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Abstract: The quantitative evaluation of cluster wind power output volatility and source-load timing
matching is vital to the planning and operation of the future power system dominated by new
energy. However, the existing volatility evaluation methods of cluster wind power output do not
fully consider timing volatility, or are not suitable for small sample data scenarios. Meanwhile,
the existing source-load timing matching evaluation indicator ignores the impact of wind power
permeability on the timing matching degree between wind power output and load. Therefore,
the authors propose quantitative evaluation methods of cluster wind power output volatility and
source-load timing matching in regional power grid. Firstly, the volatility-based smoothing coefficient
is defined to quantitatively evaluate the smoothing effect of wind-farm cluster power output. Then,
the source-load timing matching coefficient considering wind power permeability is proposed to
quantitatively evaluate the timing matching degree of regional wind power output and load, and
the corresponding function model of volatility-based smoothing coefficient and source-load timing
matching coefficient is established. Finally, the validity and applicability of the proposed methods
are verified by MATLAB software based on the actual power output of 10 wind farms and actual grid
load in a certain grid dispatching cross-section of northeast China. The results demonstrated that
the proposed volatility-based smoothing coefficient can accurately represent the smoothing effect of
wind farm cluster power output while maintaining the volatility continuity of wind power output
time series and without affect from the data sample size. The source-load timing matching coefficient
can accurately characterize the difference in the timing matching degree between wind power output
and grid load under different wind power permeability and the influence degree on grid load.

Keywords: regional power grid; wind power output; grid load; source-load timing matching
coefficient; volatility-based smoothing coefficient

1. Introduction

It is an inevitable trend for future development to implement renewable energy
substitution actions, deepen the reform of power systems and build a new power system
dominated by new energy. The power system with new energy as the main component
means that wind power and photovoltaic power will be the main body of the future power
system, and coal power will become an auxiliary energy source. However, wind power
output has inherent properties of randomness, intermittence and uncontrollability, and its
adverse impact on the power system increases significantly with the continuous increase
of permeability [1,2]. Moreover, the load of the power grid is affected by many factors
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such as economic structure, social factors, climate conditions and electricity price, which
also have significant stochastic uncertainty [3]. The double uncertainty characteristics of
source and load bring great challenges to the security, stability and economic operation of
the new power system with new energy as the main body [4]. It is some relief to consider
the spatial smoothing effect of wind farm cluster power output, which can effectively
reduce the fluctuation of total output [5,6] and alleviate the negative impact of large-scale
wind power integration on the power system. However, the combined power output
characteristics of different wind farms and their timing matching with the grid load have
obvious differences. Therefore, the quantitative evaluation of the timing matching degree
between wind power output and load in the regional power grid is an issue that should be
solved in the planning and operation scheduling of the new power system dominated by
new energy in the future.

Many scholars have conducted corresponding research on the quantitative evaluation
of cluster wind power output volatility and the timing matching of wind power output
and load. In the aspect of study on cluster wind power output volatility, Shen et al. [7]
established the functional relationship between smoothing effect, output correlation and
the number of wind turbines. Liu et al. [8] revealed the mechanism of smoothing effect and
analyzed the relationship between the smoothing effect, the number of wind farms, and
the regional geographic scope. Li et al. [9] quantified the functional relationship between
the smoothing effect and the number of wind turbines, and the correlation coefficient.
Yang et al. [10] proposed a quantitative evaluation index of the wind power smoothing
effect and investigated the smoothing effect characteristics of a wind farm cluster for dif-
ferent numbers of wind turbines, different wind speeds, different seasons and multiple
sampling intervals. Nanahara et al. [11] introduced the average coherence indicator for
evaluating the power-system-wide smoothing effects of wind farms. Ye et al. [12] defined
an evaluation index for the curve of the absolute value of the offshore wind power output
variation ratio to quantify the smoothing effect. Shahriari et al. [13] quantified the scaling of
the geographic smoothing effect for large-scale wind energy deployment over various spa-
tial and temporal scales, using a bounding deployment scenario that seeks to incrementally
minimize the variance of power output from a portfolio of wind sites.

