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Abstract: The relay coordination problem is of dire importance as it is critical to isolate the faulty
portion in a timely way and thus ensure electrical network security and reliability. Meanwhile a
relay protection optimization problem is highly constraint and complicated problem to be addressed.
To fulfill this purpose, Harris Hawk Optimization (HHO) is adapted to solve the optimization
problem for Directional Over-current Relays (DOCRs) and numerical relays. As it is inspired by
the intelligent and collegial chasing and preying behavior of hawks for capturing the prey, it shows
quite an impressive result for finding the global optimum values. Two decision variables; Time
Dial Settings (TDS) and Plug Settings (PS) are chosen as the decision variables for minimization
of overall operating time of relays. The proposed algorithm is implemented on three IEEE test
systems. In comparison to other state-of-the-art nature inspired and traditional algorithms, the
results demonstrate the superiority of HHO.

Keywords: directional overcurrent relays; numerical overcurrent relays; nature-inspired optimization

1. Introduction

The electrical power system is one of the most crucial systems running across the globe.
For smooth operation of the electrical network, effective protection systems are a necessary
requirement. In an electrical power system, the primary function of the protective system is
to detect and isolate any failed or faulty components as fast as can be, so that the unfaulty
portion continues to be operational. To ensure reliability and security, the components
of the electrical network are protected by primary as well as backup protection. In an
event of fault, the primary protection must operate in a timely way to confine the faulty
part of the electrical network. In case of primary protection failure, backup protection
must act to accomplish the protection task. This ought to be the favored situation of any
protective system in light of the fact that the primary protection confines just the influenced
region while the backup protection ensures that at whatever point, no more than a strictly
necessary portion of the systems is exposed to the ill effects of blackouts. To ensure that
only the affected segment of the system is confined thusly diminishing the likelihood of
bothersome broader power outages, dependable and viable administration of protection
equipment is required.

For a multi-loop network, a viable and productive protection scheme needs to con-
sider Directional Over-current Relays (DOCRs). The functioning and configuration of a
DOCR depend upon two parameters. The first one is the Time Dial Setting (TDS) and
the second one is the Plug Setting (PS). The target of DOCR optimization is to provide
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the optimal settings for TDS and PS such that the primary relays respond promptly to
any fault in their zone. Backup relays should also operate in a timely manner and not
affect the unfaulty portions of the network. Therefore, minimization of operating times of
primary relays as well as coordination of backup relays are the requirements of DOCRs,
while obeying the constraints. To explain this confounded issue, various strategies have
been proposed in the literature. The curve intersection method was utilized to take care
of the coordination issue of overcurrent relays [1]. In [2], the graphical selection method
was used to find the relay settings. The minimum break point set method has been used
for an expert system in [3]. For DOCR coordination problems [4–8] and complex prob-
lems within the electrical power network, numerous techniques like the Nature-inspired
optimization technique whale optimization [9] and the JAYA algorithm [10] have been
developed to deal with the DOCR problem. With respect to the physical and logical change
of arrangement of the system the optimal DOCR design was developed in [11,12]. The
optimal TDS and PS settings of a DOCR were found using the hybrid genetic algorithm
for the generation unit or line outage contingencies in [13,14]. The DOCRs problem in
a multi loop transmission system due to single line outage contingencies has been re-
solved in [15,16]. A grid-connected photovoltaic system for regulating power quality
issues using a supercapacitor-based STATCOM is used in [17]. The protection coordina-
tion problem is vital in the design of DOCRs, which sometime operate improperly due
to alterations in the network configuration. In [18], fault current limiters were used to
solve the protection coordination problem without considering line or DG outages. For
line, substation and DG outages in microgrids, the protection settings were determined
by using the new coordination parameters set [19]. Moreover, all these network arrange-
ments makes them more complex, yielding discoordination of DOCRs, that constantly
leads to contingencies. In order to resolve these issues and the power outages, optimal
relay setting while considering the main system configuration has been recommended
in [20–23]. The DOCRs problem was formulated as a mixed integer nonlinear programming
(MINLP) problem and relay setting parameters were found using different population-
based optimization techniques in [24,25]. In [26,27] a few bio-motivated algorithms were
developed to tackle the DOCR coordination issue by designing a linear formulation.
In [28–32], a different version of particle swarm optimization (PSO) was used to determine
the optimum values for DOCRs. A different version of the differential algorithm was re-
ported in [33] to solve the DOCR coordination problem to point out the superiority of modi-
fied differential evolution algorithms. Many other Nature-inspired algorithms like the grey
wolf optimizer (GWO), teaching learning–based optimization (TLBO), biography-based
optimization (BBO), back-tracking algorithm, the improved firefly (IFA) metaheuristic and
modified electromagnetic field optimization (MEFO) were used for DOCR coordination
in [34–40]. A modified teaching-based optimization algorithm was implemented in [41].
An analytic approach to solve the DOCR coordination problem was utilized in [42]. In [43],
for determining relay setting parameters, an improved group search algorithm was used.
In [44], the comparison of several metaheuristic algorithms to solve DOCR problem was
presented. In [45], in order to solve DOCR problem, multiple embedded crossover PSO
algorithm was applied. For a multisource network, the DOCR problem can be regarded
as an optimization problem. The downside of the past optimization procedures and that
of the metaheuristic optimization, is that they possibly converge to settings which are
not optimal and may trap into local optimum results. The mathematical optimization
techniques work on the gradient based information about the used functions for finding
solutions. For such type of algorithms, there is likelihood of converging to local opti-
mum results. Further, convergence rate of such algorithms lowers with larger systems.
These drawbacks are alleviated by nature-inspired algorithms. Such algorithms start op-
timization from random solutions, and this helps in avoidance of local optima. These
algorithms also do not need the gradient-based information for the solution. The edge of
Nature-inspired algorithms is that they can be incorporated into optimization solutions
considering them as a black box. This helps in finding optimal solutions easily for problems
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with unknown search space [46,47]. To comprehend this issue, a HHO algorithm technique
is examined in this work to determine the optimal DOCR parameters as compared to other
state-of-the-art algorithms.

