the historical data. More specifically, only one day ahead for aggregated power con-
sumption has been predicted, which we consider as univariate short term load forecasting.
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However, the number of predicted values for a day will be equal to 72; since as described
before, the dataset was sampled to 20 min.

Figures 4–6 present the results obtained for the used forecasting methods in compari-
son to the test set. In fact, we can notice that SARIMA and LSTM methods are outperformed
by the XGBOOST method. Table 2 proves this interpretation, as it can be observed the
XGBOOST has the lowest results in terms of all error measurements. Actually, the XG-
BOOST model has the ability to deal with non-linear patterns and yields significant results.
Furthermore, the findings presented in [53] confirm the effectiveness of the XGBOOST
model, since it has achieved the lowest prediction errors when compared to ARIMA. It
is worth noting that the objective of this study was to anticipate electric energy usage in
non-residential buildings.
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Table 2. Results & ranking of the performance metrics.

Method RMSE MAE MAPE MPE sMAPE MASE
Ranking

RMSE MAE MAPE MPE sMAPE MASE

LSTM 35.412 10.304 8.930 5.146 36.712 0.852 3 3 3 3 3 3
SARIMA 26.375 7.988 8.319 −5.355 31.075 0.656 2 2 2 1 2 2

XGBOOST 19.030 4.495 3.716 −0.789 16.886 0.372 1 1 1 2 1 1

The performance of the LSTM model, for univariate energy data, was also evaluated
in [54], which employed a different publicly available dataset (UK-DALE). When compared
to the LSTM results, which were obtained for the DRED dataset, the findings of this
comparative study done on a resolution of 20 min had slightly higher error rates.

We can also note, from the obtained results, that for all the three forecasting methods,
the MASE values are less than one, which confirms that all the used methods are more
efficient than just a naïve forecasting method [55].

Table 3 gives an overview of the computational time and complexity of applied
methods, those information are essential for future implementation in an embedded system
(i.e., smart meter having predictive capabilities). As expected, the shortest processing time
is achieved by the XGBOOST method, which is known for its efficiency.

Table 3. Computational complexity for univariate time series.

Method Computational Time (s) CC

SARIMA 5.85 83.58
LSTM 2.85 40.72

XGBOOST 0.12 1.72

4.2. Multivariate Timeseries Forecasting

In this section, the effect of the second method is investigated. It consists of forecasting
the overall power consumption of the house, using the disaggregated power consumption
of the appliances. Our analysis has been performed as a multivariate forecasting process
using twelve features in order to determine their effects on the forecast accuracy.

Figures 7–9 show the forecast results obtained for the multivariate method. It can be
seen that the forecast results for the multivariate method are on average more accurate than
the univariate one. In fact, adding the power consumption of each appliance as exogenous
variables has a positive effect on the results of all models, as shown in Table 4. According
to the performance metrics presented in Table 4, the SARIMA with exogenous variable
(SARIMAX) method yields lower error results compared to its competitor methods.
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Table 4. Results & ranking of the performance metrics.

Method RMSE MAE MAPE MPE sMAPE MASE
Ranking

RMSE MAE MAPE MPE sMAPE MASE

LSTM 25.296 8.365 8.268 −4.448 33.610 0.692 3 3 3 1 3 3
XGBOOST 16.332 4.918 3.952 0.687 21.266 0.402 2 2 2 3 2 2
SARIMAX 11.471 1.905 1.162 0.544 7.217 0.157 1 1 1 2 1 1

These interpretations can be backed up by the research work presented in [56]. Intro-
ducing appliance measurement into the training dataset enhances the forecast performance
for LSTM. However, if we consider these measures as exogenous variables in the SARIMAX
process, a greater performance improvement can be observed.

Table 5 depicts the computational complexity for the three models. The lowest CC
value is assigned to XGBOOST.

Table 5. Computational complexity for multivariate time series.

