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Abstract: The stability problem for load frequency control (LFC) of power systems with two time-
varying communication delays is studied in this paper. The one-area and two-area LFC systems are
considered, respectively, which are modeled as corresponding linear systems with additive time-
varying delays. An improved stability criterion is proposed via a modified Lyapunov-Krasovskii
functional (LKF) approach. Firstly, an augmented LKF consisting of delay-dependent matrices and
some single-integral items containing time-varying delay information in two different delay subin-
tervals is constructed, which makes full use of the coupling information between the system states
and time-varying delays. Secondly, the novel negative definite inequality equivalent transformation
lemma is used to transform the nonlinear inequality to the linear matrix inequality (LMI) equivalently,
which can be easily solved by the MATLAB LMI-Toolbox. Finally, some numerical examples are
presented to show the improvement of the proposed approach.

Keywords: load frequency control; Lyapunov stability theory; stability analysis; time-varying delays

1. Introduction

In order to maintain the power grid frequency (an important index of power quality)
fixed or within a small allowable range, a load frequency control (LFC) strategy is a
common technique equipped in the power systems [1–7]. With the development and
expansion of the power grid, a dedicated independent communication network has been
unable to meet the operation of the power grid, although the small transmission delay in
the dedicated independent communication network can be ignored [8]. At present, the LFC
scheme receives sensor signals and outputs control signals through an open communication
network with a mass of data and extensive information exchange. However, random delays
and data packets will be introduced into the LFC scheme through the open communication
network, which are not negligible and important [9]. These network factors result in the
LFC system performance degradation and even instability. Literature [10] pointed out that
even if there is a time delay less than 100 ms in the process of information measurement
and control output, the transient excitation controller of a generator cannot achieve the
control goal. Thus, it is necessary to study the influence of time-varying delays on the
performance of the LFC system in an open communication network.

The network controlled LFC system involves the transmitting data between controller
and plant. Therefore, there are two main cases of time-varying delays: on the one hand,
only the communication time-varying delay from the control center to the governor is
considered [11–18], where delay-dependent stability analysis and controller design are
investigated by using single delay to model all time delays arising in communication
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channels. In fact, the time delays arising in the feedback measurement channel and
those in the forward control channel may have different properties. It has more useful
guidelines with considering the different properties. Thus, on the other hand, not only
the communication time-varying delays from the control center to the governor but also
from the sensor to the LFC center are considered simultaneously [19–21], where general
delay-dependent stability analysis is studied by using additive time-varying delays to
model two different time delays arising in communication channels. In this way, the
stability problems of the LFC system with two transmission delays can be investigated by
using the method of stability analysis for general linear time-delayed systems.

The main analytical purpose is obtaining the stability condition and controller de-
sign method via Lyapunov stability theory application. The stability criterion based on
Lyapunov stability theory is a sufficient condition, and inevitably has certain conserva-
tiveness. There are two main reasons for the conservativeness: the construction of LKF
and techniques for estimating the upper bound of the derivative of LKF. Thus, there are
many methods and techniques given to address these two aspects. For the construction
of LKF, a LKF with the delay decomposition method [22–24], LKF with multiple integral
items [25–29] and LKF with some augmented vectors [30,31] are proposed. On the other
aspect, the Jensen inequality [32], B-L inequality [33] and relaxed integral inequality tech-
niques [34–38] are used to estimate the upper bound of the derivative of LKF. In order
to reduce the conservativeness of the LKF construction, a lot of coupling information
between the system state variables and time delays is introduced into the LKF, which leads
to some nonlinear terms in the final results. This makes the solution complex and even
unsolvable. Recently, a novel negative definite inequality equivalent transformation lemma
was proposed in [39], which improved the degree of freedom for solving the linear matrix
inequality (LMI) in the main theorem without conservativeness. Thus, according to the
development of stability methods for linear time-delayed systems, there is still space to
further reduce the conservativeness of stability criteria for the LFC system.

Inspired by the above analysis, the contributions of this paper can be summarized
as follows:

• As mentioned above, only one-area LFC system with two different time-varying
delays is considered. It is general and important to investigate the stability of two-area
or multi-area LFC system with two or more time-varying delays. This paper studies
one- and two-area LFC system with two time-varying delays.

• The main improvements of the LKF are summarized as: (a) introducing four delay-
dependent non-integral terms to the LKF, such as Si(t), (i = 1, 2, 3, 4); (b) introducing
some integral components to the single-integral terms under different time-varying
delay subintervals, such as

∫ s
t−h1t

x(θ)dθ,
∫ t−h1t

t−h1
x(θ)dθ,

∫ s
t−ht

x(θ)dθ,
∫ t−ht

t−h x(θ)dθ, and
so on. These improvements make the LKF contain more information (the time-varying
delays and the coupling information between the state variables and the time-varying
delay) than the literature [11,17,18,21], which reduces the conservativeness caused by
the LKF construction.

• To overcome the nonlinear matrix inequality in the stability criterion, the novel nega-
tive definite inequality equivalent transformation lemma proposed in [39] is used to
transform the nonlinear inequality to the LMI equivalently, which can be easily solved
by the MATLAB LMI-Toolbox.

In this paper, the stability problem for LFC power systems with two time-varying
communication delays is studied. Both one-area and two-area LFC systems are considered,
respectively. An improved stability criterion is proposed via a modified LKF approach.
Firstly, an augmented LKF consisting of delay-dependent matrices and some single-integral
items containing time-varying delay information in two different delay subintervals is
constructed. Secondly, a novel negative definite inequality equivalent transformation
lemma is used to transform the nonlinear inequality to the LMI equivalently, which can
be easily solved by the MATLAB LMI-Toolbox. Finally, some numerical examples are
presented to show the improvement of the proposed approach. Moreover, the stability
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results can be applied to the LFC optimization to guarantee the stable operation of power
system based on an open interconnect network control.

This paper is organized as follows. Section 2 gives the models of LFC schemes;
Section 3 provides a stability assessment for the LFC system. Section 4 shows numerical
examples. Conclusions are drawn in Section 5.

Notation 1. Throughout this paper, the notations are standard. Rn denotes the n-dimensional
Euclidean space; Rn×m is the set of all n×m real matrices; For P ∈ Rn×n, P > 0 (respectively,
P < 0) mean that P is a positive (respectively, negative) definite matrix. diag{a1, a2, · · · , an}
denotes an n-order diagonal matrix with diagonal elements a1, a2, · · · , an. ei (i = 1, . . . , m) are

block entry matrices. For example, e2 =

0 I 0 · · · 0︸ ︷︷ ︸
m−2

. For a real matrix B and two real

symmetric matrices A and C of appropriate dimensions,
[

A B
∗ C

]
denotes a real symmetric

matrix, where ∗ denotes the entries implied by symmetry. Sym{A} = A + AT .