In this paper, the optimal settings for DOCRs were found by a novel population-
based, Nature-inspired optimization algorithm called the Harris Hawks Optimizer (HHO)
deployed in a multi-loop power system. The primary motivation of HHO is the agreeable
conduct and pursuing style of Harris hawks in Nature called surprise pounce. Furthermore,
according to the no free lunch theorem, all proposed algorithms give almost equal results
on average, when applied to all optimization problems [48]. In short, no single algorithm
is universally good to solve all optimization problems, and this urges researchers to adapt
and use more efficient optimization techniques. HHO is developed under the inspiration of
the cooperative schema of hunting and chasing the prey by performing surprise pounces.
The chasing style of Harris hawks changes dynamically according to the behavior of the
prey. This paper proposes the HHO methodology that can accomplish the optimal DOCR
coordination and operation. The implementation of the HHO is utilized for a test in the
IEEE-9, 15 and 14-bus systems. The comparison of HHO with other algorithms proves
its effectiveness. In this insightful procedure, a few Harris hawks cooperate to pounce on
a prey from various bearings trying to surprise it. Harris hawks can reveal a variety of
chasing patterns dependent on the dynamic nature of scenarios and the escape patterns
of the prey. This work numerically impersonates such dynamic patterns and behavior to
develop an optimization algorithm. The suggested HHO has more exploration capability
in contrast to other metaheuristic algorithms. These qualities of HHO enhance the potential
of search agents to seek optimal solutions. The important part of the proposed HHO is to
decide the ideal estimations of TDS and PS to minimize the operational time of DOCRs
regarding reinforcement and hand-off setting limitations.

The paper is organized as follows: Section 2 presents the problem formulation for DOCR.
Section 3 contains an introduction to the proposed algorithm and its details. Section 4 explains
about the results in the used test systems and a detailed discussion about the results. Finally,
Section 5 concludes the paper.

2. DOCR Problem Formulation

The DOCR relay system is supposed to sense a fault event and isolate the faulty
portion of a network in a timely manner, so that the healthy portion of the system does
not experience the effects of the fault. Two design variables, TDS and PS, are selected to
find the optimized and minimized operating time. The optimum values of TDS and PS
will result in a minimized collective operating time of relays. The sum of operating times
of the relays is referred to as an objective function as shown in Equation (1):

min f =
n

∑
i=1

Tji (1)

where Tji indicates the operating times of relays for a fault in j zone and i varies from 1 to
the number of relays in the system. The IEC normal inverse relays are selected for relay
protection schema and operating time is given by Equation (2):

Tj = TDSi

 α(
IFi

PS×CTR

)k
− 1

 (2)

where α and k are characteristic constants with values of 0.14 and 0.02, respectively [49].
Furthermore, TDS indicates time dial settings, IF shows the fault current value, PS shows
plug settings value and CTR shows the currents transformer ratio value for the relays. Tj
stands for the operating time of the primary relay. The goal is to minimize the operating
time of relays, while keeping constraints into consideration. The overall schema of DOCRs
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coordination and protection is shown in Figure 1. Which shows the goal of DOCRs
protection keeping in view the backup protection as well as constraints.
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2.1. Coordination Criteria

For an effective protection scheme, backup protection is supposed to act as a second
line of defense. It should be ensured that backup protection acts neither too fast nor too
slow. Hence, backup protection is supposed to act after some coordination time interval
(CTI). This value varies between 0.2–0.5 s, depending upon the choice of certain value or
relay types used. The relation between backup and primary relays is shown by Equation (3):

Tb ≥ Tj + CTI (3)

where Tb: the backup relay operating time; and Tj: the primary (or main) relay operat-
ing time.