Method Computational Time (s) CC

SARIMAX 11.83 131.45
LSTM 3.36 37.34

XGBOOST 0.24 2.67

4.3. Univariate Time Series for Multi-Step Approach

In order to investigate the multi-step ahead forecasting approach, we used similar
methods with different frequency samples as shown in Figures 10–12. More precisely, an
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hourly frequency sampling is used as a solution for computation time issue. In fact, two
multi-step forecasting strategies are deployed, in particular the recursive and the direct.
We opted for the SARIMAX and LSTM as recursive strategies and the XGBOOST as a direct
one. A model is built to be used iteratively in LSTM and SARIMAX methods in order
to forecast a day ahead of load consumption. As for the XGBOOST method, a separate
forecasting model is developed, for each time step during the 24 h.
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The sMAPE metric actually indicates that the lowest score is assigned to the XGBOOST
method, based on the results provided in Table 6. Consequently, the XGBOOST outperforms
other techniques for multi-step forecasting.
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Table 6. Results & ranking of the performance metrics.

Method RMSE MAE MAPE MPE sMAPE MASE
Ranking

RMSE MAE MAPE MPE sMAPE MASE

LSTM 50.453 17.439 18.635 17.454 65.925 1.623 3 3 3 3 3 3
XGBOOST 43.787 9.827 6.964 −1.789 39.028 0.915 2 1 1 1 1 1
SARIMAX 42.826 11.066 10.638 7.427 43.211 1.029 1 2 2 2 2 2

These unexpected results from robust models like LSTM method might be caused by
the small size of the sample dataset. According to [57], machine learning methods are less
efficient when dealing with a small dataset.

Table 7 gives the computational time and complexity for 24 h ahead forecasting, three
results are presented for XGBOOST model. The first one for the recursive strategy with a
single training, the second results with the addition of hyperparameters optimization func-
tion and the last one represents the time necessary to perform the direct multi-step forecast.

Table 7. Results Computational complexity for multistep ahead forecasting.

Method Computational Time (s) CC

SARIMAX 14.05 8.363
LSTM 23.36 13.904

XGBOOST (Recursive) 2.67 1.589
XGBOOST (With hyperparameter

optimization function) 52.03 30.970

XGBOOST (Direct) 612.63 364.661

Table 8 presents an assessment of the computational complexity of the direct multi-
step forecast for each horizon though MAPE. A similarity of the sMAPE results obtained
can be observed even though the direct strategy has the ability to train the model for each
time step. In practice, to achieve real-time forecasting, the best strategy for embedded
systems is to find a trade-off between efficiency and performance.

Table 8. Computational complexity and sMAPE for multistep ahead forecasting.

Forecast
Horizon (H)

Computational Time
for XGBOOST (Direct

Strategy) (s)
CC sMAPE

(%)
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5. Conclusions and Perspectives

In this paper, we have investigated three major approaches for electricity consump-
tion forecasting in buildings. For this matter, we putted more emphasize on three main
strategies, univariate, multivariate for 1-step ahead and univariate for n-step-ahead. We
have selected three main representatives forecasting methods (SARIMA, LSTM, XGBOOST)
accordingly and compared them in terms of computational time/complexity and accu-
racy. In fact, extensive experiments have been conducted using a public dataset, which
includes sensors data, such as weather, occupancy, and disaggregated power consump-
tion. Obtained results showed that none of them outperforms efficiently in the three
forecasting strategies (i.e., univariate, multivariate and multistep). For instance, XGBOOST
outperforms well for univariate and multistep forecasting against ARIMA variants, which
showed better performance for multivariate. However, LSTM showed the worst behavior
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in the three strategies. As a perspective, since the XGBOOST showed the better tradeoff in
terms of accuracy and CC, it will be deployed in our IoT platform for real-time electricity
consumption forecasting. More experiments will be conducted on real-sitting scenarios
when implemented in our embedded metering platform.
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