2. System Description and Problem Preliminaries
2.1. One-Area LFC System

In this subsection, the model of one-area power system equipped with PI controllers
and taking into account the time-varying communication delays is given. The basic diagram
of the simplified LFC of one-area power system is shown in Figure 1, where e−sd1 and
e−sd2 are time delays, respectively, arising during the measured signal ∆ f transmitted from
sensor to the LCF center and the control signal sent from the control center to the governor.

Figure 1. The basic diagram of the simplified LFC of one-area power system.

According to the LFC system shown in [19] and Figure 1, the common LFC scheme
model of one-area can be expressed as follows:{

˙̄x(t) = Āx̄(t) + B̄∆Pc(t),
ȳ(t) = C̄x̄(t),

(1)

where

x̄(t) =

 ∆ f (t)
∆Pm(t)
∆Pv(t)

, ȳ(t) = ACE(t),

Ā =

 −
D
M

1
M 0

0 − 1
Tch

1
Tch

− 1
RTg

0 − 1
Tg

, B̄ =

 0
0
1

Tg

, C̄ = [β 0 0].
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Here, ∆ f (t), ∆Pm(t) and ∆Pv(t) are the frequency deviation, the mechanical output
change, and the valve position change, respectively; M and D are the moment of inertia
of the generator and generator damping coefficient, respectively; Tg and Tch are the time
constant of the governor and the turbine, respectively; R is the speed droop; ∆PC(t) is
the setpoint; and β is the frequency bias factor. The following PI controller is used as the
LFC scheme:

u(t) = −KP ACE(t)− KI

∫
ACE(t)dt, (2)

where KP and KI are PI gains; and the ACE(t) is the area control error. Due to the existence
of time-varying delays (h1(t) and h2(t)) in feedback and forward channels, respectively,
the following is obtained

∆PC(t) = u(t− h2(t)), ACE(t) = β∆ f (t− h1(t)). (3)

By defining virtual state and measurement output vector as y(t) = col{ACE(t),∫
ACE(t)dt} and x(t) = col{∆ f (t), ∆Pm(t), ∆Pv(t),

∫
ACE(t)dt}, the closed-loop LFC sys-

tem can be expressed as the following linear system with two additive time-varying delays:

ẋ(t)=Ax(t)+A1x(t− h1(t)− h2(t)) (4)

and the system parameters are listed in the following form

A =


− D

M
1
M 0 0

0 − 1
Tch

1
Tch

0
− 1

RTg
0 − 1

Tg
0

β 0 0 0

, A1 =


0 0 0 0
0 0 0 0
−KP β

Tg
0 0 −KI

Tg

0 0 0 0

.

2.2. Two-Area LFC System

In this subsection, models of two-area power system equipped with PI controllers and
taking into account the time-varying communication delays are given. The basic diagram
of the simplified LFC of two-area power system is shown in Figure 2, where ∆P12 and T12
are the tie-line power transfer and synchronising coefficient of the tie-line. According to
the LFC system shown in [20] and Figure 2, the ACE can be expressed as follows:

ACE1(t) = ∆P12(t) + β1∆ f1(t), (5)

ACE2(t) = −∆P12(t) + β2∆ f2(t) (6)

and the closed-loop LFC system with PI controllers and time-varying communication
delays can be described as follows:

˙̂x(t)=Âx̂(t)+Â1 x̂(t− h1(t)− h2(t)), (7)

where

x̂(t) = col
{

∆ f1(t), ∆Pm1(t), ∆Pv1(t),
∫

ACE1(t)dt, ∆P12(t), ∆ f2(t), ∆Pm2(t), ∆Pv2(t),
∫

ACE2(t)dt
}

,

Â =

[
A11 A12
A21 A22

]
, Â1 =

[
A111 A112
A121 A122

]
,
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A11 =


− D1

M1
1

M1
0 0 − 1

M1

0 − 1
Tch1

1
Tch1

0 0
− 1

R1Tg1
0 − 1

Tg1
0 0

β1 0 0 0 1
2πT12 0 0 0 0

, A12 =


0 0 0 0
0 0 0 0
0 0 0 0

−2πT12 0 0 0

,

A21 =


0 0 0 0 1

M2
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −1

, A22 =


− D2

M2
1

M2
0 0

0 − 1
Tch2

1
Tch2

0
− 1

R2Tg2
0 − 1

Tg2
0

β2 0 0 0

,

A111 =


0 0 0 0 0
0 0 0 0 0

−KP1β1
Tg1

0 0 −KI1
Tg1

−KP1
Tg1

0 0 0 0 0
0 0 0 0 0

, A112 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

,

A121 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 −KP2

Tg2

0 0 0 0 0

, A122 =


0 0 0 0
0 0 0 0

−KP2β2
Tg2

0 0 −KI2
Tg2

0 0 0 0

.

Figure 2. The basic diagram of the simplified LFC of two-area power system.

As discussed in the Introduction section, the communication channel may encounter
time delays, which are usually time-varying and bounded. Then, similar to the previous
work, the delays are expressed by time-varying functions satisfying the following conditions:

0 ≤ h1(t) ≤ h1, 0 ≤ h2(t) ≤ h2,

| ḣ1(t) |≤ µ1, | ḣ2(t) |≤ µ2, ∀t ≥ 0, (8)

where h1, h2, µ1 and µ2 are positive constants. Let h(t) = h1(t) + h2(t) and h = h1 + h2.
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3. Stability Assessment for LFC System

Lemma 1 ([33]). For a positive definite matrix R and differentiable function x in [a, b] → Rn,
the following holds

∫ b

a
ẋT(s)Rẋ(s)ds ≥ 1

b− a
ωTRω,

where R = diag{R, 3R, 5R}, ω = col{ω1, ω2, ω3} with ω1 = x(b) − x(a), ω2 = x(b) +
x(a)− 2

b−a

∫ b
a x(s)ds, ω3 = ω1 − 6

b−a

∫ b
a x(s)ds + 12

(b−a)2

∫ b
a (b− s)x(s)ds.

Lemma 2 ([30]). For positive definite matrices R1, R2 ∈ Rn×n, vectors v1, v2 ∈ Rn and a scalar
α ∈ [0, 1], if there exists symmetric matrices X1, X2 ∈ Rn×n and any matrices S1, S2 ∈ Rn×n

such that [
R1 − X1 S1
∗ R1

]
≥ 0,

[
R2 − X2 S2
∗ R2

]
≥ 0,

the following inequality holds

1
α

vT
1 R1v1 +

1
1− α

vT
2 R2v2 ≥ vT

1 [R1 + (1− α)X1]v1 + vT
2 [R2 + αX2]v2 + 2vT

1 [αS1 + (1− α)S2]v2.

