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Abstract: State of Charge (SOC) is essential for a smart Battery Management System (BMS). Tradi-
tional SOC estimation methods of lithium-ion batteries are usually conducted using battery equivalent
circuit models (ECMs) and the impact of current sensor bias on SOC estimation is rarely considered.
For this reason, this paper proposes an online SOC estimation based on a simplified electrochemical
model (EM) for lithium-ion batteries considering sensor bias. In EM-based SOC estimation structure,
the errors from the current sensor bias are addressed by proportional–integral observer. Then, the
accuracy of the proposed EM-based SOC estimation is validated under different operating conditions.
The results indicate that the proposed method has good performance and high accuracy in SOC
estimation for lithium-ion batteries, which facilitates the on-board application in advanced BMS.

Keywords: lithium-ion batteries; simplified electrochemical model; state of charge; proportional–
integral observer; sensor bias

1. Introduction

With the rapid development of electric vehicles (EVs), the Lithium-ion battery (LIB) has
become the most important energy storage device, since it exhibits high energy and power
density, along with no memory effect [1]. Because the overcharge or over discharge of LIB
will inevitably damage the battery’s inner characteristics and state of health (SOH) [2],
the state-of-charge (SOC) evaluation of LIB has gradually become one of the important
concerns for Battery Management System (BMS), which has attracted a significant amount
of researchers’ attention.

The existing SOC estimation methods are mainly divided into three categories: basic
methods (such as the looking-up table and ampere–hour integral methods), data-driven
methods and model-based methods [3]. In contrast to the other two methods, the model-
based methods display favourable accuracy and robustness for SOC estimation in BMS due
to the closed-loop control and insensitivity to the external disturbances [4]. It is well-known
that there are two types of widely used battery models, including equivalent circuit model
(ECM) [5,6] and electrochemical model (EM) [7,8]. Due to the simple and flexible structures
of ECMs, the extended Kalman filter (EKF) [9–11], Luenberger observers [12,13] and the
sliding mode observers [14] were widely applied to estimate SOC based on ECMs. These
methods of SOC estimation can obtain acceptable results, yet the calculation complexity
is very high as well as it cannot reflect the variation of the SOC from the battery internal
characteristics. Compared with ECMs, EMs [15] have rapidly evolved because they can
give insight into the battery’s physicochemical processes from a microscopic perspective,
which is more advantageous for monitoring the battery SOC accurately. Nevertheless, the
heavy computational expense of EM has made its use in practical applications challenging.
As a result, reduced-order EMs [16–18] used for battery SOC estimation have gradually
become mainstream. For instance, Lin et al. [19] estimated SOC with EKF algorithm based
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on a single particle model (SPM) for lithium-ion batteries, while linearization was carried
out at each time step when using EKF, which increased the computational burden and
inevitable errors. Tanim [20] and Moura [21] achieved the SOC estimation by using state
observers based on an enhanced single particle model (ESPM). Nevertheless, conventional
microcomputers in BMS cannot support observations based on complex mathematical
derivations, which means that such approaches cannot achieve the online estimation well
in actual conditions.

In addition, it is reported that the current sensor bias [22] has a serious impact on the
accuracy of SOC estimation. To deal with this problem, Dai et al. [23] selected an adaptive
variable multi-timescale framework to realize the co-estimation of battery SOC and SOH for
eliminating the current measurement offset. Hosny et al. [24] applied a non-linear Kalman
filter to an augmented model for reducing the influence of the biases in measurements on
battery SOC estimation. However, these approaches were only carried out in ECMs, while
sensor bias was rarely considered in existing EMs-based SOC estimation methods.

Since the platforms of BMS in EVs for implementing the estimation algorithms are
generally low-cost microcontrollers, the computational power and resources are usually
limited. For this reason, the proportional–integral observers (PIOs) [25–27] have attracted
extensive attention recently due to its applicability to online estimation. Meanwhile, the
PIO does not involve the complicated mathematical derivation, which brings great potential
for its application in EM-based SOC estimation. According to these research foundations,
this paper proposes an online SOC estimation based on simplified EM for LIB considering
current sensor bias. In EM-based SOC estimation structure, the errors from current sensor
bias are considered by PIO. Then, the accuracy of SOC estimation is validated under
different operating conditions.

This paper is organized as follows. Section 2 describes a simplified EM for LIBs.
Section 3 proposes an online SOC estimation based on simplified EM for LIBs, considering
current sensor bias. Simulations and experimental verification on the accuracy of SOC
estimation are shown in Section 4. Conclusions are given in Section 5.