2.2. Relay Setting Bounds

Along with coordination constraints, the relay protection scheme is subject to con-
straints imposed on the values of TDS and PS. Further information about minimum and
maximum values of TDS and PS is mentioned along with the experimental data. The
number of TDS and PS varies according to the number of primary relays. In following
equations, i indicates the number of relays. The optimum values of TDS and PS are bound
to obey these settings constraints of minimum and maximum values. The ultimate goal is
the settings which will ensure constraints of coordination as well as settings constraints,
indicated in this section, as shown by Equations (4) and (5):

TDSi
min ≤ TDSi ≤ TDSi

max (4)

PSi
min ≤ PSi ≤ PSi

max (5)

3. Harris Hawks Optimization (HHO) Algorithm

In 2019, Heidari et al. presented a population-based Nature-inspired model-based
algorithm called the Harris Hawk Optimization (HHO) algorithm to solve optimization
problems [50]. The HHO was developed under the inspiration of one of highest IQ hunters,
the Harris hawk. Harris Hawks sense and adapt their hunting strategies according to the
dynamic moves and escape attempts of their prey. The hunting quest of several hawks
starts with mutual encircling of the prey and then changing different hunting patterns
according to the behavior of the prey. Unlike other algorithms, HHO adapts dynamically
according to different patterns shown by the prey in the exploitation phase. In this section,
the exploration and exploitation of HHO is modelled, elaborating mutual hunting strategy
of surprise pounces and attacking by Harris hawks.
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3.1. Exploration Phase

In this part, the exploration process by HHO is stated. Harris hawks scan the search
area with their powerful eyes. They sit on some tall place to better cover a large search area
and may spend several hours in locating and identifying a prey. It is important to note
that in the HHO paradigm, Harris hawks are the candidate solutions and the prey is the
optimal solution. There is an equal probability that Harris hawks will adapt to two different
perching strategies. According to the first strategy, a Harris hawk may perch according to
its hunting group, while, as a second strategy, Harris hawks may perch randomly on a tall
tree, inside the hunting group range. Both of these perching strategies are summed up in
Equation (6), indicating q ≥ 0.5 for first case and q < 0.5 for second case:

X(t + 1) =

{
Xrand(t)− r1|Xrand(t)− 2r2X(t)| q ≥ 0.5

(Xrabbit(t)− Xm(t))− r3(LB + r4(UB− LB)) q < 0.5
(6)

X(t) = r5(ND × RN).(UB− LB) + LB (7)

Here, X(t + 1) is the random location of hawks for the iteration t + 1. X(t), given
by Equation (7), is the hawks’ position vector at current iteration t. Here, ND represents
the number of decision variables and RN represents the number of relays being used in
the system. This equation will produce the (ND × RN) vector of uniformly distributed
numbers in the interval (LB, UB). Xrand(t) is a random hawk from the current population
and Xm(t) is the average position of hawks for current iteration. The position of the rabbit
(prey) in the current iteration is given by Xrabbit(t). To depict the random nature, variables
r1, r2, r3, r4 and r5 are included from interval (0, 1). To restrict the scenario to the valid
search space, all variables are supposed to obey the upper and lower bounds, included
as UB and LB in the Equation (6). According to the first part of Equation (6), the position
of a hawk for the next iteration will be the result of the difference between the random
hawk’s position from the current iteration and the normalized difference of the position of
the random hawk and other hawks in the current iteration. According to the second part
of Equation (6), the position of hawks for the next iteration is based on the best location so
far, the average position and a randomly scaled factor based on the group range. To impart
randomness and explore search space more, a randomly scaled LB parameter is included.
By using Equation (7), the average position of hawks for current iteration is calculated:

Xm(t) =
1
N

N

∑
i=1

Xi(t) (8)

Here, N indicates the number of hawks and Xi(t) is the individual hawk location for
the current iteration.