Lemma 3 ([39]). Let symmetric matrices A0, A1, A2 ∈ Rm×m and a vector ζ ∈ Rm. Then,
the following inequality

ζT(h2
t A2 + ht A1 + A0)ζ < 0

holds for all ht ∈ [0, h] if and only if there exists a positive definite matrix D ∈ Rm×m and a
skew-symmetric matrix G ∈ Rk×k such that[

A0
1
2 A1

∗ A2

]
<

[
C
J

]T[ −D G
∗ D

][
C
J

]
,

where C =
[

h
2 I 0

]
and J =

[
h
2 I − I

]
.

Theorem 1. Given scalars h1, h2, µ1 and µ2, the system (7) satisfying condition (8) is asymptoti-
cally stable, if there exists positive definite matrices Si2, Qj ∈ R3n×3n, Qk ∈ R8n×8n, Ri ∈ Rn×n,
Di, Gi ∈ R18n×18n, symmetric matrices Si1, Xi ∈ R3n×3n, any matrices Yi ∈ R3n×3n,
(i = 1, 2, 3, 4; j = 1, 2; k = 3, 4), such that the following matrix inequalities hold for ḣ1t , µj ∈
{−µ1, µ1}, ḣt , µk ∈ {−µ, µ}.

h1Sj1 + Sj2 > 0, hSk1 + Sk2 > 0, (9)[
R̄i − Xi Yi
∗ R̄i

]
>0, (10)[

Ω10(µj)
1
2 Ω11(µj)

∗ Ω21(µj)

]
−
[
C
J

]T[ −Dj Gj
∗ Dj

][
C
J

]
<0, (11)[

Ω0(µk)
1
2 Ω1(µk)

∗ Ω2(µk)

]
−
[
C
J

]T[ −Dk Gk
∗ Dk

][
C
J

]
<0 (12)

with C =
[

h
2 I 0

]
, J =

[
h
2 I − I

]
, R̄i = diag{Ri, 3Ri, 5Ri},
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Ω10(µj) = ḣ1t∆T
11S11∆11 − ḣ1t∆T

21S21∆21 − h1d∆T
53Q1∆53

+ h1d∆T
63Q2∆63 + h2

1h1deT
7 (R1 − R2)e7,

Ω11(µj) = Sym
{

∆T
13S11∆12 − ∆T

23S21∆22 + ∆T
92Q1Λ1 + ΛT

12Q2Λ2

}
+ ḣ1t∆T

12S11∆12

− ḣ1t∆T
22S21∆22 + ∆T

52Q1∆52 − ∆T
62Q2∆62 + ∆T

72Q3∆72 − ∆T
82Q4∆82

− h1d∆T
54Q1∆54 + h1d∆T

64Q2∆64,

Ω21(µj) = Sym
{

∆T
13(S11∆11 + S12∆12) + ḣ1t∆T

11S11∆12 + ∆T
23[(h1S21 + S22)∆22 − S21∆21]

−ḣ1t∆T
22S21∆21 + ∆51Q1∆52 − ∆61Q1∆62 − h1d∆53Q1∆54 + h1d∆63Q2∆64

+∆T
91Q1Λ1 + ΛT

11Q2Λ2

}
− h1h1deT

7 (R1 − R2)e7 −
1
h1

[
ΓT

1 X1Γ1 − ΓT
2 X2Γ2

]
+ Sym

{
1
h1

[
ΓT

1 (Y1 −Y2)Γ2

]}
,

Ω0(µk) = Sym
{

∆T
13S12∆11 + ∆T

23(h1S21 + S22)∆21 + ∆T
33S32∆31 + ∆T

43(hS41 + S42)∆41

+∆T
90Q1Λ1 + ΛT

10Q2Λ2 + ΛT
20Q3Λ3 + ΛT

30Q4Λ4

}
+ ḣt∆T

31S31∆31

− ḣt∆T
41S41∆41 + ∆T

51Q1∆51 − ∆T
61Q2∆61 + ∆T

71Q3∆71 − ∆T
81Q4∆81

− hd∆T
73Q3∆73 + hd∆T

83Q4∆83 + eT
6 (h

2
1R2 + h2R4)e6 + h2hdeT

7 (R3 − R4)e7

+ ΓT
1 R̄1Γ1 + ΓT

2 (R̄2 + X2)Γ2 + ΓT
3 R̄3Γ3 + ΓT

4 (R̄4 + X4)Γ4

+ Sym{ΓT
1 Y1Γ2 + ΓT

3 Y3Γ4}+ Sym{∆T
0 UΠ0},

Ω1(µk) = Sym
{

∆T
33S31∆31 + ∆T

33S32∆32 + ḣt∆T
31S31∆32 + ∆T

43(hS41 + S42)∆42

−∆T
43S41∆41 − ḣt∆T

42S41∆41 + ΛT
22Q3Λ3 + ΛT

32Q4Λ4

}
+ ∆T

72Q3∆72

− ∆T
82Q4∆82 − ḣt∆T

74Q3∆74 + hd∆T
84Q4∆84 − hhdeT

8 (R3 − R4)e8

− 1
h
[ΓT

3 X3Γ3 − ΓT
4 X4Γ4] +

1
h

Sym{ΓT
3 (Y3 −Y4)Γ4},

Ω2(µk) = Sym
{

∆T
33S31∆32 − ∆T

43S41∆42 + ΛT
22Q3Λ3 + ΛT

33Q4Λ4

}
+ ḣt∆T

32S31∆32 − ḣt∆T
42S41∆42 + ∆T

72Q3∆72

− ∆T
82Q4∆82 − hd∆T

74Q3∆74 + hd∆T
84Q4∆84,

where the notations of other symbols and matrices can be found in Appendices A and B.

Proof. Refer to Appendix C.