2. Derivation of the Simplified EM

Although the full order EMs (i.e., P2D model) have been widely used in the per-
formance simulation and design optimization of batteries, they become a major obstacle
in real-time computation for battery models because of the highly nonlinear governing
equations. In order to realize the EMs on-board application in control fields, an improved
reduced-order EM for lithium-ion batteries needs to be reconstructed. A more compre-
hensive understanding of the governing equations and meanings of related parameters
for simplified EMs has been shown in our previous work [28]. For this reason, the recon-
struction process of a simplified EM is only briefly explained as follows. As shown in
Figure 1, solid phases in anode and cathode electrodes are represented by two particles in
the simplified EM. It is emphasized that there is an assumption that the reaction current
density on the entire electrode is evenly distributed, and the average pore wall flux of
lithium ions at two current collectors are, respectively, computed as:

Jp = −
iapp

apFLp
(1)

Jn = +
iapp

anFLn
(2)
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Figure 1. Schematic of the simplified EM for LIB. 
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1
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10395(𝐷𝑠,𝑛)
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2.1. Solid Phase Diffusion Process

In this section, the solid phase equations are solved in a novel hybrid approach for
ensuring computational efficiency and better observability. That is to say, the quadratic-
parameter parabolic approach [29] is employed to calculate the concentration distribution
in a positive electrode, and the third order Padé approximation [30] is used to calculate the
concentration distribution in a negative electrode.

For the solid phase equations of a negative electrode, we can get a state-space equation
form as: { .

x = Ax + Biapp
y = Cx

(3)

y =
[
cs,n,sur f cs,n

]T
(4)

It is noted that the output vector y has a line combination with the system states
vector x = [x1, x2, x3]

T and the coefficient matrices A, B, C for the third-order form are
listed below:

A =

 0 1 0
0 0 1

0 − 3456(Ds,n)
2

R4
p

− 189Ds,n
R4

p

, B =
[

0 0 1
Ln

]T

C =

[
−10395(Ds,n)

2

anF(Rn)
5 − 1260Ds,n

anF(Rn)
3 − 21

anFRn
;−10395(Ds,n)

2

anF(Rn)
5

−252Ds,n

anF(Rn)
3

−3
anFRn

]
For the solid phase equations of a positive electrode, we can get the ordinary-differential

equations as:
dcs,p(t)

dt
= − 3

Rp

iapp

FapLp
(5)

cs,p,sur f (t) = cs,p(t)−
iappRp

5Ds,pFapLp
(6)

Though the quadratic-parameter parabolic may sacrifice some precision to a certain
extent, this has almost no effect on the open circuit voltage of an electrode. On the contrary,
this novel hybrid approach can improve the observability of the LIBs system, as well as
guarantee computational efficiency. It is emphasized that this simplification approach of
the solid phase equations, such as Equations (3) and (4), has good accuracy in solid surface
concentration and less impact on subsequent EM-based SOC estimation at medium/high
C-rates, which has been described and verified in Ref. [28].
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2.2. Electrolyte Diffusion Process

SPM manifests a poor precision under high C-rates as it ignores the electrolyte dy-
namics. As a result, the reduced-order EM with the simplified electrolyte concentration
distribution has drawn much attention.

In order to describe the electrolyte diffusion process with an acceptable computa-
tional efficiency and accuracy, the volume-averaged forms of the equations for electrolyte
diffusion are obtained as follows [31]:

ce,n(x, t) = c2in(t) +
q2in

2LnDe f f
e,n

(
L2

n − x2
)

(7)

ce,s(x, t) = c2in(t)−
q2in(t)

De f f
e,s

(x − Ln) +

(
q2in(t)− q2ip(t)

LsDe f f
e,s

)
(x − Ln)

2

2
(8)

ce,p(x, t) = c2ip(t)−
q2ip(t)

2LpDe f f
e,p

[
L2

p − (L − x)2
]

(9)

Finally, the electrolyte concentration of the positive and negative electrodes at the
current collector interface can be calculated as:

ce,n(0, t) = c2in(t) +
q2in(t)

2De f f
e,n

Ln (10)

ce,p(L, t) = c2ip(t)−
q2ip(t)

2De f f
e,p

Lp (11)

It is noted that the detailed expressions of c2ip(t), c2in(t), q2ip(t), q2in(t), can be found
in [31].