3.2. Transition from Exploration to Exploitation

The switching from exploration to exploitation and then different dynamic exploitation
modes is triggered by the escaping energy of the prey. The escaping energy decreases
during the hunt, whereas different escaping patterns can be adopted by prey to deceive the
hawks. The escaping energy is of the prey is mathematically modelled in Equation (9):

E = 2Eo(1− t/T) (9)

Eo = 2 ∗ (r6) − 1 (10)

Here, Eo is the energy of prey at the initial state, given by Equation (10). t is the current
iteration and T indicates the total number of iterations and r6 is a random number which
varies between 0 and 1. The energy of the prey varies randomly between −1 and 1. For
energies between 0 and −1, the prey starts weakening while for energies between 0 and 1
the prey starts strengthening and performs deceiving moves and tries its level best to get
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away from the hunting hawks. As iterations pass, the energy of the prey decreases. For
escaping energies |E| ≥ 1, the hawks look through a different vicinity to locate the prey,
indicating exploration, whereas for escaping energies |E| < 1 a detailed search is carried
out, referred to as exploitation. To sum things up, for |E| ≥ 1, the HHO is in exploration
phase, while for |E| < 1, HHO is in an exploitation phase. The escaping energy for two
runs and 500 iterations is shown in Figure 2.
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3.3. Exploitation Phase

Harris hawks implement a surprise pouncing strategy on the identified prey. As a
resultant the prey becomes exhausted and is captured easily by the hawks, but during this
process, the prey tries its best to deceive the hawks and save itself from danger. To model
this scenario, four different scenarios are presented in HHO. The prey strives hard to get
away from hawks. Before the surprise pounce, the probability of a successful escape is
characterized as (r < 0.5), while the probability of an unsuccessful escape is characterized as
(r ≥ 0.5). Therefore, depending upon the parameters r and E, the prey’s escape patterns can
be characterized into four different scenarios, explained in detail in the following section.
According to the different scenarios, Harris hawks change their cooperative hunting tactics.
As a result, the prey gets exhausted and its energy is diminished. In this stage, Harris
hawks perform a hard or soft siege and capture the prey. In such a manner, the adaptation
mode of a Harris hawk is classified into soft and hard siege, depending upon the condition
|E| ≥ 0.5 and |E| < 0.5, respectively.

3.3.1. Soft Siege

For the scenario of unsuccessful escape the probability r ≥ 0.5 and the energy value
|E| ≥ 0.5, the prey still has enough energy. The prey performs random jumps to mislead
the Harris hawks. In such a scenario, Harris hawks adapt a soft siege mode to further
exhaust the prey. This scenario is modelled in Equation (11):

X(t + 1) = ∆X(t)− E |JXrabbit(t)− X(t)| (11)
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∆X(t) = Xrabbit(t)− X(t) (12)

Here ∆X(t) in Equations (11) and (12) represents the difference between the rabbit
position and hawk position for the current iteration:

J = 2(1 − r6) (13)

Furthermore, Equation (13) indicates the jump strength of the prey whilst escaping.
Here, r6 is random number from the interval (0, 1). This random number imparts a random
nature to demonstrate the movement of the prey in every iteration

3.3.2. Hard Siege

For the scenario of unsuccessful escape probability r ≥ 0.5 and energy value |E|< 0.5,
the prey is quite exhausted and has considerably low energy to escape the hunt. Harris
hawks sense this situation and their siege tactics are intensified to capture the prey. This
scenario is modelled in Equation (14):

X(t + 1) = Xrabbit(t)− E|∆X(t)| (14)

An example to demonstrate this scenario is shown in Figure 3.
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3.3.3. Soft Siege with Progressive Rapid Dives

For the scenario of successful escape probability r < 0.5 and energy value |E|≥ 0.5,
prey is energetic enough to deceive the hunting plans. Sensing this situation, Harris hawks
switch their hunting schema to a more sophisticated and intelligent mode. The mode of
hunting is soft siege but it combined with the technique of Levy flights (LF). In accordance
to the deceiving motions and jumps of the prey, Harris hawks also start zigzag dives [51]. In
this way, Harris hawks try to match their hunting pattern with the random and deceiving
jumps of the prey. LF is a quite favorable mode of capturing the prey for foragers and
predators [52,53]. The LF technique is often adopted by predators, and can be seen in the
chasing schemes used by sharks and monkeys [51–57]. The soft siege model used by hawks
at this stage is shown in Equation (15):

Y = Xrabbit(t)− E |JXrabbit(t)− X(t)| (15)

The LF technique used by HHO is modelled on Equation (16). Harris hawks analyze
their current move and the past moves and change their diving and hunting strategy
accordingly. After comparison and realization, Harris hawks perform sporadic, unexpected
and abrupt dives:
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Z = Y + S× LF(D) (16)