Remark 1. The stability sufficient condition of the LFC system (4) is obtained in Theorem 1, which
can guarantee the stability of the LFC system (4) in the range of the maximum allowable time
delay. Compared with the literature [11,17,18,21], the Theorem 1 in this paper further reduces
the conservativeness via the augmented LKF application. The main improvements of the LKF
are summarized as: (a) introducing four delay-dependent non-integral terms to the LKF, such as
Si(t), (i = 1, 2, 3, 4); (b) introducing some integral components to the single-integral terms under
different time-varying delay subintervals, such as

∫ s
t−h1t

x(θ)dθ,
∫ t−h1t

t−h1
x(θ)dθ,

∫ s
t−ht

x(θ)dθ,∫ t−ht
t−h x(θ)dθ, and so on. These improvements make the LKF contain more information of the

time-varying delay and the coupling information between the state variables and the delay than the
literature [11,17,18,21], which reduces the conservativeness caused by the LKF construction.
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Remark 2. It is well known that in order to improve the conservativeness of the stability cri-
terion, the modified LKF must combine with some tight inequality technique [36]. Therefore,
Lemmas 1 and 2 are used to estimate the derivative of the LKF, where some effective auxiliary
functions and free-weight matrices are introduced into the upper bound on the derivative of the
LKF. Finally, Theorem 1 based on the modified LKF and two proper inequality techniques is less
conservative than those of the recently published literature [11,17,18,21].

Remark 3. However, according to the inequality (A8) in the proof process, the final form of
the upper bound on the derivative of the LKF is nonlinear due to h2(t)Ω2(ḣt), which cannot be
solved by MATLAB. The authors of [25] decomposed this nonlinear matrix inequality into three
equivalent LMI conditions via the sufficient condition constraint lemma application. It reduced the
degree of freedom for solving the matrix inequality in the main theorem, due to the introduction
of two additional LMI constraints. Moreover, the sufficient condition constraint lemma is quite
conservative [39]. To overcome the nonlinear matrix inequality in the stability criterion, the novel
negative definite inequality equivalent transformation lemma (Lemma 3) proposed in [39] is used
to transform the inequality (A8) to the LMI (12) equivalently, which can be easily solved by the
MATLAB LMI-Toolbox.

4. Results and Discussions
In this section, the effectiveness of the stability criterion proposed in this paper is

shown. For different KP and KI values, the maximum allowable time-delay upper bound
values (MADUB) can be obtained by solving the LMIs in Theorem 1 via Matlab LMI-
Toolbox. The LFC system parameters in Table 1 are given in [20]. One and two-area LFC
systems will be discussed and comparatively analyzed in the following subsections. In the
following subsections, ‘–’ in the tables indicates that the corresponding result is not given.

Table 1. LFC systems parameters with T12 = 0.1986 pu/rad.

Tch(s) β R Tg(S) D M(s)

Area 1 0.3 21 0.05 0.1 1 10
Area 2 0.4 21.5 0.05 0.17 1.5 12

4.1. One-Area LFC System
4.1.1. Conservativeness Comparisons

In order to compare with the existing results, Tables 2 and 3 give the MADUB values
of the case of fixed KP and KI values, KP = 0.2, KI = 0.1, |ḣ1(t)| ≤ 0.1, |ḣ2(t)| ≤ 0.8. The
corresponding results cannot be given in [11,17,18] since the time delays from sensor to
the LFC center are ignored. Moreover, to show the PI controller gains influence on the
MADUB of the LFC system, Table 4 obtains the MADUB values of the case of different
KP, KI values, h1(t) = 0 and µ2 = 0; Table 5 gives the MADUB values of the case of
different KP, KI values, h1(t) = 0 and µ2 = 0.9. From these tables, it can observe the
results of Theorem 1 are similar to those of [11], however, less conservative than those
of [14–16,19–21]. Meanwhile, the MADUB increases with KP increment at a fixed KI value,
and the MADUB decreases with KI increment at a fixed KP value.

Table 2. MAUBs h2 for given h1, KP and KI under one-area LFC system.

Methods\h1 1.0 1.2 1.5

[20] 4.803 4.603 4.303
[19] 5.882 5.682 5.383
[21] 5.987 5.878 5.559

Th. 1 6.155 6.046 6.003
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Table 3. MAUBs h1 for given h2, KP and KI under one-area LFC system.

Methods\h2 2.0 3.0 4.0

[20] 3.803 2.803 1.803
[19] 4.892 3.886 2.885
[21] 4.997 3.979 3.001

Th. 1 5.016 4.031 3.217

Table 4. MAUBs h2 for h1(t) = 0 and µ2 = 0 under one-area LFC system.

µ2 = 0

KP Methods\KI 0.05 0.1 0.15 0.2 0.4 0.6 1

0

[20] 27.93 13.78 9.06 6.69 3.12 1.91 0.89
[14] 27.92 13.77 – 6.69 3.12 1.91 0.88
[15] 30.92 15.20 9.96 7.34 3.38 2.04 0.92
[16] 30.91 15.20 – 7.34 3.39 2.05 0.93
[11] 30.79 15.14 9.92 7.31 3.37 2.31 0.92

Th. 1 30.79 15.17 9.95 7.33 3.38 2.03 0.92

0.05

[20] 27.87 14.06 9.28 6.87 3.22 1.97 0.93
[15] 31.88 15.68 10.28 7.58 3.50 2.12 0.97
[11] 31.74 15.62 10.24 7.55 3.49 2.12 0.97

Th. 1 31.77 15.67 10.27 7.57 3.50 2.12 0.97

0.1

[14] 27.03 13.69 – 6.94 3.29 2.02 0.96
[20] 27.03 13.68 – 6.94 3.29 2.02 0.96
[16] 31.61 16.02 – 7.79 3.61 2.19 1.01

Th. 1 32.73 16.08 10.31 7.81 3.62 2.19 1.04

Table 5. MAUBs h2 for h1(t) = 0 and µ2 = 0.9 under one-area LFC system.

µ2 = 0.9

KP Methods\KI 0.05 0.1 0.2 0.4 0.6 1

0

[14] 20.45 9.963 4.59 1.81 1.01 0.48
[20] 26.37 12.96 6.25 2.85 1.68 0.74
[16] 27.26 13.39 6.43 2.91 1.71 0.75
[17] 27.50 13.73 6.61 3.02 1.80 0.78

Th. 1 28.03 14.24 7.12 3.20 1.91 0.79

0.1

[14] 17.39 9.16 4.67 1.85 1.05 0.48
[20] 20.25 11.07 5.93 2.87 1.75 0.74
[16] 22.00 12.32 6.59 3.11 1.84 0.75
[17] 29.51 14.52 7.02 3.23 1.94 0.86

Th. 1 30.07 14.61 7.13 3.24 1.95 0.87

4.1.2. Simulation Verification

Simulation studies are carried out under an increased step load of 0.1 pu occurring at
1 s, time-varying delays and the following assumptions. The simulation results are shown
in Figures 3–6, in which the LFC has achieved its objective, and the control system is stable.
In Figure 4, the blue curve is close to the critical stability with KP = 0, KI = 0.05, h1(t) = 0
and h2(t) = 30.79.

