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Abstract: Herein, a pair of inexpensive and eco-friendly polymers were blended and formulated
based on poly (ethylene oxide) (PEO) and poly (vinyl alcohol) (PVA). FTIR, XRD, EDX and TEM
techniques were used to describe a Phosphated titanium oxide (PO4TiO2) nanotube synthesised using
a straightforward impregnation-calcination procedure. For the first time, the produced nanoparticles
were inserted as a doping agent into this polymeric matrix at a concentration of (1–3) wt.%. FTIR,
TGA, DSC and XRD were used to identify the formed composite membranes. Furthermore, because
there are more hydrogen bonds generated between the polymer’s functional groups and oxygen
functional groups PO4TiO2, oxidative stability and tensile strength are improved with increasing
doping addition and obtain better results than Nafion117. The permeability of methanol reduced as
the weight % of PO4TiO2 increased. In addition, the ionic conductivity of the membrane with 3 wt.%
PO4-TiO2 is raised to (28 mS cm−1). The optimised membrane (PVA/PEO/PO4TiO2-3) had a higher
selectivity (6.66 × 105 S cm−3 s) than Nafion117 (0.24 × 105 S cm−3 s) and can be used as a proton
exchange membrane in the development of green and low-cost DMFCs.

Keywords: proton exchange membrane; poly (vinyl alcohol); poly (ethylene oxide); titanium oxide;
direct methanol fuel cell; fuel cell

1. Introduction

Chemical energy is instantly converted into electrical energy by the fuel cell. It is a sort
of power-producing equipment that can efficiently convert and store energy. Hydrocarbons
such as methanol or ethanol can be used as fuel in those cells. It produces zero emissions
or minimum pollution [1]. As a type of proton exchange membrane fuel cell (PEMFC), the
direct methanol fuel cell (DMFC) is widely utilised in home appliances, vehicles, aerospace
and other fields. [2].

A membrane separates the fuel and oxidant compartments in a fuel cell, allowing
for efficient ion transport and charge balance. Due to its chemical stability, mechanical
properties and ionic conductivity, the Nafion membranes are the most perfluorinated
PEMs utilised in DMFCs [1,3]. However, nafion membrane manufacture is expensive and
time-consuming, which limits its commercialisation [4,5]. As a result, replacing them with
ecologically benign and cost-efficient polymeric films is crucial and essential [6–8].

To replace Nafion membranes, sulfonation or blending of polymers [9] and/or dop-
ing agents, such as porous and functionalised inorganic materials and functionalised
carbon materials, are inserted into the polymeric matrix [10–15]. The most prevalent
non-perfluorinated polymers utilised to build novel alternative polymeric membranes are
poly(styrene) (PS), poly (ether ether ketone) (PEEK), poly(benzimidazole) (PBI) and poly
(arylene ether sulfone) (PSU). However, the use of toxic chemical time, solvents and tem-
perature in the preparing of these non-degradable polymers makes membrane synthesis
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expensive, complicated and environmentally unfriendly. Therefore, using biodegradable,
cheap and green polymers such as polyethene oxide (PEO) and polyvinyl alcohol (PVA) is
a more appealing strategy from an economic and technological standpoint than inventing
innovative complicated polymers or adapting existing commercial membranes [10,16–18].
In addition, the catalysts and film are critical components of a DMFC. As a result, building
a cost-effective membrane brings DMFC systems closer to widespread use.

In addition to its chemical stability, hydrophilicity, adhesive properties and film-
forming abilities, PVA is also environmentally friendly and low cost [19–21]. Polyvinyl
alcohol is therefore commonly employed in medicinal, commercial and industrial settings.
Polyvinyl alcohol’s proton conductivity and, as a result, its stiff and semi-crystalline
structure hampers its use as a proton exchange membrane in fuel cells. As a result, adding
doping agents or mixing with another polymer electrolyte to correct this flaw is a viable
option [19,22,23]. Since hydrogen connections develop between the -OH groups of PVA
and the ether linkage of polyethene oxide, blending PVA with PEO is preferred [20,24].
On the other hand, PEO is an environmentally acceptable polymer that is utilised to
synthesise polymer electrolyte systems in various energy devices due to its improved ionic
conductivity, low toxicity and flexibility [25,26].