In the aspect of study on the timing matching quantitative evaluation method between
wind power output and load, Ye et al. [14] analyzed the matching relationship between
different types of power output and load based on the volatility inconsistency degree of
various power sources and load. Wen et al. [15] established an optimal scheduling model for
a hybrid wind-solar-hydro power generation system and data center in the load-side based
on the load tracking coefficient defined by the source-side power generation change rate
and the load-side power consumption change rate. Qu et al. [16] defined the consistency
index of wind power and total/static load changes and proposed three optimization control
strategies for fluctuation smoothing, load tracking and power balance. Yang et al. [17]
proposed a coordinated optimal dispatching scheme to minimize the dynamic source-
load tracking coefficient. Yang et al. [18] proposed an optimal scheduling approach on
the wind-solar-storage generation system, which considers the correlation among wind
power, photovoltaic output and load.

In summary, many scholars proposed smoothing coefficients based on standard devia-
tion or volatility confidence interval to quantitatively evaluate cluster wind power output
volatility. Scholars have also proposed the load tracking coefficient based on volatility
consistency to quantitatively evaluate source-load timing matching degree;however, there
are still some problems, which follow:

(1) The smoothing coefficient based on standard deviation ignores the volatility conti-
nuity of the wind power output time series, and the smoothing coefficient based on
the volatility confidence interval is not suitable for small sample data scenarios of
wind power output, which cannot accurately reflect the smoothing effect of cluster
wind power output in some cases.
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(2) The load tracking coefficient ignores the influence of wind power permeability on
the timing matching degree of wind power output and load, which cannot accurately
characterize the difference in timing matching degree between wind power output
and grid load under different wind power permeability and the influence degree on
grid load.

To solve the aforementioned problems, the quantitative evaluation methods for
the smoothing effect of wind farm cluster power output and the timing matching de-
gree between wind power output and load in the regional power grid are proposed in this
paper. The main contributions of this study are as follows:

(1) The volatility-based smoothing coefficient of wind farm cluster power output is
defined. The proposed volatility-based smoothing coefficient can accurately represent
the smoothing effect of wind farm cluster power output, which not only can maintain
the volatility continuity of wind power output time series, but is also unaffected by
the data sample size.

(2) The timing matching degree evaluation indicator and its formula of regional wind
power output and load considering permeability are proposed. The proposed source-
load timing matching coefficient can accurately characterize the difference in the tim-
ing matching degree between wind power output and grid load under different wind
power permeability and the influence degree on grid load.

(3) The exponential function model of volatility-based smoothing coefficient and source-
load timing matching coefficient is established. The exponential function model
depicts the quantitative relationship between the volatility smoothing effect of wind
farm cluster power output and source-load timing matching degree, which makes up
for the deficiency of simple qualitative analysis in previous studies.

The rest of this paper is organized as follows: Section 2 describes the basic idea of
this paper. Section 3 introduces the smoothing effect of cluster wind power output and its
evaluation indicator. Section 4 describes the timing matching degree evaluation indicator
of wind power output and grid load. Section 5 elaborates on the case study. Section 6
concludes this paper.

2. The Basic Idea

The basic idea of this paper is mainly divided into two parts: indicators proposal and
methods verification, as shown in Figure 1. In the indicators proposal part, the deficiencies
of the existing evaluation indicators of cluster wind power output smoothing effect and
the timing matching degree between wind power output and grid load are analyzed, and
the volatility-based smoothing coefficient and source-load timing matching coefficient are
proposed. In the methods verification part, the validity and applicability of the proposed
methods are verified based on the actual power output of wind farms and actual grid
load by MATLAB software. Firstly, the smoothing effect of cluster wind power output
under different numbers and combinations of wind farms is quantitatively analyzed based
on the volatility-based smoothing coefficient. Then, the source-load timing matching
between cluster wind power output and grid load under different wind farm combinations
is quantitatively verified based on the source-load timing matching coefficient. Finally,
the corresponding function model of the volatility-based smoothing coefficient and source-
load timing matching coefficient is established.
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3. The Smoothing Effect of Cluster Wind Power Output and Its Evaluation Indicator
3.1. The Smoothing Effect of Cluster Wind Power Output

The smoothing effect of cluster wind power output refers to the phenomenon that
the volatility of wind farm cluster power output decreases with the expansion of the re-
gional scale due to the delay effect and filtering effect on the time scale [19,20], and
the distribution effect on the spatial scale [8]. Among them, the spatial distribution ef-
fect is an important factor and necessary condition for the smoothing effect, which is
the inconsistent change of power output caused by the difference of spatial distribution
of wind resources; in essence, the resulting power output fluctuations offset each other in
the superposition process, and the overall power output fluctuation is significantly lower
than the individual [7].

