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Abstract: New results in the area of neural network modeling applied in electric drive automation
are presented. Reliable models of permanent magnet motor flux as a function of current and rotor
position are particularly useful in control synthesis—allowing one to minimize the losses, analyze
motor performance (torque ripples etc.) and to identify motor parameters—and may be used in the
control loop to compensate flux and torque variations. The effectiveness of extreme learning machine
(ELM) neural networks used for approximation of permanent magnet motor flux distribution is
evaluated. Two original network modifications, using preliminary information about the modeled
relationship, are introduced. It is demonstrated that the proposed networks preserve all appealing
features of a standard ELM (such as the universal approximation property and extremely short
learning time), but also decrease the number of parameters and deal with numerical problems
typical for ELMs. It is demonstrated that the proposed modified ELMs are suitable for modeling
motor flux versus position and current, especially for interior permanent magnet motors. The
modeling methodology is presented. It is shown that the proposed approach produces more accurate
models and provides greater robustness against learning data noise. The execution times obtained
experimentally from well-known DSP boards are short enough to enable application of derived
models in modern algorithms of electric drive control.

Keywords: permanent magnet synchronous motor; magnetic flux model; neural networks; extreme
learning machine

1. Introduction

According to [1], about 45% of all electricity is consumed by electric motors. It is
commonly understood that the greatest potential for improving energy efficiency can
be found in the intelligent use of electrical energy. For this reason, it is important to
constantly improve control algorithms that allow for minimizing losses in electric motors.
The increasing number of electric vehicles seems to confirm this thesis. Permanent magnet
synchronous motors (PMSMs), and especially interior permanent magnet synchronous
motors (IPMSMs), provide high torque-to-current ratio, high power-to-weight ratio and
high efficiency together with compact and robust construction, especially when compared
to asynchronous motors. As the magnetization of the rotor of a permanently excited
synchronous motor is not generated via in-feed reactive current, but by permanent magnets,
the motor currents are lower. This results in better efficiency than can be obtained with a
corresponding asynchronous motor [2].

Further improvement can be achieved by smart control of speed-variable drives with
IPMSMs. The maximum torque of the traction motor and minimum energy losses can be
guaranteed by using the maximum torque per ampere (MTPA) control strategy [3,4]. Such
control requires reliable information about the motor flux distribution. Modeling the motor
flux is a complex problem and finding an accurate but practically applicable analytical
model remains an unfulfilled dream of control engineers.

If a complete motor construction is known, it is possible to derive the d/q-axis flux
linkage distribution of the PMSM model using finite element methods (FEMs). It is
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necessary to know not only all motor dimensions, for instance, precise magnet location
in the rotor, but also the physical parameters of all materials used. This information is
usually restricted and manufacturers never publish confidential data of the motor design.
Therefore the FEM analysis method, which is able to provide tabulated data on motor
magnetic flux as a function of current and rotor angle, is mainly used in the motor design
and optimization process. Numerous examples of this approach may be found in the huge
bibliography of the subject—works [5–8] are typical of thousands of papers concerning
interior permanent magnet machine designs published in the 21st century. Analytical
calculation of d- and q-axis flux distributions is also possible [9,10], but it requires almost the
same knowledge as numerical FEM analysis and the acceptance of rigorous assumptions.
Therefore, several methods were developed to model the flux linkages from numerical data
obtained from experiments conducted with a real machine. For instance, analysis of phase
back electromotive force (EMF) provides information about flux as a function of position
angle and flux harmonic representation [11], although information on the current influence
(saturation) is lost. Flux identification may be treated as an optimization problem—d/q
axis voltages and torques calculated from assumed flux are compared to the data obtained
from the real machine [12].

The process of designing an effective controller for a drive with a real permanent
magnet motor consists of three main steps:

1. collecting the numerical data which allow for identifying the model of the drive,
including the model of the motor,

2. constructing and identifying the model using the data,
3. designing the controller according to the control aim.

The data collected at the first stage may be inaccurate (such as nominal resistances
and inductances) and disturbed by measurement noise and outliers (like almost all data
collected by measurement), but some of them may be precise and reliable—such as a
number of pole pairs or a pitch size.

This paper concentrates on the second stage. It is assumed and explained that the
description of d/q flux as a function of current and rotor position (let us call them flux
surfaces) is an important component of the complete model of the drive. Obtaining flux
surfaces from numerical, discrete data which may be corrupted by noise and outliers is the
main problem addressed here. A new method of obtaining such a practical description is
proposed and investigated. The main challenge for the presented idea is:

• to develop an artificial neural model of flux distribution,
• to equip the neural network modeling the flux with any available reliable information

about the motor,
• to obtain a fast and accurate model allowing practical applications.