• For Figure 3, fixed KP = 0.2, KI = 0.1:

1. h1(t) = 1
2 sin

( 0.2
1 t
)
+ 1

2 , h2(t) = 6.155
2 sin

(
1.6

6.155 t
)
+ 6.155

2 ;

2. h1(t) = 1.5
2 sin

( 0.2
3 t
)
+ 1.5

2 , h2(t) = 6.003
2 sin

(
1.6

6.003 t
)
+ 6.003

2 ;

3. h1(t) = 5.016
2 sin

( 0.2
5.016 t

)
+ 5.016

2 , h2(t) = sin(0.8t) + 1;
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4. h1(t) = 3.217
2 sin

( 0.2
3.217 t

)
+ 3.217

2 , h2(t) = 2sin(0.4t) + 2;

• For Figure 4, different KP and fixed h1(t) = 0, KI = 0.05:

1. KP = 0, h2(t) = 30.7;
2. KP = 0, h2(t) = 30.79;
3. KP = 0.1, h2(t) = 32.73;

• For Figure 5, different KP and fixed h1(t) = 0, , KI = 0.6:

1. KP = 0, KI = 0.6, h2(t) = 2.00;
2. KP = 0, KI = 0.6, h2(t) = 2.03;
3. KP = 0.1, KI = 0.6, h2(t) = 2.20;

• For Figure 6, different KP and fixed h1(t) = 0:

1. KP = 0, KP = 0.2, h2(t) = 7.12
2 sin

(
1.8

7.12 t
)
+ 7.12

2 ;

2. KP = 0.1, KP = 0.2, h2(t) = 7.13
2 sin

(
1.8

7.13 t
)
+ 7.13

2 ;

3. KP = 0, KP = 1, h2(t) = 0.79
2 sin

(
1.8

0.79 t
)
+ 0.79

2 ;

4. KP = 0.1, KP = 1, h2(t) = 0.87
2 sin

(
1.8

0.87 t
)
+ 0.87

2 .
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Figure 3. Frequency deviation and control error responses of one-area deregulated LFC scheme with
KP = 0.2, KI = 0.1 and different time-varying delays.
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Figure 4. Frequency deviation and control error responses of one-area deregulated LFC scheme with
KI = 0.05, h1(t) = 0 and different KP, h2(t).
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Figure 5. Frequency deviation and control error responses of one-area deregulated LFC scheme with
KI = 0.6, h1(t) = 0 and different KP, h2(t).
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Figure 6. Frequency deviation and control error responses of one-area deregulated LFC scheme with
h1(t) = 0 and different KP, KI and time-varying h2(t).

4.2. Two-Area LFC System
4.2.1. Conservativeness Comparison

Tables 6 and 7 give the MADUB values of the case of fixed KP and KI values, KP = 0.05,
KI = 0.4 and different µ1, µ2 values. The corresponding results cannot be achieved
in [11,17,18] since the time delays from sensor to the load frequency control center are
ignored. Table 8 gives the MADUB values of the case of different KP and KI values,
h1(t) = 0 and µ2 = 0; and Table 9 give the MADUB values of the case of different KP and
KI values, h1(t) = 0 and µ2 = 0.5. From these tables, it is obviously that the MADUB
increases with KP increment at a fixed KI value, and the MADUB decreases with KI
increment at a fixed KP value. In addition, the results of Theorem 1 are less conservative
than those of [11,15,20].

Table 6. MAUBs h2 for given h1, KP and KI under two-area LFC system.

µ2 0.2 0.5 0.8

Methods µ1\h1 1 1.5 2 1 1.5 2 1 1.5 2

Th. 1
0.1 2.122 1.774 1.323 2.051 1.637 1.273 2.015 1.582 1.098
0.2 2.018 1.559 1.064 2.003 1.507 1.018 1.997 1.499 1.001
0.5 1.992 1.529 1.030 1.973 1.481 0.995 1.895 1.398 0.908

Table 7. MAUBs h1 for given h2, KP and KI under two-area LFC system.

µ2 0.2 0.5 0.8

Methods µ1\h2 1 2 3 1 2 3 1 2 3

Th. 1
0.1 2.028 1.183 0.251 1.939 1.078 0.189 1.925 1.051 0.081
0.2 2.016 1.027 0.079 1.921 1.017 0.077 1.910 1.009 0.054
0.5 2.009 1.012 0.053 1.907 1.007 0.037 1.897 1.007 0.036
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Table 8. MAUBs h2 for h1(t) = 0 and µ2 = 0 under two-area LFC system.

µ2 = 0

KP Methods\KI 0.05 0.1 0.15 0.2 0.4 0.6 1

0

[20] 27.85 13.70 8.97 6.60 3.00 1.75 0.57
[15] 30.81 15.09 9.84 7.21 3.23 1.84 0.59
[11] 30.695 15.042 9.816 7.196 3.225 1.846 0.585

Th. 1 30.83 15.11 9.87 7.24 3.23 1.85 0.62

0.05

[20] 27.83 14.02 9.21 6.78 3.10 1.81 0.62
[15] 31.27 15.57 10.16 7.45 3.35 1.92 0.64
[11] 31.643 15.526 10.132 7.433 3.334 1.924 0.638

Th. 1 31.67 15.55 10.15 7.44 3.34 1.93 0.65

0.1

[14] – 13.65 – 6.88 3.17 1.86 –
[20] – 13.65 – 6.88 3.17 1.86 –
[16] – 15.97 – 7.67 3.47 2.03 –
[17] – 16.01 – 7.68 3.47 2.03 –

Th. 1 31.67 16.05 10.16 7.71 3.48 2.03 0.65

Table 9. MAUBs h2 for h1(t) = 0 and µ2 = 0.5 under two-area LFC system.