Here, D indicates the dimension, S indicates a random vector of size (1 × D) and LF
indicates the Levy flight function, which is modelled by using Equation (17):

LF(x) = 0.01× u× σ

|v|
1
β

, σ =

 Γ(1 + β)× sin
(

πβ
2

)
Γ
(

1+β
2

)
× β× 2(

β−1
2 )

1/β

(17)

Here, u and v are the random values between the interval (0, 1). β is a constant with
a value equal to 1.5. As a whole, the hunting and surprise pouncing pattern used by the
hawks for this mode can be modelled by using Equation (18):

X(t + 1) =
{

Y i f F(Y) < F(X(t))
Z i f F(Z) < F(X(t))

(18)

Here, the parameters Y and Z refer to Equations (15) and (16) respectively. This step
with one hawk is elaborated in Figure 4. The LF patterns shown by the hawk are also
demonstrated for a course of a few iterations. The colored-dotted line shows the LF-based
dives. For every next iteration, Y and Z are adopted to intelligently capture the prey. This
behavior is adopted by the whole group of Harris hawks.
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3.3.4. Hard Siege with Progressive Rapid Dives

For the scenario of successful escape probability r < 0.5 and energy value |E|< 0.5,
the prey is exhausted because of low energy. Now, Harris hawks decrease the distance
between the prey and perform a hard siege. To tackle the deceiving jumps of the prey, the
LF-based technique is also incorporated. This situation is modelled in Equation (19):

X(t + 1) =
{

Y i f F(Y) < F(X(t))
Z i f F(Z) < F(X(t))

(19)
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where Y and Z are obtained using the new rules in Equations (20) and (21).

Y = Xrabbit(t)− E |JXrabbit(t)− X(t)| (20)

Z = Y + S× LF(D) (21)

Here, Xm(t) can be accessed from Equation (7). This scenario is elaborated in Figure 5.
The colored-dots indicate the LF patterns for the current iteration. For the next iteration,
the decision between Y or Z will be made by the hawks, accordingly.
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3.4. Computational Complexity

The computational complexity is the result of three processes. The first one is initial-
ization, the second one is fitness evaluation and the third one is updating of hawks. With
N number of hawks, the initialization complexity is O(N). Due to updating, the complexity
becomes O(T × N) + O(T × N × D). This includes the search for the best location and as
well as updating of location for whole group of hawks. Here, T indicates the total number
of iterations and D indicates the dimension of problems. Resultantly, the computational
complexity can be given as O(N × (T + TD + 1)).

4. Results and Discussion

In this part, the HHO is successfully implemented to address the DOCR coordination
problem and has been verified for three IEEE standard test systems: the IEEE-9, 14, and
15 bus systems. The results have been obtained by developing a simulation program using
MATLAB software @ R2018b. The parameters used for HHO are listed in Table 1. Whereas,
the parameters used for other compared algorithms are mentioned in Appendix A, Table A1.

Table 1. HHO parameters used during the simulation.

Parameter Values

Population Size, N 200
Maximum Iterations, T 500
Random Jump Strength, J [0, 2]
Number of Variables, N_Var:
For 9-Bus network 96
For 15-bus network 84
For 14-bus network 80

4.1. IEEE Nine Bus System for DOCRs

The proposed algorithm is implemented on IEEE 9 bus system as shown in Figure 6. The
system consists of nine buses and 12 lines. The system is powered by a generator located
at bus 1. The primary and backup pairs of DOCRs and short circuit test is mentioned in
reference [13] and not discussed further here. The current transformer ration is set at 500/1
for all DOCRs. The higher and lower values of TDS (1.2–0.1) and PS (2.5–0.5) are selected
accordingly with a coordination interval of 0.2 s. The optimum results obtained for TDS
and PS by the proposed HHO are shown in Table 2. Table 3 shows the net total operating
time achieved by the HHO and other state of the art algorithms and it cn be realized that the
HHO outperforms the other algorithms in minimizing the total operating time of DOCR
for an IEEE 9 Bus system. By comparison, it is evident that HHO is giving desired optimal
settings for DOCRs as compared to other algorithms. For example, the improvement in
operating time achieved by using HHO with respect to particle swarm optimization (PSO)
is 37.55%. Meanwhile, the improvements with respect to genetic algorithm (GA), non-linear
programming (NLP), informative differential evolution (IDE) algorithm, harmony search
(HS), biogeography-based optimization (BBO) and modified adaptive teaching learning-
based optimization algorithm (MTLBO) are 73.23%, 55.03%, 85.37%, 11.28%, 69.73% and
79.17% respectively. Figure 7 depicts the convergence characteristics of HHO obtained
during the course of the simulation. It can be noticed that HHO achieved a quite fast
convergence rate to achieve the optimal values. At about 150 iterations, the HHO was able
to attain the optimal values.
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Table 2. Optimum value of TDS for the IEEE 9 bus system.