To face this challenge, we propose an artificial neural model of motor flux surfaces based
on an extreme learning machine (ELM) approach. We demonstrate the effectiveness of ELM
neural networks for the approximation of permanent magnet motor flux distribution. We
introduce two original modifications of the network, using a priori information about the
modeled relationship. Therefore, the novelty of the presented contribution is twofold:

• a new method of neural network approximation of discrete data is proposed, which
improves the accuracy of approximation by including any preliminary, reliable infor-
mation into the network structure,

• a new, convenient method of d/q flux distribution modeling is proposed, its reliability
is tested and demonstrated and practical applicability is demonstrated.

Use of the flux distribution information by the controller is a separate problem. It is
evident that exact information about the flux will enable more effective control aiming at
torque ripple elimination—one of the most important problems for interior permanent
magnet machines (see [13] or [14] as exemplary recent research in this field). Controller
synthesis based on the flux models developed here is a separate task and remains outside
the scope of this paper. However, let us mention the main benefits of using the proposed
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neural networks in the control algorithm. First, as the training process of the developed
network is very fast, the model constructed offline can be improved online if more data
are collected. Next, the proposed model is a linear-in-parameters one (if the weights of
the last layer are considered as parameters) and this type of model is especially attractive
for adaptive controller design. This feature of neural models was intensively used in our
previous works [15–17].

In the next section, the problem of efficient flux distribution modeling is formulated and
discussed. Section 3 contains the description of the standard ELM network. In Section 4, two
original modifications of the standard network are introduced and explained. Numerical
experiments allowing us to compare the effectiveness of the proposed modeling techniques
and their DSP applicability are presented in Section 5. Finally, conclusions are presented.

2. Motor Flux Distribution Modeling

If an ideally sinusoidal flux distribution is assumed (meaning: sinusoidal radial flux
density in the air gap), a motor is modeled by well-known simplified equations in the rotor
oriented reference frame (notation is explained in Table 1):

Ld
d
dt

id = ωeLqiq + ωeψq − Rsid + Vd,

Lq
d
dt

iq = ωeLdid −ωeψd − Rsiq + Vq.
(1)

In this case, flux-related parameters are constant:

ψq = 0, ψd = const. (2)

Designing a controller based on the MTPA strategy for such a simplified model is a
fairly well-known task and numerous versions of this approach are described [18–20].

Table 1. Signals and parameters in permanent magnet motor model.

Notation Signal/Parameter Unit

Ld d-axis inductance [H]
Lq q-axis inductance [H]
Rs phase resistance [Ω]

ψd, ψq d and q permanent magnet flux components [Vs/rad]
Ψd = Ψdi + ψd d current dependant and magnet flux components [Vs/rad]
Ψq = Ψqi + ψq q current dependant and magnet flux components [Vs/rad]

L̃d = δ
δid

Ψdi d flux derivative with respect to currents [H]

L̃q = δ
δiq Ψqi q flux derivative with respect to currents [H]

θe electric rotor position [rad]

ωe =
d
dt θe electric rotor velocity [rad/s]

Vd, Vq d- and q-axis voltages [V]

Unfortunately, in a real permanent magnet motor, the flux distribution is never per-
fectly sinusoidal, even if the manufacturer claims it is. Such flux distortions cause higher
harmonics in no-load EMF and torque deformations. The influence of motor construction
on the flux distribution, EMF, and torque are well described [21–23]. Especially, for interior
permanent magnet motors, where the magnets are embedded inside the rotor, deformation
of flux distribution is non-negligible and the simplified model (1) is unacceptable. In this
case, each flux component is a non-linear function of current and rotor position [24], so a
more reliable model is [25]:
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L̃d
d
dt

id = ωeLqiq + ωeΨq(id, θe)− Rsid + Vd,

L̃q
d
dt

iq = ωeLdid −ωeΨd(id, θe)− Rsiq + Vq.
(3)

The flux components Ψq(iq, θe), Ψd(id, θe) used in (3) may be complicated, non-linear
functions, describing surfaces with multiple extremes.