µ2 = 0.5

KP Methods\KI 0.2 0.4 0.6

0

[20] 5.55 2.36 1.18
[14] 6.14 2.68 1.40
[16] 6.41 2.81 1.54
[17] 6.66 2.95 1.65

Th. 1 6.69 2.97 1.65

0.1

[20] 5.35 2.55 1.30
[14] 6.34 2.83 1.51
[16] 6.75 2.84 1.53
[17] 7.10 3.16 1.78

Th. 1 7.13 3.19 1.78

4.2.2. Simulation Verification

Simulation studies are carried out under an increased step load of 0.1 pu occurring at
1 s, and time-varying delays and the following assumptions:

• For Figure 7, fixed KP = 0.05, KI = 0.4:

1. h1(t) = 1
2 sin

(
0.4
1 t
)
+ 1

2 , h2(t) = 2.018
2 sin

(
0.4

2.018 t
)
+ 2.018

2 ;

2. h1(t) = 2
2 sin

(
1
2 t
)
+ 2

2 , h2(t) = 0.908
2 sin

(
1.6

0.908 t
)
+ 0.908

2 ;

3. h1(t) = 2.028
2 sin

( 0.2
2.028 t

)
+ 2.028

2 , h2(t) = 1
2 sin

(
0.4
1 t
)
+ 1

2 ;

4. h1(t) = 0.036
2 sin

(
1

0.036 t
)
+ 0.036

2 , h2(t) = 3
2 sin

(
1.6
3 t
)
+ 3

2 ;

• For Figure 8, different KP and fixed h1(t) = 0, KI = 0.05:

1. KP = 0, h2(t) = 30.89;
2. KP = 0, h2(t) = 30.83;
3. KP = 0.1, h2(t) = 31.67;

• For Figure 9, different KP and fixed h1(t) = 0, KI = 1:

1. KP = 0, h2(t) = 0.637;
2. KP = 0, h2(t) = 0.62;
3. KP = 0.1, h2(t) = 0.65;
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• For Figure 10, different KP, KI , time-varying h2(t) and fixed h1(t) = 0:

1. KP = 0, KI = 0.2, h2(t) = 6.69
2 sin

(
1

6.69 t
)
+ 6.69

2 ;

2. KP = 0.1, KI = 0.2, h2(t) = 7.13
2 sin

(
1

7.13 t
)
+ 7.13

2 ;

3. KP = 0, KI = 0.6, h2(t) = 1.65
2 sin

(
1

1.65 t
)
+ 1.65

2 ;

4. KP = 0.1, KI = 0.6, h2(t) = 1.78
2 sin

(
1

1.78 t
)
+ 1.78

2 .

The simulation results are shown in Figures 7–10, in which the LFC has achieve its
objective, and the control system is stable. It can be seen from Figures 8 and 9 that the red
curves are the critical stability with KI = 0.05 KP = 0, h1(t) = 0, h2(t) = 30.89 and KP = 0,
KI = 1, h1(t) = 0, h2(t) = 0.637, respectively. Thus, the black curvess in Figures 8 and 9
are close to the critical stability region, that is, Theorem 1 proposed in this paper is effective
in estimating the upper bound of the maximum allowable time delay.
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Figure 7. Frequency deviation and control error responses of two-area deregulated LFC scheme with
KP = 0.05, KI = 0.4 and time-varying delays.
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Figure 8. Frequency deviation and control error responses of two-area deregulated LFC scheme with KI = 0.05, h1(t) = 0
and different KP, h2(t).
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Figure 9. Frequency deviation and control error responses of two-area deregulated LFC scheme with KI = 1, h1(t) = 0 and
different KP, h2(t).
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Figure 10. Frequency deviation and control error responses of two-area deregulated LFC scheme with h1(t) = 0 and
different KP, KI , h2(t).

5. Conclusions

This paper mainly focuses on the stability analysis for load frequency control of power
systems with time-varying delays. For the one-area and two-area LFC systems with two
communication delays, stability criteria are obtained via Lyapunov stability theory appli-
cation. Firstly, the one-area LFC system and two-area LFC system are described as linear
systems with additive time-varying delays. Secondly, a modified LKF with some delay-
dependent non-integral terms and augmented integral components in single integral term
is constructed. Compared with the LKFs in some previous published literature, it contains
more coupling information between time-varying delays and state variables, which reduces
the conservativeness of the stability criterion. Thirdly, to overcome the nonlinear coupling
in the stability criterion, the novel negative definite inequality equivalent transformation
lemma (Lemma 3) is used to transform the nonlinear inequality to the LMI equivalently,
which can be easily solved by the MATLAB LMI-Toolbox. Finally, the effectiveness of the
proposed method is illustrated by comparisons and discussions in numerical examples.
In addition, in order to approach the actual situation, the design and optimization of the
controllers have always been a topic of concern, which inspires us to work around it in the
future. The stability results can be applied to the LFC design and optimization to guarantee
the stable operation of power system based on an open interconnect network control.

However, there are some limitations. Firstly, in order to reduce the conservativeness
of the stability criterion, the dimensions of the decision variables for solving LMIs increase
with the expanded dimensions of LKF. Secondly, in order to improve the degree of freedom
of solving LMIs, the free weight matrices are introduced. Thirdly, some additional decision
variables are introduced in LMIs when the nonlinear inequalities are transformed into
LMIs by using Lemma 3, which increases the number of decision variables of the LMIs
proposed in this paper. In conclusion, the improvement of stability results is in the cost of
increasing computational complexity.
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The derivation method of the stability criterion presented in this paper can be extended
to multi-area LFC system. The relevant theories will be applied into practice, which is one
of our further main topics.
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Appendix A

For the sake of simplicity on matrix representation, the notations of several symbols
and matrices are defined as

h1t =h1(t), ht = h(t), h̄1t = h1 − h1(t), h̄t = h− h(t),

h1d =1− ḣ1(t), hd = 1− ḣ(t),

η01(t) =col{x(t), x(t− h1t), x(t− h1)},
η02(t) =col{x(t), x(t− ht), x(t− h)},

η1(t) =col
{

x(t), x(t− h1t),
∫ t

t−h1t

x(s)ds
}

,

η2(t) =col
{

x(t− h1t), x(t− h1),
∫ t−h1t

t−h1

x(s)ds
}

,

η3(t) =col
{

x(t), x(t− ht),
∫ t

t−ht
x(s)ds

}
,

η4(t) =col
{

x(t− ht), x(t− h),
∫ t−ht

t−h
x(s)ds

}
,

η5(t, s) =col
{

ẋ(s), x(s), η01(t),
∫ t

s
x(θ)dθ,

∫ s

t−h1t

x(θ)dθ,
∫ t−h1t

t−h1

x(θ)dθ

}
,

η6(t, s) =col
{

ẋ(s), x(s), η01(t),
∫ t−h1t

s
x(θ)dθ,

∫ t

t−h1t

x(θ)dθ,
∫ s

t−h1

x(θ)dθ

}
,

η7(t, s) =col
{

ẋ(s), x(s), η02(t),
∫ t−h1t

s
x(θ)dθ,

∫ t

t−h1t

x(θ)dθ,
∫ s

t−h1

x(θ)dθ

}
,

η8(t, s) =col
{

ẋ(s), x(s), η02(t),
∫ t−ht

s
x(θ)dθ,

∫ t

t−ht
x(θ)dθ,

∫ s

t−h
x(θ)dθ

}
,

ρ1(t) =
∫ t−h1t

t−h1

x(s)
h̄1t

, ρ2(t) =
∫ t−h1t

t−h1

(t− h1t − s)x(s)
h̄2

1t
,

ρ3(t) =
∫ t−ht

t−h

x(s)
h̄t

, ρ4(t) =
∫ t−ht

t−h

(t− ht − s)x(s)
h̄2

t
,

ρ5(t) =
∫ t

t−h1t

x(s)
h1t

, ρ6(t) =
∫ t

t−h1t

(t− s)x(s)
h2

1t
,

ρ7(t) =
∫ t

t−ht

x(s)
ht

, ρ8(t) =
∫ t

t−ht

(t− s)x(s)
h2

t
,
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ξ(t) =col{x(t), x(t− h1t), x(t− ht), x(t− h1), x(t− h),