2.3. Cell Terminal Output Voltage

For the cell terminal output voltage (TOV), it is commonly defined as the difference
between the potential at negative and positive current collectors:

Vcell(t) = Φs(L, t)− Φs(0, t) (12)

where Φs(x, t) is is the solid phase potential of an electrode. Vcell(t) is the time varying TOV
of a LIB.

According to the governing equations of over potential, the Equation (12) can be
rearranged as:

Vcell(t) = OCVcell + ηe + ηkin + ηohm (13)

where OCVCELL is the open circuit voltage of battery, ηe is the electrolyte over potential, ηkin
is the kinetics reaction overpotential and ηohm is the over potential caused by the resistance
of solid electrolyte interface film. At the same time, the expressions of each part can be
calculated as detailed in Ref. [32] and shown as:

OCVcell = UP

[
cs,p,sur f (t)

cs,p,max

]
−
[

cs,n,sur f (t)
cs,n,max

]
(14)

ηe = ϕe(L, t)− ϕe(0, t) = (1 − t+)
2RT

F
ln

ce(L, t)
ce(0, t)

−
iapp

2

(
Ln

ke f f
n

+
2Ls

ke f f
s

+
Lp

ke f f
p

)
(15)

ηkin =
2RT

F

{
ln
[
mp(t) +

√
m2

p(t) + 1
]
− ln

[
mn(t) +

√
m2

n(t) + 1
]}

(16)
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ηohm = −R f ipp (17)

where mi(t) =
iapp
2i0,i

, i0,i is the exchange current density, Rf represents the resistance of battery
film contact Up, and Un are the open circuit voltage at positive and negative electrodes.

3. SOC Estimation with PI Observer

In the current EV applications, the current sensor bias is usually regarded as a severe
fault in many control algorithms of BMS [23]. As the current is an important input to a
battery model, the current sensor bias will influence the transferred charge and inevitably
contribute to the inaccurate SOC estimation of a battery. To this end, a PI observer is
herein designed to compensate for the current sensor bias, and this is a simple but practical
approach to EM-SOC estimation. Different from the previous research [25–27], the novelty
of this paper is that the online SOC estimation is carried out based on simplified EMs
for LIBs, which can provide a more acceptable estimation accuracy, as well as a better
observation of the internal states for a LIB cell. It is noted that the influence of current rates
and temperature on EM-based SOC is ignored in this paper. Meanwhile, battery aging is
also not within the scope of our discussion.

3.1. Proportional-Integral Observer

In order to deal with the current sensor bias and accurately monitor the battery SOC
status in real time, a traditional PI observer is designed, and its expression is shown [25]:

GI = Kp ·
(

∆U +
1
Ti

· ∑k
i=0 ∆U

)
(18)

where GI is the feedback quantity for current compensation, Kp represents the proportional
gain and 1/Ti represents the integration gain.

Here, ∆U is defined as the model error, which is real-time difference between the
battery TOV of simplified EM based PI observer (TOV_PIO) and the TOV of the real battery
(TOV_exp) and combined with the Equation (13), the model error ∆U is expressed as:

∆U = TOV_exp-TOV_PIO = TOV_exp − OCVcell − ηe − ηkin − ηohm (19)

Then, according to the feedback quantity GI of PI observer, the input current of the
battery EM imod is corrected and fed back to the solid phase diffusion process so that the
solid phase surface concentration cs,n(t) related to SOC is updated by Equations (3) and
(4). Defining the iexp as real charging/discharging current, thus the specific expressions are
as follows:

imod = iexp + GI = iexp + Kp·
(

∆U +
1
Ti

· ∑k
i=0 ∆U

)
(20)

cs,n(t) = f (imod) (21)

Here, the detailed relationship between the input current imod and the solid phase
surface concentration cs,n(t) can be found in Equations (3) and (4).

3.2. Framework of EM-Based SOC Estimation

Combined with the above analysis of PI observer, the framework of the proposed
SOC estimation is given in Figure 2. As shown in Figure 2, the adopted battery model
is simplified EM described in Section 2, which can improve the observability of the LIBs
system, as well as guarantee computational efficiency. Additionally, the verified COMSOL
results [33] here are defined as the experimental TOV of the real battery without current
sensor error, subjected to charging/discharging current iexp.
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In practice, the TOV_PIO is different from the TOV_exp owing to the sensor external
disturbance. According to introducing the PI observer, the ∆U combined with observer
gain is used to compensate the input current with disturbance and allow it to become the
corrected current imod. On the other hand, the battery simplified EM receives the corrected
current imod, then it estimates the solid surface concentration cs,n(t) and the TOV_PIO in
real time. Specifically, the value of TOV_PIO is calculated by Equation (13), and solid
surface concentration cs,n is updated by Equations (3) and (4). In this case, the battery SOC
characterizing the electrochemical meaning can be calculated as [34]:

SOC =
cs,n − cmax

s,n θ0%,n

cmax
s,n (θ100%,n − θ0%,n)

(22)

where θ0%,n is the reference stoichiometric number of a negative electrode at 0% SOC, and
θ100%,n is the reference stoichiometric number of a negative electrode at 100% SOC.

Considering that the surface concentration of solid phase is related to the side reactions
in the battery [35], it should be noted that here the cs,p,surf used is replaced by cs,n to calculate
the battery SOC, which can better ensure the battery charging and discharging safety.

4. Results and Discussion

In this section, the effectiveness of the proposed simplified EM and accuracy of SOC es-
timation are investigated against the verified COMSOL results defined as the experimental
data of the real battery. The LiyMn2O4-LixC6 battery is used for simulation and verifica-
tion, whose values of parameters are given in [28]. In addition, it should be noted that all
simulations and verifications in this paper are implemented under isothermal conditions.

4.1. Validation of Simplified EM

For the model based SOC estimation, the accuracy of the model has an important
impact on the accuracy of SOC estimation. For this reason, the performance evaluation for
TOV of simplified EM should firstly be carried out at the galvanostatic discharge condition.
In this section, the simulation of battery discharge is carried out at the constant current of
0.5 C, 1 C, 2 C, 4 C, respectively.

Figure 3 shows a comparison of simulated discharge curves between simplified EM
and the Newman model [15]. It can be observed that the simulated results from simplified
EM accord well with that from the Newman model, especially at low and medium C-rates.
This significantly good degree of agreement is attributed to considering the variations of
electrolyte potential in proposed the simplified EM. From the validation results, although it
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is not as good as the reduced-order of the full P2D model [36], this simplified EM in model
fidelity can accurately predict the TOVs under a certain range of discharge rates (0.5 C–4 C)
in a sampling time of seconds and has a certain advantage in computing efficiency for
online application [28], which lays the foundation for accurate SOC estimation in the
next section.
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4.2. Evaluation of SOC Estimation

The performance of SOC estimation based on PI observer is examined by comparing
the actual SOC in experimental validation tests. The actual SOC as the reference value
obtained by the integral of current over time, using the Coulomb counting method. It is
worth noting that, for the constant current and dynamic condition, the current sensor bias
is set to a uniformly distributed random signal with a range of [–2, 2] A/m2 and sampling
time for the current sensor bias is one second. Furthermore, in order to better evaluate the
correction performance of the current, the initial SOC is set to 100% correctly. At the same
time, the variables used in the verification process are explained as: the TOV/SOC_exp
are experimental TOV/SOC without current sensor bias, the TOV/SOC_PIO are corrected
TOV/SOC considering the current sensor bias and the TOV/SOC_current bias are un-
corrected TOV/SOC considering the current sensor bias. It should be noted that the
TOV/SOC errors in the figures are defined as the difference between the TOV/SOC_exp
and TOV/SOC_PIO, or the difference between the TOV/SOC_exp and TOV/SOC_current
bias. Figure 4 shows the estimation results of the model TOV and SOC, considering sensor
bias at 2 C-rates condition. It can be seen from Figure 4c,d that the current sensor bias has
led to an inaccurate estimation of battery TOV and SOC. Specifically, TOV error fluctuates
between −0.04 V and 0.03 V as the change of current bias. In addition, the SOC error is
as high as 0.015 at 1200 s. Although these errors present a small order of magnitude, it
will make the battery system unstable. By contrast, TOV and SOC estimation based on PI
observer are consistent with the real experiment values, whose errors are almost kept at
zero value. Accordingly, the proposed SOC estimation can eliminate current sensor errors
to some extent and show good performance under the constant current condition.
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(a) Results of TOV, (b) Results of SOC, (c) Errors of TOV, (d) Errors of SOC.