Still, even in this situation, it is possible to minimize the losses by an MTPA approach
(see, for example [26]), although it is very beneficial to have a reliable flux distribution
model and to be able to compensate deformations. Having trustworthy models of flux
surfaces is particularly useful in numerous applications. In addition to the energy aspect, it
allows for analyzing the motor performance (torque ripples, for example) and to identify
motor parameters [27,28]. They may also be used in the control loop to compensate
flux and torque variations [28–31]. As analytical models obtained from field equations
are too complex for practical or online applications, we concentrate on artificial neural
network models.

Several methods may be used to create numerical data representing the surfaces
Ψd(id, θe), Ψq(iq, θe): starting from detailed 3D modeling of the motor magnetic field,
ending with observers of a different type, for example, as described in [27,28,32,33]. All
these methods produce data degraded (to a certain degree) by noise or outliers. An
exemplary set of data is presented in Figure 1. It was obtained from a permanent magnet
synchronous motor with B–202–C–21 rotor embedded permanent magnets manufactured
by Kollmorgen. The diagram and the photo of the rotor are presented in Figure 2. The
motor parameters are given in Table 2.

Although both flux surfaces are complex and non-linear, some regularities and repeti-
tions are easily visible. The periodicity follows from the motor construction constant and
known distance between the poles.

Table 2. Motor parameters.

Notation Signal/Parameter

Rated power 1.5 kW
Rated velocity 6200 r/min
Rated torque 2.59 Nm
Rated current 5 A

Inertia 10−5 kgm2

EMF constant 0.1147 Vs
Torque constant 0.49 Nm/ARMS
Phase resistance 2.34 Ω

Phase inductance 25 mH

The shortest possible time of training is a crucial feature of a network, as the model is
supposed to operate online or as a part of an embedded controller. Therefore, we decided
to apply the so-called extreme learning machine (ELM) [34,35]—a neural network with
activation function parameters selected at random. The most important advantage of the
ELM is the extremely short training time, as training means solving a linear mean square
problem and it is carried out in just one algebraic operation.

We start with a presentation of a classical ELM and discuss the effectiveness of its
application to the motor flux modeling problem. Motivated by the features of this problem,
having in mind the well-known drawbacks of ELMs, we present two new network struc-
tures that allow us to use the available information about the data effectively, preserving
the simplicity and short training time.
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(a) (b)

Figure 1. Example of flux surfaces: (a) Ψd(id, θe), (b) Ψq(iq, θe). Data collected from an identifica-
tion experiment.

Figure 2. The rotor of the motor used in the experiment. Dimensions in millimeters.

3. Standard ELM

Architecture of a standard ELM is presented in Figure 3.

Figure 3. Architecture of a standard ELM.
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As was proven [34], the selection of a particular activation function (AF) is not critical
for the network performance. Assuming sigmoid AFs for all hidden neurons is com-
monly accepted:

hi(x) =
1

1 + exp(−xTwi + bi)
. (4)

It is typical for a standard ELM approach that the weights wi = [wi,1, . . . wi,n]
T and

the biases bi are selected at random, according to the uniform distribution in [−1, 1] [34,35].
The training data for an n-input ELM form a batch of M samples xk ∈ Rn, k = 1, . . . , M and
corresponding desired outputs t = [t1, . . . tM]T . It is assumed that each input is normalized
to the interval [0,1]. The batch of M samples is transformed by an ELM with N ≤ M
hidden neurons into M values of output:

y =

 y1
...

yM

 =

 h1,1 . . . h1,N
...

. . .
...

hM,1 . . . hM,N


 β1

...
βN

 = Hβ, (5)

where hk,i is the value of the i-th AF calculated for the k-th sample and βi is the output weight
of the i-th neuron. Optimal output weights βopt minimize the network performance index

E = ‖β‖+ C‖Hβ− t‖2, (6)

hence

βopt =

(
1
C

I + HTH
)−1

HTt. (7)

The design parameter C > 0 is introduced to avoid high condition coefficients of
the matrix P := 1

C I + HTH. This approach is called Tikhonov regularization [36,37]. A
smaller value of C makes the structure of P closer to the identity matrix, but degrades the
approximation accuracy, as ‖β‖ has a stronger impact on the performance index. A high
value of C makes βopt closer to βmin = H+t where H+ is the Moore–Penrose generalized
inverse of matrix H+. The vector βmin minimizes E0 = ‖Hβ− t‖2.