Relay No TDS PS

1 0.1004 0.5018
2 0.1000 0.7857
3 0.1010 0.5048
4 0.1000 0.5000
5 0.1004 0.9900
6 0.1003 0.5016
7 0.1015 0.5426
8 0.1001 1.5942
9 0.1021 0.5287
10 0.1001 0.5004
11 0.1000 1.9928
12 0.1000 0.8153
13 0.1005 0.5477
14 0.1000 0.5800
15 0.1000 0.5530
16 0.1000 0.5048
17 0.1030 0.5000
18 0.1011 0.5154
19 0.1000 0.8906
20 0.1012 0.5000
21 0.1013 0.6588
22 0.1045 0.5067
23 0.1000 0.5226
24 0.1000 0.5000

Total Operating Time 8.7266 (s)

Table 3. Comparison of HHO with other algorithms.

Algorithm Objective Function

PSO [44] 13.9742
GA [13] 32.6058

NLP [13] 19.4041
IDE [41] 59.6741
HS [40] 9.838

BBO [36] 28.8348
MTLBO [41] 41.9041

Proposed HHO 8.7266
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4.2. IEEE 15 Bus System for DOCRs

The IEEE 15 bus system is a highly distributed generator (DG)-enlarged distribution
system consisting of 21 lines and 42 relays as mentioned in Figure 8 and is has 82 constraints
and 84 design variables. The short circuit test and primary and back up configuration are
mentioned in reference [24]. Table 4 shows the current transformer ratio for the DOCR
configuration. The higher and lower limits of TDS (1.2–0.1) and PS (2.5–0.5) are selected
accordingly. A CTI of 0.3 s is selected.
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Table 4. Current transformer ratio.

Relay No. CTR

18, 20, 21, 29 1600:5
2–4–8–11–12–14–15–23 1200:5

1–3–5–10–13–19–36–37–40–42 800:5
6–7–9–16–24–25–26–27–28–31–32–33–35 600:5

17–22–30–34–38–39–41 400:5

The optimum values obtained by the proposed HHO are listed in Table 5 which shows
that HHO optimized the total operating time up to attain the minimum and optimum
values. Table 6 shows the comparison of HHO with other algorithms applied for the same
DOCR coordination problem. It proves that HHO is superior to other current algorithms
in minimizing the total operating time up to a minimum value with a fast convergence
rate as shown in Figure 9 and obtains the best value for the objective function in a smaller
number of iterations. The comparison of optimal settings determined by HHO with
seeker algorithm (SA), mixed integer non-linear programming (MINLP), analytic approach
(AA), differential evolution (DE), HS, backtracking search algorithm (BSA), MTLBO, group
search optimization (GSO), improved group search optimization (IGSO) and modified
electromagnetic field optimization (MEFO) shows 5.64%, 24.77%, 1.07%, 1.89%, 8.60%,
29.19%, 78.02%, 15.50%, 4.93% and 17.31% improvements, respectively. Figures 9 and 10
portrays the convergence characteristics of HHO during the course of simulations. For the
studied 15-bus network, HHO is able to attain optimal values with quite good convergence
rate, after about 175 iterations.
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Table 5. Optimum values of TDS for the IEEE 15 bus system.

Relay No HHO Relay No HHO

TDS PS TDS PS

1 0.1005 0.5027 22 0.1120 0.5600
2 0.1598 0.5782 23 0.1036 1.9400
3 0.1000 0.5000 24 0.1006 0.5031
4 0.1010 0.5051 25 0.1000 0.5000
5 0.1000 0.5000 26 0.1059 0.5297
6 0.1657 0.8469 27 0.1014 0.5072
7 0.2052 0.5006 28 0.2052 1.0258
8 0.1009 0.5045 29 0.1011 0.5054
9 0.1003 0.5015 30 0.1033 0.5166

10 0.2152 0.5000 31 0.2152 1.0760
11 0.1000 0.5000 32 0.1074 0.5372
12 0.1013 1.7029 33 0.1002 0.5010
13 0.1221 0.7558 34 0.1028 0.5142
14 0.1017 2.4487 35 0.1000 0.5000
15 0.1000 0.5000 36 0.1022 0.5109
16 0.1031 0.5064 37 0.1333 0.6666
17 0.1000 0.5000 38 0.1000 0.5000
18 0.1031 2.1313 39 0.1201 2.4678
19 0.1003 0.5016 40 0.1024 0.5121
20 0.6044 2.3997 41 0.1000 0.5000
21 0.1377 0.6885 42 0.1000 0.500

Total Operating Time 11.537 (s)
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Table 6. Comparison of HHO with other up to Date Algorithms.