To increase membrane properties, many researchers adopted the conventional prac-
tise of incorporating doping compounds into polymer matrix to create nanocomposite
barrier membranes [27–31]. Due to its huge surface area, mechanical toughness, chemical
resistance, barrier to fuel crossing, cheap price and low level of toxicity, phosphated titania
(PO4TiO2) in a polymer matrix has been studied for use in fuel cell applications [19,20].
PO4TiO2 also includes oxygen-containing hydrophilic functional groups, which enhance
water sorption and produce proton conduction channels [20]. When PO4TiO2 nanotubes
are embedded into polymers, the hydrogen bonds will be generated between hydroxyl
groups along the polymer backbone and oxygen groups of PO4TiO2. These hydrogen
bonds will reflect on the membranes’ mechanical properties, strengthening them and
limiting extreme swelling and water sorption [20,26], enhancing the ionic conductivity of
formulated membranes containing PO4TiO2 nanotubes.

This project aims to develop innovative nanocomposite membranes constructed from
mild processing of environmentally safe and economic polymers compatible with water as
the principal solvent to further DMFC commercialisation. Due to its exceptional capacity
to build films with PEO polymer, polyvinyl alcohol was selected as the key polymer for
the membrane. The polymers were crosslinked completely and concurrently converted to
sulfonated PVA using crosslinkers such as 4-sulfophithalic acid (SPA) and glutaraldehyde
(GA). SPVA/PEO/PO4TiO2 nanotubes were synthesised and injected as a doping agent in
the PVA matrix at various ratio to create new nanocomposite membranes. The parameters
such as oxidative chemical stability, proton conductivity, mechanical resistance and restric-
tion of the methanol permeability will be controlled due to the formation of hydrogen bond
of formulated matrix and oxygen groups of PO4-TiO2, which could be improved DMFC
performance employing such membranes.

2. Materials and Methods

PEO (MW: 900,000 g mol−1, Acros Organics) and PVA (99% hydrolysis and medium
MW, USA). Glutaraldehyde (GA) (Alfa Aesar, 25 wt.% in H2O) and 4-sulphophthalic
acid (SPA) (Sigma-Aldrich, 99.9 wt.% in H2O) were used as covalent and ionic cross-
linkers, respectively [30]. Titanium (IV) oxide rutile (TiO2, <5 µm, ≥99.9%, Sigma-Aldrich,
Darmstadt, Germany) and H3PO4 (Fisher Chemical, 85 wt.%)

2.1. Synthesis
2.1.1. Synthesis of Phosphated Titanium Oxide Nanotube (PO4-TiO2)

TiO2 nanotubes were synthesised as mentioned in the previous work [19]. TiO2 nan-
otubes were mixed to 0.1 mol/L−1 phosphoric acid in a molar ratio 1:1 and the suspension
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was shaken in hot water (80 ◦C). The mixture was rinsed with H2O and dried overnight at
110 ◦C. The powder was then burned in a muffle furnace at 450 degrees Celsius.

2.1.2. Preparation of SPVA/PEO/ PO4TiO2 Membranes

Here, 100 mL of PVA solution (10%) was prepared, and PEO (2 g) was dissolved
in 100 mL deionizedH2O: ethanol (80:20) vol percent at 50 ◦C for 1 h, before blend-
ing PVA: PEO (85:15) wt. percent and covalent crosslinking the polymers blend with
glutaraldehyde (0.5 g, 50 wt. percent). The inorganic-organic nanocomposite (struc-
ture illustrated in Figure 1) was then made by incorporating varying concentrations of
PO4-TiO2 nanotubes (1, 2, 3 wt. percent relative to PVA) in the polymeric mix, and
they were given the names PVA/PEO, PVA/PEO/PO4TiO2-1, PVA/PEO/PO4TiO2-2 and
PVA/PEO/PO4TiO2-3 accordingly.
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Figure 1. Probable structure of the SPVA/ PEO/ PO4TiO2membrane.

2.2. Characterisation

A Fourier transform infrared spectrophotometer (Shimadzu FTIR-8400 S- Japan) was
used to monitor the functional groups of PO4TiO2 nanotubes and composite membranes,
while an X-ray diffractometer was used to analyze the structures (Schi-madzu7000-Japan).
A thermo-gravimetric analyser (Shimadzu TGA-50, Tokyo, Japan) was used to track
SPVA/PEO/PO4TiO2 membranes; the temperature range was 25–800 ◦C, with the heating
rate was 10 ◦C/min under nitrogen environment. The membranes were also evaluated
using differential scanning calorimetry (DSC) (Shimadzu DSC-60, Japan) at temperatures
ranging from 25 to 300 ◦C. The SPVA/PEO/PO4-TiO2-1 membrane’s morphological struc-
ture was revealed using a scanning electron microscope (SEM). Transmission electron
microscopy (TEM, JEM 2100 electron microscope) and energy-dispersive X-ray (EDX) were
used to visualise the PO4-TiO2 nanotube (Joel Jsm 6360LA-Japan).
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The hydrophilicity of membranes was determined by measuring the contact angles
between membrane surfaces and water drops. a Rame-Hart Instrument Co. model 500-FI
contact-angle analyser was used to analyse the measurements. To determine swelling ratio
(SR) and water uptake, a certain weight of membrane with actual dimensions was soaked
in deionised water for 24 h then gently dried on tissue paper to remove surface water
before analysis again. Finally, the composite membranes’ SR and WU were calculated
using Equations (1) and (2).