A standard ELM possesses the universal approximation property [34,35,37]. This
means that by increasing the number of hidden neurons, we may decrease the approxima-
tion error arbitrarily. Unfortunately, the large number of neurons increases the probability
that some columns of H become almost co-linear, and generates numerical difficulties and
high output weights. Tikhonov regularization is supposed to help, but it is not easy, or
may even be impossible, to find a compromise value of parameter C. Several approaches
to solve this dilemma were proposed (see [38–40] and the references therein), but none of
them is perfect.

It is well recognized that insufficient variation in activation functions is responsible
for numerical problems of ELMs [39,40]. Sigmoid functions with the weights and biases
distributed uniformly in [−1,1] behave like linear functions in the unit hypercube and may
demonstrate insignificant variation. A simple improvement was proposed in [40] and is
implemented here. The first step to enlarge variation in the sigmoid activation functions is
to increase the range of weights wk,i ∈ [−wmax, wmax]. The weights must be large enough
to expose the non-linearity of the sigmoid AF, and small enough to prevent saturation.
Higher weights allow us to generate steeper surfaces and should correspond with slopes
of the data.

Next, the biases are selected to guarantee that the range of each sigmoid function
is sufficiently large. The minimal value of the sigmoid function hk(x) in the unit hyper-
cube 0 ≤ xi ≤ 1, i = 1, . . . , n is achieved at the vertex selected according to the follow-
ing rules: wk,i > 0 ⇒ xi = 0, wk,i < 0 ⇒ xi = 1, i = 1, . . . , n, and equals hk,min =

1
1+exp

(
−
(

∑i:wk,i<0 wk,i+bk

)) , while the maximum value is achieved at the vertex: wk,i > 0⇒
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xi = 1, wk,i < 0 ⇒ xi = 0, i = 1, . . . , n, and equals hk,max = 1
1+exp

(
−
(

∑i:wk,i>0 wk,i+bk

)) .

Therefore, if the biases are selected at random from intervals,

[
b̄, b̃
]

:=

 ∑
i:wk,i>0

wk,i − ln
(

1
r2
− 1
)

, −ln
(

1
r1
− 1
)
− ∑

i:wk,i<0
wk,i

, (8)

the sigmoid function hk(x) has a chance to cover the interval [r1, r2].
This approach—enhancing variation in activation functions—is applied to model flux

surfaces in all experiments presented in this paper. Still, some drawbacks of the standard
ELM modeling are noticeable, therefore, we propose two new network architectures to
improve the modeling quality.

4. ELM with Input-Dependent Output Weights
4.1. New Network Structure

Very short learning times and the simplicity of the algorithm are the most attractive
features of ELMs. The greatest disadvantage of a standard ELM is that a non-linear trans-
formation with randomly selected parameters may be unable to represent all important
features of the input space. Hence, a large number of neurons is necessary, which generates
the numerical problems described above and in [39–44].

If we have some, even approximate, information about the structure of the modeled
non-linearity, we may pass this knowledge through the network. As it is trusted informa-
tion, we do not allow the network to modify it deeply. However, because it is still only
partial, approximate, and incomplete knowledge, we accept a slight modification.

Motivated by this philosophy, we propose the following network structure. If we
assume that L known non-linear functions of the input fl(x), l = 1, . . . , L should be
represented in the model output, we plug in those functions into the output weights β,
making each weight a function of input. The network output is now given by

y =
N

∑
i=1

hi(x)βi(x),

βi(x) = βi,0 +
L

∑
l=1

βi,l fl(x).

(9)

The information represented in fl(x), l = 1, . . . , L has a strong impact on the output,
but it can still be modified by coefficients βi,l . The standard ELM structure is represented
by the weights βi,0 and the standard ELM is a special case of the structure presented
in (9) obtained for βi,l = 0. Therefore, the proposed network preserves the universal
approximation property of the standard ELM.

Expanding Formula (9) provides

y =
N

∑
i=1

hi(x)βi,0 +
N

∑
i=1

hi(x) f1(x)βi,1 + . . . +
N

∑
i=1

hi(x) fL(x)βi,L. (10)

Architecture of the proposed ELM is presented in Figure 4.
Hence, Formula (9) is equivalent to a standard ELM structure with N(l + 1) hidden

neurons equipped with activation functions hi(x), i = 1, . . . , N, hi(x) f1(x), i = 1, . . . , N,
. . . , hi(x) fL(x), i = 1, . . . , N. Sigmoid functions hi(x) with randomly selected parameters
represent a random, non-linear transformation of inputs into the feature space, while fl(x),
l = 1, . . . , L code an assumed knowledge about the data structure. We expect that using this
knowledge directly inside the network will reduce the total number of neurons required to
obtain the desired modeling accuracy, compared with a standard ELM.
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Figure 4. Architecture of an ELM with input-dependent output weights.