3.2. The Existing Smoothing Effect Evaluation Indicators and Their Deficiencies

In order to quantitatively evaluate the smoothing effect of cluster wind power output,
the smoothing coefficients based on standard deviation and the volatility confidence
interval are usually used as the basic indicators.

(1) The smoothing coefficient based on standard deviation

The smoothing coefficient based on standard deviation characterizes the relative
change of the normalized power output standard deviation of a single wind farm and wind
farm cluster [9], as shown in Formula (1).

S1 =
σsingle − σcluster

σsingle
(1)

where S1 is the smoothing coefficient based on standard deviation, σsingle is the normalized
power output standard deviation of a single wind farm, and σcluster is the normalized power
output standard deviation of wind farm cluster. The larger the value of S1, the stronger
the smoothing effect of wind farm cluster power output.

The smoothing coefficient based on standard deviation is used to quantitatively
evaluate the smoothing effect of cluster wind power output from the perspective of overall
volatility. However, the standard deviation reflects the dispersion degree of data deviation
from the average value in the statistical theory, ignoring the volatility continuity of wind
power output time series. Therefore, the smoothing coefficient based on standard deviation
may ignore the problem of local smoothing effect in some periods within the statistical
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time interval, making it inaccurate to reflect the smoothing effect of cluster wind power
output in some cases.

(2) The smoothing coefficient based on volatility confidence interval

The smoothing coefficient based on the volatility confidence interval characterizes
the relative change of the normalized power output volatility confidence interval of a single
wind farm and wind farm cluster under the same cumulative probability [9], as shown in
Formula (2). {

S2 =
Rsingle−Rcluster

Rsingle

P(X ≤ R) = q
(2)

where S2 is the smoothing coefficient based on volatility confidence interval, Rsingle is
the normalized power output volatility confidence interval of a single wind farm under
the given cumulative probability, and Rcluster is the normalized power output volatility
confidence interval of wind farm cluster under the given cumulative probability. P is
the probability density function, X is the standard unit value of wind farm power output
fluctuation, and q is the given cumulative probability, which is 0.95 in this paper. The larger
the value of S2, the stronger the smoothing effect of wind farm cluster power output.

The smoothing coefficient based on the volatility confidence interval is used to quanti-
tatively evaluate the smoothing effect of cluster wind power output from the perspective
of probability distribution characteristics. However, the fitting quality of the probability
distribution function is closely related to the sample size in the probability theory. As
a result, the smoothing coefficient based on volatility confidence interval is not applicable to
wind farm power output in small sample data scenarios and cannot evaluate the smoothing
effect at shorter time scales.

3.3. The Volatility-Based Smoothing Coefficient

In order to overcome the shortcomings of the existing smoothing evaluation indica-
tors, a volatility-based smoothing coefficient is proposed. The volatility-based smoothing
coefficient mainly characterizes the decrease-rate of power output fluctuation of wind farm
cluster compared to that of an individual wind farm, which is from the perspective of wind
power output time series volatility. Not only can it maintain the volatility continuity of
wind power output time series, but it also is unaffected by the data sample size.

Firstly, the output of a single wind farm is normalized [21], as shown in Formula (3).

P′i (t) =
Pi(t)− Pi,min

Pi,max − Pi,min
(3)

where P′i (t) is the normalized power output of the i-th wind farm at time t, Pi(t) is the power
output of the i-th wind farm at time t, and Pi,max and Pi,min are the maximum and minimum
power output of the i-th wind farm in the time scale of investigation, respectively.

Then, the normalized power output of wind farm cluster is calculated, as shown in
Formula (4). 