SR(%) =
Lwet − Ldry

Ldry
×100 (1)

WU(%) =
Wwet − Wdry

Wdry
×100 (2)

where Ldry and Lwet denote the length of dry and wet of tested membranes, respectively,
and Wdry and Wwet denote the weight of dry and wet tested sample.

The nanocomposite membranes’ ion exchange capacity (IEC) was estimated by acid-
base titration [32]. The weighted membranes were submerged in a 50 cm3 2M NaCl solution
for two days before titrating with a 0.01 N NaOH solution. The IEC was calculated using
Equation (3) below:

IEC
(

meq
g

)
=

VNaOH × CNaOH
Wd

(3)

The volume of sodium hydroxide consumed in titration, the concentration of sodium
hydroxide solution, and the dry sample weight, respectively, are represented by VNaOH,
CNaOH and Wd.

To investigate the proton conductivity of formulated films, the electrochemical impedance
spectroscopy (EIS) will be utilised using PAR 273A potentiostat (Princeton Applied Re-
search, Inc., Oak Ridge, TN, USA) and a SI 1255 HF frequency response analyser (FRA,
Schlumberger Solartron). according to the published method in the literature with modifi-
cation [1]. the ionic conductivity of the membranes was estimated using Equation (4),

σ =
d

RA
(4)

where σ (S cm−1) is the membrane’s ionic conductivity, R (Ω) is its resistance, A (cm2) is its
area and d (cm) is its thickness.

To estimate the methanol permeability, The tested membrane was seated within two
vessels in a glass diffusion chamber to assess its methanol permeability. The receptor vessel
(B) was charged with water, while the other vessel (A) was filled with 2 M methanol [29].
the crossing of methanol through membrane as a function of time was calculated according
to Equation (5),

CB(t) =
A
VB

P
L

CA(t − t0) (5)

where A (cm2) is the active membrane area, VB (cm3) is the capacity of the receptor vessel,
L (cm) is the crosssection film thickness, CB and CA (mol L−1) are the concentrations of
methanol in vessels B and A, respectively, and the period (t–t0) is the time of the methanol
crossover (cm2 s−1). The selectivity of the membranes (the ratio of ionic conductivity to
methanol permeability) was determined since it can provide vital information about the
fuel cell’s performance.

The oxidative stability of tested membranes was measured gravimetrically as a func-
tion of membrane weight soaked in oxidative solution [Fenton’s reagent (3 wt.% H2O2
containing 2 ppm FeSO4)] at 68 ◦C for 24 h [19].

The dry nano-composite membranes were put through a tensile strength test at room
temperature until they broke, using Lloyd Instruments LR10k [32].
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3. Results
3.1. Characterisation of PO4-TiO2 Nanotube and Nanocomposite Membranes

The FT-IR spectra of prepared nanoparticle TiO2 and PO4-TiO2 were presented sep-
arately in Figure 2. For TiO2 nanoparticles, Ti-O bonds are responsible for the bands at
715 cm−1 and 1025 cm−1. the bands at 1622 cm−1 refer to the bending vibration of the
Ti-OH band. The band at 3387 cm−1 are assigned to O-H stretching vibration bonds due to
moisture adsorption on the material’s surface [20,33]. For the chart of PO4-TiO2 particles,
the band at 690 cm−1 corresponds to the stretching of the Ti-O bond. The bands at 890,
1085 and 1270 cm−1 are referred to as P-O bonds vibration. The band located at 1425 cm−1

is attributed to the stretching vibration band of the P=O bond. The O-H bonds from H2O
molecules adsorption are proofed by the bands at 1630 and 3117 cm−1. The band located at
2374 cm−1 is related to the presence of CO2 [34,35].
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Figure 2. FTIR spectra of PO4TiO2 (left chart), PVA/PEO/PO4TiO2 membranes (right chart).