A batch of M samples generates M output values

y =

 y1
...

yM

 =

 g1,1 . . . g1,N(L+1)
...

. . .
...

gM,1 . . . gM,N(L+1)

β̂ = Gβ̂, (11)

where β̂ = [β1,0, . . . , βN,0, β1,1, . . . , βN,1, . . . , β1,L, . . . , βN,L]
T and gi,k are the value of the

k-th function from the sequence

[g1(x), . . . , gN(L+1)(x)] := [h1(x), . . . , hN(x), h1(x) f1(x), . . . , h1(x) fL(x), . . . , hN(x) f1(x), . . . , hN(x) fL(x)] (12)

calculated for the i-th sample. Optimal weights, minimizing the performance index
Ê = ‖β̂‖+ C‖Gβ̂− t‖2, are given by

β̂opt =

(
1
C

I + GTG
)−1

GTt. (13)

4.2. Reduction of Output Weight Number

The coefficient hi(x) which multiplies each function fl(x) in (10) depends on the actual
value of input x and randomly selected parameters of the activation function. So, to a
certain degree, it is a random number from the interval [0,1]. If our aim is to simplify
the network (10) and to reduce the number of output weights, while still preserving the
information represented in functions fl(x), we may take a random gain for each fl(x) and
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use one output weight for a group of functions fl(x). For example, modification of the
standard ELM according to

y =
N

∑
i=1

hi(x)βi(x),

βi(x) = βi,0 + βi,1

L

∑
l=1

ai,l fl(x),

(14)

where parameters ai,l , l = 1, . . . , L are randomly selected results in

y =
N

∑
i=1

hi(x)βi,0 +
N

∑
i=1

hi(x)

(
L

∑
l=1

ai,l fl(x)

)
βi,1. (15)

Architecture of the reduced ELM is presented in Figure 5.

Figure 5. Architecture of a reduced ELM with input-dependent output weights.

Hence, (15) is equivalent to a standard ELM with 2N hidden neurons and activation
function hi(x), i = 1, . . . , N and hi(x)

(
∑L

l=1 ai,l fl(x)
)

, i = 1, . . . , N. Again, the standard
ELM is a special case of (15), so the network (15) possesses the universal approxima-
tion property.

Responding to the batch of M samples (15) generates M output values

y =

 y1
...

yM

 =

 r1,1 . . . r1,2N
...

. . .
...

rM,1 . . . rM,2N

β̃ = Rβ̃, (16)

where β̃ = [β1,0, . . . , βN,0, β1,1, . . . , βN,1]
T and ri,k are the value of the k-th function from

the sequence
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[r1(x), . . . , r2N(x)] := [h1(x), . . . , hN(x), h1(x)
L

∑
l=1

a1,l fl(x), . . . , hN(x)
L

∑
l=1

aN,l fl(x)] (17)

calculated for the i-th sample. Optimal weights, minimizing the performance index
Ẽ = ‖β̃‖+ C‖Rβ̃− t‖2, are given by

β̃opt =

(
1
C

I + RTR
)−1

RTt. (18)

Although the network (15) is simpler than (9), it is not necessarily less accurate for the
same number of output weights.

5. Comparison of Networks
5.1. Introductory Example

To clearly demonstrate the idea of the proposed modifications, we start with a simple
one-dimensional example. The curve to be approximated is given by

F(x) = 10 f0(x) + 5 f1(x) + 2 f2(x) = 10 sin(2πx) + 5 sin(6πx) + 2 sin(14πx)

0 ≤ x ≤ 1.
(19)

The training set consists of Ntr = 300 pairs (xi, F(xi)) where xi are equidistantly
distributed in [0,1], while the test data are formed by Ntest = 1000 such points. The final
result is judged by the mean value of

Etest =

√√√√ 1
Ntest

Ntest

∑
i=1

(F(xi)− y(xi))
2, (20)

where y is the model output obtained from 1000 experiments.
Three networks are compared:

• ELM1: The standard ELM given by (5), (7) with the input weights and biases selected
randomly, according to the enhanced variation mechanism (8) with r1 = 0.1, r2 = 0.9.