P′cluster(t) =
N
∑

i=1
αiP′i (t)

αi =
PR

i
N
∑

i=1
PR

i

(4)

where P′cluster(t) is the normalized power output of wind farm cluster at time t, PR
i is

the rated installed capacity of the i-th wind farm, αi is the proportion of the rated installed
capacity of the i-th wind farm in the total installed capacity of the wind farm cluster, and N
is the number of wind farms.
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Finally, the volatility-based smoothing coefficient of wind farm cluster is calculated,
as shown in Formula (5).

S3 = 1−
n−1
∑

t=1
|∆P′cluster(t)|

n−1
∑

t=1

N
∑

i=1
|αi∆P′i (t)|

∆P′i (t) = P′i (t + 1)− P′i (t)
∆P′cluster(t) = P′cluster(t + 1)− P′cluster(t)

(5)

where S3 is the volatility-based smoothing coefficient, ∆P′i (t) is the normalized power
output fluctuation of the i-th wind farm at time t, ∆P′cluster(t) is the normalized power
output fluctuation of wind farm cluster at time t, and n is the number of wind power
output data in the time scale of investigation. The larger the value of S3, the stronger
the smoothing effect of wind farm cluster power output.

4. The Timing Matching Degree Evaluation Indicator of Wind Power Output and
Grid Load
4.1. The Existing Source-Load Timing Matching Degree Evaluation Indicator and Its Deficiencies

At present, the load tracking coefficient based on volatility consistency is usually used
to quantitatively evaluate the timing matching of wind power output and grid load [14–18],
as shown in Formula (6). 

IT = 1
n−1

n−1
∑

t=1
|∆W ′(t)− ∆P′(t)|

∆W ′(t) = W ′(t + 1)−W ′(t)
∆P′(t) = P′(t + 1)− P′(t)

(6)

where IT is the load tracking coefficient, ∆W ′(t) and ∆P′(t) is the normalized load fluctua-
tion and wind farm power output fluctuation at time t, W ′(t) and P′(t) are the normalized
load and wind farm power output at time t, and the normalization method is the same
as Formula (3). The closer IT is to 0, the more consistent the change characteristics of
wind farm power output and grid load in the time scale of investigation, and the better
the tracking performance of power output on the grid load.

The load tracking coefficient is the normalized output and load data, which does
not change with the wind farm installed capacity; that is, the wind power permeability.
Therefore, the load tracking coefficient ignores the influence of wind power permeability
on the timing matching degree of wind power output and load, which cannot accurately
characterize the difference in the timing matching degree between wind power output and
grid load under different wind power permeability, and the influence degree on grid load.

4.2. The Source-Load Timing Matching Coefficient

In order to overcome the deficiencies of the existing source-load timing matching
evaluation indicator, a source-load timing matching coefficient considering permeability is
proposed, which can accurately characterize the difference in the timing matching degree
between wind power output and grid load under different wind power permeability and
the influence degree on grid load from the perspective of wind power output and load
volatility by introducing the theoretical permeability coefficient of wind power, as shown
in Formula (7). 

IM =

n−1
∑

t=1

∣∣∣∣∆W ′(t)−η∗
N
∑

i=1
αi∆P′i (t)

∣∣∣∣
n−1
∑

t=1
|∆W ′(t)|

η =

N
∑

i=1
PR

i

Wmax

(7)
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where IM is the source-load timing matching coefficient, η is the wind farm cluster perme-
ability coefficient, and Wmax is the maximum grid load in the time scale of investigation
or longer time scale. The smaller the value of IM, the better the timing matching degree
between wind farm cluster power output and grid load.

5. Case Study
5.1. Data

The validity and applicability of the proposed methods are verified based on the actual
power output of 10 wind farms and actual grid load in a certain grid dispatching cross-
section of Northeast China. The geographical distribution and rated installed capacity of
some wind farms in northeast China are shown in Figure 2; the cluster wind farms are
located northeast, in the Inner Mongolia Autonomous Region of China. With flat terrain
and wide distribution, the maximum and minimum rated installed capacities are 400.5 MW
and 45 MW, respectively. The maximum grid load in this grid dispatching cross-section
is 1736.33 MW. The data selected in this paper mainly include the actual power output of
wind farms and actual grid load, the data time length is 1 year, and the time resolution is
15 min.
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east China.