For the membranes, the Figure 2 shows that the bands around 3250 cm−1 refer to the
characteristic stretching vibration band of hydroxyl groups on PVA and PEO. the bands at
1650 cm−1 are attributed to the bending vibration O-H bonds. The band at 1112 cm−1 is
the characteristic band of PEO [36]. Bands at 2840 cm−1 can be assigned to the vibration of
methylene C-H bonds in the polymer’s structure. The characteristic peak for sulfate groups
of sulfophithalic acid (SPA) was cited at 900 cm−1, while the small bands at 1700 cm−1

indicate C=O bonds of the sulfophithalic acid (SPA), which confirms the crosslinking
process. The band at 1100 cm−1 is assigned to P-O bonds of phosphate titanium oxide.

In Figure 3, show the XRD pattern of TiO2 and PO4TiO2 (on the left side) and composite
membranes on the right side. The constructed membranes’ amorphous shape shows good
ion conduction [37], while the titanium dioxide rutile characteristic peaks intensity at two
angles of 28, 36, 41 and 54 [38]. This is because the phosphate entering the titanium oxide
lattice changed its original crystalline phase due to the different synthesis processes for
PO4TiO2. Therefore, the intensity of the sharp peak of the original titanium oxide at 28◦ is
disappeared in the diffractogram of phosphate titanium oxide. In comparison, the ridge at
54◦ of the TiO2 is absent in the diffractograms of PO4TiO2.

Morphological analysis of membranes was studied using SEM and presented in
Figure 4. Figure 4a, b demonstrates SEM images of membranes that show a smooth surface
with no defects for the undoped crosslinked membrane. At the same time, particles of
phosphate titanium oxide tubes appeared in the doped membrane, which was further
confirmed by EDX spectra as shown in Figure 4e. However, the SEM image in Figure 4c
illustrate the porous structure of the cross-sectional of the doped membrane. Consequently,
these voids lead to an improvement in the ionic conductivity of the films [39]. While TEM
image of phosphate titanium oxides shown in Figure 4e proofed the forming of nanotubes
shape with nanoscale size as illustrated in Figure 4f.
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3.2. Mechanical and Thermal Properties

The addition of TiO2 or functionalisation of TiO2 develops the mechanical tensile
characteristics of the polymeric form significantly [19–21]. For example, as displayed in
Table 1, increasing the amount of PO4TiO2 in the polymeric film enhanced the tensile
strength of the composite films by improving their compatibility. This behaviour can be
explained by improving the interaction between functional groups along two polymer
backbones, such as ether linkages, hydroxyl groups and the various phosphate groups of
PO4TiO2 nanoparticles, via ionic, covalent and hydrogen interactions interfacial adhesion,
as compared to the neat membrane.

Table 1. Physicochemical parameters of the formulated composite membranes compare to Nafion 117 [1,24].

Membrane Thickness
(µm) WU (%) SR (%) Contact Angle

(◦)
Tensile

Strength (MPa)
Oxidative Stability

(RW, %) *

SPVA/PEO 130 95 90 65.36 15.5 90
SPVA/PEO/PO4TiO2-1 150 40 42 67.23 24.9 94
SPVA/PEO/PO4TiO2-2 175 22 13 70.36 32.5 98
SPVA/PEO/PO4TiO2-3 184 16 10 72.30 40.3 99

Nafion 117 170 9.5 13 102 25 92

* The retained weight of membranes (RW) after immersion for a day in Fenton’s reagent.

The TGA of formulated composite films in the presence or absence of PO4TiO2
nanoparticles is shown in Figure 5. Moisture evaporation in all membranes can be defined
as the initial weight loss of all manufactured membranes at 150 ◦C (10%) [40]. The follow-
ing weight loss of composite membranes was demonstrated between (150–300) ◦C range,
possibly due to the breakdown of functional groups [41,42]. Finally, from 300 to 580 ◦C,
all samples show a significant decomposition, which could be connected to polymeric
chain decomposition [43], which began at 250 ◦C for the undoped membrane and began
at 310 ◦C with a lower weight % for the doped membranes, with 3 wt percent doping.
According to these findings, the addition of PO4TiO2 to composite membranes increases
their thermal stability by increasing hydrogen bonding in the composite. Furthermore,
the presence of only one endothermic peak in DSC, as shown in Figure 5, demonstrates
flawless membrane miscibility, and the removal of this peak at PO4TiO2 (3 wt.%) may be
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attributed to constructing new physical bonds (i.e., hydrogen bonds) between the nanopar-
ticles and the polymeric matrix [29]. When a result, as the concentration of the doping
agent increased, the melting temperature of the membranes fell. This behaviour may be
described by hydrogen bond interactions that partially degrade membrane crystallinity,
lowering the melting point and increasing ionic conductivity [29].
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Figure 5. TGA of PVA/PEO/PO4TiO2 membranes (left chart) and DSC of PVA/PEO/PO4TiO2 membranes (right chart)
curves of nanocomposite membranes.