• ELM2: The network with input-dependent output weights, according to (9):

βi(x) = βi,0 + βi,1 f1(x) + βi,2 f2(x), (21)

where the partial knowledge about the output is used.

• ELM3: The network modified according to (14):

βi(x) = βi,0 + βi,1(ai,1 f1(x) + ai,2 f2(x)), (22)

where ai,1, ai,2 are selected at random from the interval [−1,1].

We compare the networks with the same number of the output weights, so, if we use
N hidden neurons in ELM1, the corresponding ELM2 has N/3, and ELM3—N/2 neurons.

In this simple example, all three networks work properly, in the sense that we can ob-
tain a correct approximation from any of them. An exemplary plot is presented in Figure 6.
For other networks, we obtain similar results, but important differences are illustrated in
Figures 7–9.
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Figure 6. The modeled curve and the network response.

Enhancement of the variance of activation functions was applied for each network.
Figure 7 demonstrates that a sufficient range of input weights is important, but it also illus-
trates that:

• The standard network (ELM1) is far more sensitive to a small range of input weights
than modified networks (ELM2 and ELM3).

• The standard network (ELM1) generates a higher test error than modified networks
(ELM2 and ELM3), in spite of the range of the input weights.

• The standard network (ELM1) generates much higher output weights than modi-
fied networks (ELM2 and ELM3), so the standard model demonstrates much worse
numerical properties.

(a) (b)

Figure 7. Test error (a) and the biggest output weight (b) as a function of the range of input weights.
N = 48, C = 108.

The influence of the number of output weights (number of hidden neurons) is pre-
sented in Figure 8. It is shown that:

• The standard network (ELM1) generates higher test error than modified networks
(ELM2 and ELM3) for the same number of output weights and requires a much larger
number of hidden neurons to obtain a similar test error as ELM2 or ELM3.

• The standard network (ELM1) generates much higher output weights for any number
of hidden neurons than modified networks (ELM2 and ELM3), so the standard model
demonstrates much worse numerical properties.
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(a) (b)

Figure 8. Test error (a) and the biggest output weight (b) as a function of the number of output
weights. wmax = 30, C = 108.

The impact of the regularization parameter C is presented in Figure 9. It is evident that:

• The standard network (ELM1) generates a much higher test error for any C than
modified networks (ELM2 and ELM3).

• The standard network (ELM1) requires strong regularization (small C to decrease
output weights), resulting in poor modeling accuracy. The modified networks (ELM2,
ELM3) preserve moderate output weights for any C—regularization is not necessary.

(a) (b)

Figure 9. Test error (a) and the biggest output weight (b) as a function of the regularization coefficient C.
wmax = 30, N = 48.

5.2. Motor Flux Modeling

To compare the performance of the discussed networks precisely, a numerically gen-
erated surface is used. The surface is presented in Figure 10, and it is similar to Ψq(iq, θe)
presented in Figure 1b. The formula generating the surface is:

t(x1, x2) = 0.1p1(2x2 − 1) + 0.02 sin(12πx1)(2x2 − 1) + 0.3p2(10x2 − 5),

p1(δ) =
2

1 + exp(−2δ)
− 1, p2(δ) = exp(−δ).

(23)

Using artificial data allows us to calculate the training and test errors accurately. For
each experiment, three sets of data are generated:

• training data ti(x1,i, x2,i), i = 1, . . . , Ntr, where (x1,i, x2,i) are randomly selected from
the input area [0,1] × [0,1],

• training data corrupted by noise t∗i (x1,i, x2,i) = ti(x1,i, x2,i)(1 + γi), i = 1, . . . , Ntr,
where γi is a random variable possessing normal distribution N(0, 0.1),

• testing data t0
i (x0

1,i, x0
2,i), i = 1, . . . , Ntest randomly selected from the input area

[0,1] × [0,1], different from the training data. Ntest = 3000 is used for all experiments.
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Figure 10. The flux-like surface.

The main index used to compare the networks is the test error:

Etest =

√√√√ 1
Ntest

Ntest

∑
i=1

(
t0
i (x0

1,i, x0
2,i)− y(x0

1,i, x0
2,i)
)2

, (24)

where y denotes the actual network output. The test error Etest compares the network
output with accurate data, even if noisy data were used for training.

As each network depends on randomly selected parameters, 100 experiments are
performed and mean values of obtained test errors are used for comparison. The average
value from the modeled surface is about 0.05, so an error smaller than 0.005 provides the
relative error ∼10%.