ẋ(t), ẋ(t− h1t), ẋ(t− ht), ẋ(t− h1), ẋ(t− h),

ρ1(t), ρ2(t), ρ3(t), ρ4(t), ρ5(t), ρ6(t), ρ7(t), ρ8(t)}.

Appendix B

Notations of other symbols and matrices for the Theorem 1 are given as:

∆0 =col{e1, e3, e6}, Π0 = Ae1 + A1e3 − e6,

∆11 =col{e1, e2, e0}, ∆12 = col{e0, e0, e13}, ∆13 = col{e6, e7, e1 − h1de2},
∆21 =col{e2, e4, h1e11}, ∆22 = col{e0, e0,−e11}, ∆23 = col{h1de7, e8, h1de2 − e4},
∆31 =col{e1, e3, h1e0}, ∆32 = col{e0, e0, e17}, ∆33 = col{e6, hde3, e1 − hde3},
∆41 =col{e3, e5, he13}, ∆42 = col{e0, e0,−e13}, ∆43 = col{hde8, e10, hde3 − e5},
∆51 =col{e6, e1, e1, e2, e4, e0, e0, h1e11}, ∆52 = col{e0, e0, e0, e0, e0, e0, e15,−e11},
∆53 =col{e7, e2, e1, e2, e4, e0, e0, h1e11}, ∆54 = col{e0, e0, e0, e0, e0, e15, e0,−e11},
∆61 =col{e9, e4, e1, e2, e4, h1e11, e0, e0}, ∆62 = col{e0, e0, e0, e0, e0,−e11, e15, e0},
∆63 =col{e7, e2, e1, e2, e4, e0, e0, h1e11}, ∆64 = col{e0, e0, e0, e0, e0, e0, e15,−e11},
∆71 =col{e6, e1, e1, e3, e5, e0, e0, he13}, ∆72 = col{e0, e0, e0, e0, e0, e0, e17,−e13},
∆73 =col{e8, e3, e1, e3, e5, e0, e0, he13}, ∆74 = col{e0, e0, e0, e0, e0, e17, e0,−e13},
∆81 =col{e10, e5, e1, e3, e5, he13, e0, e0}, ∆82 = col{e0, e0, e0, e0, e0,−e13, e17, e0},
∆83 =col{e8, e3, e1, e3, e5, e0, e0, he13}, ∆84 = col{e0, e0, e0, e0, e0, e0, e17,−e13},
∆90 =col{e1 − e2, e0, e0, e0, e0, e0, e0, e0}, ∆91 = col{e0, e15, e1, e2, e4, e0, e0, h1e11},
∆92 =col{e0, e0, e0, e0, e0, e15 − e16, e16,−e11},
Λ1 =col{e0, e0, e6, h1de7, e1 − h1de7, e1,−h1de2, h1de2 − e4},
Λ2 =col{e0, e0, e6, h1de7, e9, h1de2, e1 − h1de2,−e4},
Λ3 =col{e0, e0, e6, hde8, e10, e1,−hde3, hde3 − e5},
Λ4 =col{e0, e0, e6, hde8, e10, hde3, e1 − hde3,−e5},

Λ10 =col{e2 − e4, h1e1, h1e1, h1e2, h1e4, h2
1(e11 − e12), e0, h2

1e12},
Λ11 =col{e0,−e11,−e1,−e2,−e4,−2h1(e11 − e12), h1e15,−2h1e12},
Λ12 =col{e0, e0, e0, e0, e0, e11 − e12,−e15, e12},

Γ1 =col{e2 − e4, e2 + e4 − 2e11, e2 − e4 + 6e11 + 12e12},
Γ2 =col{e1 − e2, e1 + e2 − 2e15, e1 − e2 + 6e15 + 12e16},
Γ3 =col{e3 − e5, e3 + e5 − 2e13, e3 − e5 + 6e13 + 12e14},
Γ4 =col{e1 − e3, e1 + e3 − 2e17, e1 − e3 + 6e17 + 12e18}.

Appendix C

Proof of Theorem 1. Construct an LKF candidate as

V(t) =V1(t) + V2(t) + V3(t) (A1)
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with

V1(t) =ηT
1 (t)S1(t)η1(t) + ηT

2 (t)S2(t)η2(t)

+ ηT
3 (t)S3(t)η3(t) + ηT

4 (t)S4(t)η4(t),

V2(t) =
∫ t

t−h1t

ηT
5 (t, s)Q1η5(t, s)ds +

∫ t−h1t

t−h1

ηT
6 (t, s)Q2η6(t, s)ds

+
∫ t

t−ht
ηT

7 (t, s)Q3η7(t, s)ds +
∫ t−ht

t−h
ηT

8 (t, s)Q4η8(t, s)ds,

V3(t) =h1

∫ t−h1t

t−h1

(h1t − t + s)ẋT(s)R1 ẋ(s)ds + h1

∫ t

t−h1t

(h1 − t + s)ẋT(s)R2 ẋ(s)ds

+ h
∫ t−ht

t−h
(ht − t + s)ẋT(s)R3 ẋ(s)ds + h

∫ t

t−ht
(h− t + s)ẋT(s)R4 ẋ(s)ds,

where S1(t) = h1tS11 + S12, S2(t) = h̄1tS21 + S22, S3(t) = htS31 + S32 and
S4(t) = h̄tS41 + S42.