Algorithm Objective Function

SA [24] 12.227
MINLP [24] 15.335

AA [42] 11.6618
DE [44] 11.7591
HS [44] 12.6225

BSA [37] 16.293
MTLBO [41] 52.5039

GSO [43] 13.6542
IGSO [43] 12.135
MEFO [40] 13.953

Proposed HHO 11.537
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4.3. IEEE 14 Bus System Using Numerical Relays

Figure 11 shows the single line diagram of the IEEE 14-bus system that consists
of 14 buses and 40 relays. The listed relays’ CT ratios (CTRs), P/B relay pairs, current
transformer ration other information regarding this test system are shown in Table 7.
The fault currents for the close-in 3φ faults and system information are mentioned in
reference [58]. The lower and upper boundaries for TDS and PS are presumed as continuous
and set in the range of [0.1 to 1.1] for TDS and [0.5 to 2] [59] with a coordination interval of
0.2 s. The optimum values obtained by the proposed algorithm for TDS and PS and total
operating time are shown in Table 8, which shows that the proposed algorithm optimized
and minimized all the values up to optimum values. Figure 12 shows the convergence
characteristics of the objective function value obtained as a result of the simulation, which
show that the convergence is faster and achieved the optimum value in a smaller number
of iterations. For the 14-bus network, HHO was able to attain optimal results with a fast
convergence rate after about 115 iterations. Table 9 shows the comparison of the proposed
algorithm with other state of the art algorithms, which confirms the superiority of the
proposed HHO. The overall improvement in optimal settings determined by HHO as
compared to the hybrid genetic algorithm linear programming (HGA-LP), mixed integer
linear programming (MILP), multiple embedded crossover PSO (MECPSO) and modified
adaptive PSO (MAPSO) algorithms is 4.18%, 1.63%, 0.06%, 8.48%, respectively.



Energies 2021, 14, 5603 16 of 20

Energies 2021, 14, x FOR PEER REVIEW 16 of 21 
 

 

4.3. IEEE 14 Bus System Using Numerical Relays 
Figure 11 shows the single line diagram of the IEEE 14-bus system that consists of 14 

buses and 40 relays. The listed relays’ CT ratios (CTRs), P/B relay pairs, current trans-
former ration other information regarding this test system are shown in Table 7. The fault 
currents for the close-in 3ϕ faults and system information are mentioned in reference [58]. 
The lower and upper boundaries for TDS and PS are presumed as continuous and set in 
the range of [0.1 to 1.1] for TDS and [0.5 to 2] [59] with a coordination interval of 0.2 s. The 
optimum values obtained by the proposed algorithm for TDS and PS and total operating 
time are shown in Table 8, which shows that the proposed algorithm optimized and min-
imized all the values up to optimum values. Figure 12 shows the convergence character-
istics of the objective function value obtained as a result of the simulation, which show 
that the convergence is faster and achieved the optimum value in a smaller number of 
iterations. For the 14-bus network, HHO was able to attain optimal results with a fast 
convergence rate after about 115 iterations. Table 9 shows the comparison of the proposed 
algorithm with other state of the art algorithms, which confirms the superiority of the 
proposed HHO. The overall improvement in optimal settings determined by HHO as 
compared to the hybrid genetic algorithm linear programming (HGA-LP), mixed integer 
linear programming (MILP), multiple embedded crossover PSO (MECPSO) and modified 
adaptive PSO (MAPSO) algorithms is 4.18%, 1.63%, 0.06%, 8.48%, respectively. 

 
Figure 11. Single line diagram of the IEEE 14 bus system. 

  

Figure 11. Single line diagram of the IEEE 14 bus system.

Table 7. Current transfer ration.