Three networks are compared:

• ELM1: The standard ELM given by (5), (7) with the input weights selected randomly,
according to a uniform distribution, from the interval [−wmax, wmax] = [−30, 30] and
the biases selected according to (8) for r1 = 0.1, r2 = 0.9 This approach provides
activation functions with a sufficient variance, as presented in Figure 11.

• ELM2: The network with input-dependent output weights, according to (9):

βi(x) = βi,0 + βi,1 f1(x) + βi,2 f2(x),

f1(x) = sin(12πx1) f2(x) = cos(12πx2),
(25)

where the knowledge about the motor construction (number of pole pairs) is used to
propose f1(x), f2(x).

• ELM3: The network with input-dependent output weights, according to (14):

βi(x) = βi,0 + βi,1(ai,1 f1(x) + ai,2 f2(x)),

f1(x) = sin(12πx1) f2(x) = cos(12πx2),
(26)

where ai,1, ai,2 are selected at random from interval [−1,1].
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Figure 11. Exemplary activation functions of ELM1.

As carried out previously, we compare the networks with the same number of output
weights, so if we use N hidden neurons in ELM1, the corresponding ELM2 has N/3, and
ELM3—N/2 neurons.

The test errors of compared networks as functions of output weight number are
presented in Figure 12 for noiseless data Ntr=3000 and Ntest = 3000, C = 1010, wmax = 30.

The modified networks (ELM2 and ELM3) provide significantly lower modeling errors
than the standard one (ELM1). The surface generated by one of the modified networks is
presented in Figure 13, it is indistinguishable from the original one plotted in Figure 10.

Figure 12. Test error as a function of the number of output weights.

The advantage of modified networks (ELM2 and ELM3) becomes more visible when
the information about the surface is poorer. Figure 14 presents the test error as the function
of the number of training points Ntr for Ntest = 3000, C = 1010, wmax = 30, N = 240.

The modified networks also offer smaller test errors if the training data are corrupted
by noise. This situation is presented in Figure 15 for Ntr = 3000 and Ntest = 3000, C = 1010,
wmax = 30. The advantage of modified networks is even more significant, as in the
presence of the noisy data it is impossible to increase the number of neurons arbitrarily. A
large number of hidden neurons causes an increase in the test error as the network loses
generalization properties due to overfitting. The analysis of the error surface structure
demonstrates that the smaller number of neurons gives a smoother modeling error surface
with a smaller number of local extremes.
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Figure 13. The surface generated by one of the modified networks.

Figure 14. Test error as a function of the number of training points.

Figure 15. Test error as a function of the number of output weights. The training data corrupted
by noise.

5.3. Modeling of Experimental Data

A similar comparison of the networks is repeated with the experimental data presented
in Figure 1. The data set was divided into the training data Ntr = 20,000 and the test data
Ntest = 20,000. Of course, as the accurate value of the flux is unknown, the test error is
defined with respect to the experimental data from the test data set. The training and the
test error behave similarly, so only the training error is plotted in Figure 16. The result of
the comparison is similar: for both flux surfaces, the modified networks (ELM2 and ELM3)
provide significantly lower modeling errors than the standard one (ELM1).
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(a) (b)

Figure 16. Modeling of: (a) Ψd(id, θe) and (b) Ψq(iq, θe). Training error as a function of the number of
output weights.

The number of hidden neurons and output weights necessary to obtain a training
error smaller than 0.0075 for Ψd(id, θe) or smaller than 0.0050 for Ψq(iq, θe) is presented in
Table 3.

Table 3. Number of hidden neurons and output weights necessary to obtain the desired training
error value.

Axis ELM1 ELM2 ELM3

q No of hidden neurons 336 50 64
No of output weights 336 150 128

d No of hidden neurons 276 48 63
No of output weights 276 144 126

The surfaces generated by the networks described in Table 3 are presented in Figures 17 and 18.
Of course, currents and position are rescaled to the original range in amperes and radi-
ans. Application of networks ELM2 and ELM3, where the knowledge about the motor
construction is used, allows us to smooth the modeled surface, to reduce the number of
extremes, and to obtain a continuous transition at θe = 0/θe = 2π. The models obtained
from the modified networks (ELM2 and ELM3) are more regular, with a smaller number
of extremes.

(a) (b) (c)

Figure 17. Models of Ψd(id, θe) generated by: (a) ELM1, (b) ELM2, (c) ELM3.
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(a) (b) (c)

Figure 18. Models of Ψq(iq, θe) generated by: (a) ELM1, (b) ELM2, (c) ELM3.