Calculating the derivative of V(t), we can obtain the following formulas

V̇1(t) = 2η̇T
1 (t)S1(t)η1(t) + ηT

1 (t)Ṡ1(t)η1(t)

+ 2η̇T
2 (t)S2(t)η2(t) + ηT

2 (t)Ṡ2(t)η2(t)

+ 2η̇T
3 (t)S3(t)η3(t) + ηT

3 (t)Ṡ3(t)η3(t)

+ 2η̇T
4 (t)S4(t)η4(t) + ηT

4 (t)Ṡ4(t)η4(t)

= 2ξT(t)∆T
13(h1tS11 + S12)(∆11 + h1t∆12)ξ(t)

+ ξT(t)(∆11 + h1t∆12)
T ḣ1tS11(∆11 + h1t∆12)ξ(t)

+ 2ξT(t)∆T
23(h̄1tS21 + S22)(∆21 + h1t∆22)ξ(t)

− ξT(t)(∆21 + h1t∆22)
T ḣ1tS21(∆21 + h1t∆22)ξ(t)

+ 2ξT(t)∆T
33(htS31 + S32)(∆31 + ht∆32)ξ(t)

+ ξT(t)(∆31 + ht∆32)
T ḣtS31(∆31 + ht∆32)ξ(t)

+ 2ξT(t)∆T
43(h̄tS41 + S42)(∆41 + ht∆42)ξ(t)

− ξT(t)(∆41 + ht∆42)
T ḣtS41(∆41 + ht∆42)ξ(t), (A2)

V̇2(t) = ηT
5 (t, t)Q1η5(t, t)− ηT

6 (t, t− h1)Q2η6(t, t− h1)

+ ηT
7 (t, t)Q3η7(t, t)− ηT

8 (t, t− h)Q4η8(t, t− h)

− h1dηT
5 (t, t− h1t)Q1η5(t, t− h1t)

+ h1dηT
6 (t, t− h1t)Q2η6(t, t− h1t)

− hdηT
7 (t, t− ht)Q3η7(t, t− ht)

+ hdηT
8 (t, t− ht)Q4η8(t, t− ht)
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+ 2
∫ t

t−h1t

ηT
5 (t, s)Q1

∂

∂t
η5(t, s)ds

+ 2
∫ t−h1t

t−h1

ηT
6 (t, s)Q2

∂

∂t
η6(t, s)ds

+ 2
∫ t

t−ht
ηT

7 (t, s)Q3
∂

∂t
η7(t, s)ds

+ 2
∫ t−ht

t−h
ηT

8 (t, s)Q4
∂

∂t
η8(t, s)ds

= ξT(t)
[
(∆51 + h1t∆52)

TQ1(∆51 + h1t∆52)

−(∆61 + h1t∆62)
TQ2(∆61 + h1t∆62)

]
ξ(t)

+ ξT(t)
[
(∆71 + ht∆72)

TQ3(∆71 + ht∆72)

−(∆81 + ht∆82)
TQ4(∆81 + ht∆82)

]
ξ(t)

− h1dξT(t)
[
(∆53 + h1t∆54)

TQ1(∆53 + h1t∆54)

−(∆63 + h1t∆64)
TQ2(∆63 + h1t∆64)

]
ξ(t)

− hdξT(t)
[
(∆73 + ht∆74)

TQ3(∆73 + h1t∆74)

−(∆83 + ht∆84)
TQ4(∆83 + ht∆84)

]
ξ(t)

+ 2ξT(t)
[
(∆90 + h1t∆91 + h2

1t∆92)
TQ1Λ1

+(Λ10 + h1tΛ11 + h2
1tΛ12)

TQ2Λ2

]
ξ(t)

+ 2ξT(t)
[
(Λ20 + htΛ21 + h2

t Λ22)
TQ3Λ3

+(Λ30 + htΛ31 + h2
t Λ32)

TQ4Λ4

]
ξ(t), (A3)

V̇3(t) = h2
1 ẋT(t)R2 ẋ(t) + h2 ẋT(t)R4 ẋ(t)

+ h1h1d h̄1t ẋT(t− h1t)(R1 − R2)ẋ(t− h1t)

+ hhd h̄t ẋT(t− ht)(R3 − R4)ẋ(t− ht)

− h1

(∫ t−h1t

t−h1

ẋT(s)R1 ẋ(s)ds +
∫ t

t−h1t

ẋT(s)R2 ẋ(s)ds
)

− h
(∫ t−ht

t−h
ẋT(s)R3 ẋ(s)ds +

∫ t

t−ht
ẋT(s)R4 ẋ(s)ds

)
. (A4)

According to Ri > 0, (i = 1, 2, 3, 4), letting α = h1t
h1

and β = ht
h , it follows from

Lemmas 1 and 2 that

−h1

(∫ t−h1t

t−h1

ẋT(s)R1 ẋ(s)ds +
∫ t

t−h1t

ẋT(s)R2 ẋ(s)ds
)

≤− 1
α

ξT(t)ΓT
1 R̄1Γ1ξ(t)− 1

1− α
ξT(t)ΓT

2 R̄2Γ2ξ(t)

≤− ξT(t)
[

ΓT
1 (R̄1 + αX1)Γ1 + 2ΓT

1 [(1− α)Y1 + αY2]Γ2

+ΓT
2 [R̄2 + (1− α)X2]Γ2

]
ξ(t), (A5)
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−h
(∫ t−ht

t−h
ẋT(s)R3 ẋ(s)ds +

∫ t

t−ht
ẋT(s)R4 ẋ(s)ds

)
≤− 1

β
ξT(t)ΓT

3 R̄3Γ3ξ(t)− 1
1− β

ξT(t)ΓT
4 R̄4Γ4ξ(t)

≤− ξT(t)
[

ΓT
3 (R̄3 + αX3)Γ3 + 2ΓT

3 [(1− β)Y3 + αY4]Γ4

+ΓT
4 [R̄4 + (1− β)X4]Γ4

]
ξ(t). (A6)

For an appropriately matrix U ∈ R3n×n, we can get

0 = 2
[

xT(t) xT(t− ht) ẋT(t)
]
U[Ax(t) + A1x(t− ht)− ẋ(t)] = 2ξT(t)∆T

0 UΠ0ξ(t). (A7)

Finally, from the above derivation (A2)–(A7), we have

V̇(t) ≤ξT(t)
[
Ω0(ḣt) + htΩ1(ḣt) + h2

t Ω2(ḣt)
]
ξ(t)

+ ξT(t)
[
Ω10(ḣ1t) + h1tΩ11(ḣ1t) + h2

1tΩ21(ḣ1t)
]
ξ(t). (A8)

According to Lemma 3, the matrix inequality (11) together with the matrix inequal-
ity (12) imply that V̇(t) < 0. Therefore, by Lyapunov stability theorem, it can guarantee
that the time-delayed system (4) is asymptotically stable. The proof is completed.
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