To further assess the accuracy of SOC estimation under the dynamic condition,
Figures 5 and 6 present the estimation results of the model TOV and SOC, considering
sensor bias under the Dynamic Stress Test (DST) condition, respectively. As depicted
in Figure 5b,c, the estimation of TOV based on PIO can well eliminate the influence of
current bias and TOV is, overall, accorded with the real experiment values. However, the
estimation of TOV without PIO fluctuates greatly due to the influence of current bias and
its TOV error is kept in ±0.05 V. Additionally, according to the Figure 6b,c, SOC estimation
based on PIO also reduces the influence of current bias to some extent and presents a good
accuracy under DST condition.
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profile, (b) Results of TOV, (c) Errors of TOV.
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In order to give a quantitative evaluation on the performance of the proposed methods
based on PI observer, the max error (MaxE) and the root mean squared error (RMSE) for
estimated results of TOV/SOC under 2 C-rates and DST conditions are listed in Table 1.
Here, the selected evaluation criteria for TOV/SOC estimation are calculated by:

MaxE = Max
∣∣Yk − Ŷk

∣∣ (23)

RMSE =

√
1
n∑n

k=1

(
Yk − Ŷk

)2
(24)

where Y includes the real TOV_exp and SOC_exp, Ŷ includes the estimated TOV_PIO and
SOC_PIO, k represents the kth point of sampling time and n is total number of sampling
time points during the simulation.

Table 1. Results of the TOV/SOC errors based on PIO.

MaxE RMSE
TOV_PIO (mV) SOC_PIO (%) TOV_PIO (mV) SOC_PIO (%)

2 C 0.28 0.34 0.05 0.01
DST 0.33 0.18 0.05 0.06

As shown from the Table 1, under 2 C condition, the MaxE of TOV is just 0.28 mV and
the RMSE of the TOV is 0.05 mV. For the SOC estimation, the MaxE and RMSE is 0.34%
and 0.01% respectively. On the other hand, the influence of current sensor bias under DST
condition is reduced as well as estimations of TOV and SOC also present good accuracy,
whose MaxEs are 0.33 mV and 0.18%. It should be noted that the estimation accuracy of
TOV and SOC depends on the degree of current sensor bias.

Based on the above discussion and the experimental validation, the PI observer
based on simplified EM can well estimate battery SOC and voltage. In addition, the
impact of current sensor bias on battery SOC estimation can be eliminated under different
operation situations.
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5. Conclusions

In this paper, an online SOC estimation approach based on a simplified EM for lithium-
ion batteries considering sensor bias is proposed. By using the reduced order techniques
for equations in solid and liquid phases, a simplified EM is reconstructed and verified.
Then, a PI observer is designed to eliminate the influence of current sensor bias and
estimate the battery TOV and SOC under different conditions. Specifically, under 2 C and
DST conditions, the MaxEs of TOV are only 0.28 mV and 0.33 mV, respectively. For the
SOC estimation, the MaxEs of that are only 0.34% and 0.18%. These experiment results
indicate that the proposed method has a good performance in both estimation accuracy and
computing efficiency, even if there exists the current bias, which facilitates the on-board
application in BMS.

Considering the impact of current rates and temperature on model parameters, the
electrochemical-thermal model will be explored and the influence of temperature on SOC
estimation will also be further investigated in future work.
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Nomenclature
ai specific surface area [m−1]
A electrode surface area [m3]
cs,i,surf solid-phase surface concentration [mol m−3]
cmax

s,i maximum lithium-ion concentration [mol m−3]
ce,i electrolyte concentration [mol m−3]
cs,i average solid-phase concentration [mol m−3]

c2in
electrolyte concentration at the interface between the negative electrode and the
separator [mol m−3]

c2ip
electrolyte concentration at the interface between the positive at the electrode and
the separator [mol m−3]

De electrolyte diffusion coefficient [m2 s−1]
ceff

e,i effective electrolyte diffusion coefficient [m2 s−1]
Ds,i solid-phase diffusion coefficient [m2 s−1]
F Faraday constant [96,487 C mol−1]
iapp applied current density [A m−2]
i0,i exchange current density [A m−2]
Ji pore wall flux [mol m−2 s−1]
Li thickness of porous regions [m]
q2in diffusion flux at the interface of the negative electrode and separator [mol m−2 s−1]
q2ip diffusion flux at the interface of the positive electrode and separator [mol m−2 s−1]
R universal gas constant [8.314 J mol−1 K−1]
Rf resistance of battery film contact [Ω]
Ri particle radius of electrodes [m]
t+ electrolyte transference number
T battery temperature [K]



Energies 2021, 14, 5265 11 of 12

Subscripts
i substitution of n, sep or p
n negative electrode
p positive electrode
s separator
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