The time history of the flux generated for a given current–position trajectory is pre-
sented in Figure 19. The flux obtained from the modified networks (ELM2 and ELM3)
is continuous for θe = n2π, while the one generated from the standard network (ELM1)
is not. Therefore, the model generated from ELM1 violates physical principles of motor
operation, while modified networks benefit from the knowledge coded in functions f1(x)
and f2(x) included in the network.

Figure 19. The time history of the flux generated for a given current–position trajectory.

The signal presented in Figure 19 is not periodical. It is a time history of the flux
generated under variable speed and current. Therefore, Fourier analysis of this signal does
not provide any useful information. Instead of this, fast Fourier transform (FFT) analysis of
the outputs of the considered models obtained for a constant velocity and for several fixed
values of the q-axis current is presented. In this case, the flux is a periodical function of a
rotor position. The results of such an analysis, shown in Figure 20, confirm the existence of
the sixth harmonic with high amplitude, which is in line with the expectations. The model
created with the use of the standard network (ELM1) generates non-negligible content
of higher harmonics, especially for small current values. The presence of all subsequent
higher harmonics in the FFT of the output of ELM1 demonstrates an undesirable ability to
generate noise by this model. The modified networks ELM2 and ELM3 generate waveforms
with a lower content of higher harmonics, which is undoubtedly an advantage.
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Figure 20. Amplitude of harmonics in q-axis flux generated from models ELM1–3 for a constant
speed and several constant values of q-axis current.

Finally, a practical, hardware implementation of the proposed networks was consid-
ered. The time necessary for model execution on some popular DSP boards is presented in
Table 4. The obtained results encourage the implementation of ELMs in control algorithms.

Table 4. Time necessary for model execution.

DSP Board ELM1 ELM2 ELM3

DS1104 470 µs 70 µs 70 µs
DS1006 30 µs 12 µs 12 µs

6. Conclusions

Both proposed modified structures of the ELM allow for incorporating preliminary,
partial, imprecise information about modeled data into the network structure. It was
demonstrated that the modified network may be interpreted as a network with input-
dependent output weights, or as a network with modified activation functions. The
proposed approach preserves all the attractive features of the standard ELM:

• the universal approximation property,
• fast, random selection of parameters of activation functions,
• extremely short learning time, as learning is not an iterative process, but is reduced to

a single algebraic operation.

It was demonstrated by numerical examples that both modified networks outperform
the standard ELM:

• offering better modeling accuracy for the same number of output weights and a
smaller number of parameters, while assuring the same accuracy, therefore reducing
the problem of dimensionality,



Energies 2021, 14, 5619 19 of 21

• generating lower output weights and better numerical conditioning of output weight
calculation,

• being more flexible for Tikhonov regularization,
• being more robust against data noise,
• being more robust against small training data sets.

It is difficult to decide which of the proposed modifications is “better”. For the
presented examples, they are comparable and the selection of one of them depends on the
specific features of a particular problem.

It was shown that the proposed modified ELMs are suitable for modeling motor flux
versus position and current, especially for interior permanent magnet motors. The mod-
eling methodology was presented. The extra information about flux surfaces is available
from the motor construction (pole pitch) and may be easily included. The obtained models
preserve flux continuity around the rotor, and provide good agreement with measured
signals (like torque and EMF), so they may be considered trustworthy.

The modified networks provide significantly lower modeling errors than the standard
one and this feature becomes more visible when the information about the surface is poorer
(fewer samples are available), or the training data are corrupted by noise. FFT analysis
of the networks’ periodical outputs demonstrates that the modified networks generate
more reliable spectra, corresponding to theoretical expectations, while the standard one
generates a visible amount of high-harmonic noise.

The obtained neural models may be used for control or identification, working online.
The execution times obtained from well-known DSP boards are short enough for modern
algorithms of electric drive control. Therefore, we claim that the recent control methods of
PMSM drives might be improved by taking flux deformations into account.
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and Machine Learning—ICANN 2018; Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I., Eds.; Springer
International Publishing: Cham, Switzerland, 2018; pp. 3–13.

39. Akusok, A.; Björk, K.M.; Miche, Y.; Lendasse, A. High-Performance Extreme Learning Machines: A Complete Toolbox for Big
Data Applications. IEEE Access 2015, 3, 1011–1025. [CrossRef]
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