5.2. Results
5.2.1. The Smoothing Effect Analysis of Wind Farm Cluster Power Output

The essence of the smoothing effect of wind farm cluster power output is ascribable to
differences in wind farm power output in the region. Generally, the stronger the output
correlation, the weaker the smoothing effect. Based on the actual power output of the wind
farm cluster, the Spearman nonlinear correlation coefficient [21] and three smoothing coef-
ficients are used to quantitatively analyze the wind farm cluster power output smoothing
effect under different combinations, as shown in Figure 3.



Energies 2021, 14, 5214 8 of 13

Energies 2021, 14, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 2. The geographical distribution and rated installed capacity of some wind farms in northeast 
China. 

5.2. Results 
5.2.1. The Smoothing Effect Analysis of Wind Farm Cluster Power Output 

The essence of the smoothing effect of wind farm cluster power output is ascribable 
to differences in wind farm power output in the region. Generally, the stronger the output 
correlation, the weaker the smoothing effect. Based on the actual power output of the 
wind farm cluster, the Spearman nonlinear correlation coefficient [21] and three smooth-
ing coefficients are used to quantitatively analyze the wind farm cluster power output 
smoothing effect under different combinations, as shown in Figure 3. 

  
(a) (b) 

 

 

(c)  

Figure 3. The smoothing coefficients under different wind farm combinations. (a) The volatility-based
smoothing coefficient; (b)The smoothing coefficient based on standard deviation; (c) The smoothing
coefficient based on volatility confidence interval.

As shown in Figure 3a, the volatility-based smoothing coefficient increases with
the increase of the number of wind farm combinations, indicating that the smoothing effect
of wind farm cluster power output is enhanced, but the increasing speed is gradually
slowed down. The main reason is that the nonlinear correlation between the power
output of the wind farm cluster and the power output of the new single wind farm is
enhanced, the smoothing effect is gradually weakened, and there is a certain smoothing
saturation effect, which accords with the general law. Under the same number of wind farm
combinations, there is a significant negative linear relationship between the volatility-based
smoothing coefficient and the nonlinear correlation coefficient, and the slope gradually
increases with an increase in the number of wind farm combinations. This indicates that
the smoothing coefficient decreases faster with the increase of the nonlinear correlation
coefficient, which corresponds to the slower growth rate of the volatility-based smoothing
coefficient as the number of wind farm combinations increases. As shown in Figure 3b,
the smoothing coefficient based on standard deviation varies with the number of wind
farm combinations, and the nonlinear correlation coefficient is similar to the volatility-
based smoothing coefficient; however, the smoothing coefficient is negative under the two
wind farm combinations. The main reason is that the smoothing coefficient based on
standard deviation is used to quantitatively evaluate the smoothing effect of wind farm
cluster power output from the perspective of overall volatility, which ignores the volatility
continuity of wind power output time series. Therefore, the smoothing coefficient based
on standard deviation may ignore the problem of local smoothing effect in some periods
within the statistical time interval. As shown in Figure 3c, the smoothing coefficient based
on volatility confidence interval decreases with the increase of the nonlinear correlation
coefficient, and the smoothing effect of wind farm cluster power output is enhanced, but
there is no obvious rule between the smoothing coefficient and the number of wind farm
combinations. At the same time, it should be noted that the volatility confidence interval
is greatly affected by the data sample size. In summary, the volatility-based smoothing
coefficient can accurately represent the smoothing effect of cluster power output under
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different combinations of wind farms, which can maintain the volatility continuity of wind
power output time series and be unaffected by the data sample size.

Based on the volatility-based smoothing coefficient, the smoothing effect under differ-
ent numbers of wind farms is quantitatively evaluated, as shown in Figure 4. It can be seen
from Figure 4 that the volatility-based smoothing coefficient increases with an increase in
the number of wind farms, but the increase amplitude gradually decreases. This indicates
that the smoothing effect of wind farm cluster power output is enhanced, and the wind
farm cluster can effectively reduce the overall power output fluctuation, but there is a cer-
tain smoothing saturation effect. The fitting function of the volatility-based smoothing
coefficient varying with the number of wind farms is shown in Formula (8).