Table 1 depicts the behaviour of nanocomposite membranes in contact with deionised
water. When contact angles are less than 90 degrees, membrane surfaces are deemed
hydrophobic, and when they are greater than 90 degrees, they are considered hydrophilic.
However, as the doping agent content increases, the composite membranes become less
hydrophilic and have a lower hydrophilic quality [26,44]. When the amount of PO4TiO2 in
the polymeric blend was increased from 1% to 3%, the swelling ratio and water sorption
of the composite membranes were lowered, which is vital because water overload may
be avoided [45]. To put it another way, increasing the doping agent in the membrane
matrix makes the structure more compact, reducing water overload in the polymeric matrix
channels [46,47].

3.3. Oxidative Stability

The chemical stability parameters of the formulated nanocomposite membranes were
described in Table 1. The SPVA/PEO membrane has the lowest stability against the
oxidation condition; however, adding PO4TiO2 as a dopant improves polymeric composite
protection against OOH and OH radical. The PVA/PEO/PO4TiO2-3 membrane was the
most chemically stable, with weight retention of nearly 100%, suggesting that adding a
doping agent such as TiO2 or functionalising TiO2 improves the oxidation chemical stability
of formulated membranes [20,48].

3.4. Ionic Conductivity, IEC and Methanol Crossover

As the composite membrane contains further acidic exchangeable groups from PO4TiO2,
the IEC values increase as PO4TiO2 in the composite membranes increases. This is due to
the acidic (phosphate) sites of PO4TiO2 increasing the charges in the membranes, which
promotes ionic conduction [19,20]. This is due to the SPVA/PEO/ PO4TiO2- 3 mem-
brane’s superior ionic conductivity (28 mS cm−1) when compared to an undoped mem-
brane (12 mS cm−1). Adding PO4TiO2 to the polymeric matrix avoids methanol cross-
ing when it comes to the fuel permeability of composite membranes. The undoped
polymeric membrane exhibited a methanol permeability of 4.5 × 10−7 cm2 s−1, but the
SPVA/PEO/PO4TiO2-3 membrane permeability of 0.42 × 10−7 cm2 s−1 when PO4TiO2
was added to the membrane matrix, as indicated in Table 2. The capacity of the doping
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agent to restrict the polymeric matrix channels, reducing water uptake and hence fuel
permeability, may be the cause of the membrane containing the doping agent’s decreased
methanol permeability [19,20,49,50]. When compared to undoped SPVA/PEO membrane
(0.26 × 105 S cm−3 s) and Nafion 117 (0.24 × 105 S cm−3 s), SPVA/PEO/ PO4TiO2-3
(6.66 × 105 S cm−3 s) showed higher selectivity, indicating that the nanocomposite mem-
branes produced are suitable for use in DMFCs [49].

Table 2. Ionic conductivity, methanol permeability, IEC and selectivity of the fabricated membranes and Nafion 117 [1].

Membrane IEC
(meq g−1)

Ionic Conductivity
(mS cm−1)

Methaanol Permeability
(10−7 cm2 s−1)

Selectivity
(105 S cm−3 s)

SPVA/PEO 0.20 12 4.5 0.26
SPVA/PEO/PO4TiO2-1 0.35 17.7 2.10 0.84
SPVA/PEO/PO4TiO2-2 0.45 20.5 1.51 1.35
SPVA/PEO/PO4TiO2-3 0.60 28 0.42 6.66

Nafion 117 0.89 34.0 14.1 0.24

4. Conclusions

Using eco-friendly and readily available polymers, a simple blending and solution
casting approach created a more economical nanocomposite membrane. Furthermore,
incorporating PO4TiO2 nanotubes into the polymeric blend improves the membrane’s
physicochemical parameters, such as ionic conductivity, mechanical properties, oxidative
stability, reducing water sorption and limiting methanol permeability, especially in the
composite membrane with 3 percent PO4TiO2. that also demonstrate the most suitable
oxidative chemical stability and methanol crossover limiting. Finally, the manufactured
membrane with the best characteristics (PVA/PEO/PO4TiO2-3) could be used as a cation
exchange composite membrane to construct environmentally friendly and low-cost DMFCs.
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