CT Ratio Relay No CT Ratio Relay No

8000/5 1 1000/5 20, 35, 38
5000/5 29 800/5 16, 18
4000/5 5, 25 600/5 22, 32, 37, 40
3500/5 3, 14 500/5 17, 26, 34
3000/5 21 400/5 2, 4, 8, 10, 13, 24
2500/5 7 250/5 11
2000/5 12, 36, 39 200/5 6
1600/5 9, 19, 23, 27, 31 50/5 28
1200/5 15, 30, 33 - -
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In this paper, the network relay coordination and optimization problem has been 

solved by using HHO. Relay optimization is formulated as MINLP targeted to minimize 
the overall operating time of relays by selecting as design parameters TDS and PS. For 
evaluation, three test systems with different scenarios have been considered. For DOCR 
optimization and coordination, a 9-bus system with a single generator and a 15-bus sys-
tem with multiple DG penetration were tested, while for numerical relays, a 14-bus system 
having conventional as well as DGs is tested. The unique sieging and hunting capability 
of the HHO has been found affective in finding the global optimum values with robust-
ness and better convergence as compared to other state of the art algorithms. The algo-
rithm-wise comparison, for all three test systems, shows improved and optimum settings 
are found by HHO. The obtained results justify or claim that HHO is successful at finding 
better and optimum solutions for DOCRs and numerical relays proving it to be an effec-
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Table 8. Optimum TDS and PS for Case 3.

Relay No HHO Relay No HHO

TDS PS TDS PS

1 0.1000 0.5898 21 0.1007 0.5842
2 0.1000 0.5120 22 0.1081 0.5606
3 0.1001 0.5000 23 0.1003 0.9667
4 0.1000 0.5021 24 0.1021 0.6392
5 0.1000 0.7892 25 0.1089 0.6451
6 0.1101 0.5001 26 0.1021 0.6667
7 0.1012 0.5000 27 0.1013 0.5799
8 0.1000 0.7204 28 0.1049 0.5959
9 0.1018 0.5353 29 0.1052 0.5462

10 0.1010 0.8633 30 0.1071 0.5622
11 0.2196 0.7160 31 0.1000 0.6141
12 0.1000 0.5779 32 0.1001 0.5601
13 0.100 0.5000 33 0.1014 0.5000
14 0.1012 0.9390 34 0.1048 0.5443
15 0.1131 0.7789 35 0.1040 0.5970
16 0.1004 0.6082 36 0.1000 0.9009
17 0.1115 0.5263 37 0.1028 0.6388
18 0.1028 0.5023 38 0.1029 0.5727
19 0.1193 0.8656 39 0.1049 0.5014
20 0.1015 0.7498 40 0.1095 0.5376

Total Operating Time 12.9274 (s)

Table 9. Comparison of HHO with other algorithms.

Algorithm Objective Function

HGA-LP [38] 13.4914
MILP [38] 13.1411

MECPSO [45] 12.919
MAPSO [45] 14.126

Proposed HHO 12.9274

5. Conclusions

In this paper, the network relay coordination and optimization problem has been
solved by using HHO. Relay optimization is formulated as MINLP targeted to minimize
the overall operating time of relays by selecting as design parameters TDS and PS. For
evaluation, three test systems with different scenarios have been considered. For DOCR
optimization and coordination, a 9-bus system with a single generator and a 15-bus system
with multiple DG penetration were tested, while for numerical relays, a 14-bus system
having conventional as well as DGs is tested. The unique sieging and hunting capability of
the HHO has been found affective in finding the global optimum values with robustness
and better convergence as compared to other state of the art algorithms. The algorithm-wise
comparison, for all three test systems, shows improved and optimum settings are found by
HHO. The obtained results justify or claim that HHO is successful at finding better and
optimum solutions for DOCRs and numerical relays proving it to be an effective tool for
relay coordination and optimization.
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Appendix A

Table A1. Parameters of the algorithms.

Algorithm Parameter Value

PSO

Max. iteration 100
Population size 60
(c1, c2) (2.025, 2.025)
(wmin, wmax) (0.4, 0.9)

GA

Max. iteration 100
Population size 256
Crossover rate 0.5
Mutation rate 0.1

IDE

Max. iteration 500
Population size 48
Crossover rate 0.8
(F1, F2) (0.7, 0.3)

BBO
Max. iteration 40
Population size 100

MTLBO
Max. iteration 500
Population size 100
No. of cycles 20

SA

Max. iteration 1000
Population size 120
(µmin, µmax) (0.95, 0.0111)
(wmin, wmax) (0.1, 0.9)

DE

Max. iteration 100
Population size 30
Crossover rate 0.4
Mutation factor 0.5

HS

Max. iteration 100
Population size 10
HMCR 0.9
(BWmin, BWmax) (0.0001, 1.0)
(PARmin, PARmax) (0.4, 0.7)

GSO Max. iteration 1000

IGSO
Max. iteration 1000
Threshold value 0.01

MAPSO
(α1, α2) (1, 1)
(β1, β2) (100, 50)
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