S3 = 0.42× e0.02726N − 0.3729× e−0.4694 N (8)

Analyzing Formula (8), it can be seen that with the increase of the number of wind
farms, the volatility-based smoothing coefficient shows a double exponential function.
For wind farm cluster with different locations and wind conditions, the coefficients of
double exponential function are different, but the double exponential function relationship
remains unchanged.
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5.2.2. The Source-Load Timing Matching Degree Analysis

The timing matching degree of cluster power output and grid load under different
wind farm combinations are quantitatively analyzed based on the load tracking coefficient
and source-load timing matching coefficient, as shown in Figure 5.
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(a) The load tracking coefficient; (b) The source-load timing matching coefficient.

As shown in Figure 5a, the volatility-based smoothing coefficient of wind farm cluster
power output gradually increases, and the load tracking coefficient linearly decreases
with the increase of the number of wind farm combinations, which indicates that the fluc-
tuation consistency of wind farm cluster power output and grid load in the time scale
of investigation gradually increases, and the better the tracking performance. However,
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the adverse impact on the grid load is more obvious with the increase of wind power
permeability for the same grid load in general. Nevertheless, the load tracking coefficient
cannot reflect the difference in the timing matching degree between wind power output
and grid load under different wind power permeability and the influence degree on grid
load. As shown in Figure 5b, The source-load timing matching coefficients decrease with
the increase of the volatility-based smoothing coefficient for the same number of wind farm
combinations (wind power permeability), indicating that the timing matching degree of
wind farm cluster power output and grid load are gradually enhanced. The source-load
timing matching degree can be enhanced by improving the smoothing effect of wind farm
cluster power output. The volatility-based smoothing coefficient gradually increases, and
the source-load timing matching coefficient shows a linear increase with the increase of
the number of wind farm combinations, indicating that the timing matching between wind
power output and grid load becomes worse with the increase of wind power permeability.

However, due to the obvious differences in the rated installed capacity of different
wind farms, it cannot accurately quantify the influence of wind power permeability on
source-load timing matching. The rated installed capacity of different wind farms are
converted into the hypothetical rated installed capacity (100 MW) in an equal proportion to
quantitatively analyze the timing matching degree of wind farm cluster power output and
grid load, and the corresponding functions of the volatility-based smoothing effect coeffi-
cient, load tracking coefficient and source-load timing matching coefficient are respectively
fitted, as shown in Figure 6.
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As shown in Figure 6a, the corresponding relationship between the volatility-based
smoothing coefficient and load tracking coefficient under the assumed rated installed
capacity is not significantly different from the actual rated installed capacity. This further
proves that the load tracing coefficient cannot reflect the matching difference between
wind power output and grid load under different permeability and the influence degree
on grid load. The load tracking coefficient and volatility-based smoothing coefficient
present the significant negative linear correlation under different wind power permeability.
The fitting function is as follows:

IT = −0.02039S3 + 0.04121 (9)

An analysis of Formula (9) shows the load tracking coefficient and volatility-based
smoothing coefficient present a significant negative linear correspondence. With the in-
crease of wind power permeability, the volatility-based smoothing coefficient gradually
increases, and the load tracking coefficient presents the linear attenuation characteristic;
that is, the timing matching of wind farm cluster power output and grid load is enhanced,
which does not conform to the basic law that the adverse impact of wind power on the safe
and stable operation of the grid increases significantly with the increase of wind power
permeability. For different wind farm cluster and grid load, the negative linear function
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coefficients of the load tracking coefficient and volatility-based smoothing coefficient are
slightly different, but the negative linear function relationship remains unchanged.

As shown in Figure 6b, the corresponding relationship between the volatility-based
smoothing coefficient and source-load timing matching coefficient under the assumed
rated installed capacity is more compact than that of the actual rated installed capacity.
Under different wind power permeability, the relationship between the source-load timing
matching coefficient and volatility-based smoothing coefficient presents an approximately
exponential function, and the fitting function is as follows:

IM = 1.004 ∗ e(0.02601∗S3) (10)

An analysis of Formula (10) shows the source-load timing matching coefficient and
volatility-based smoothing coefficient present an approximate exponential function rela-
tionship. With the increase of wind power permeability, the volatility-based smoothing
coefficient increases gradually, and the source-load timing matching coefficient presents
a linear increasing variation law; that is, the smoothing effect of wind farm cluster power
output becomes stronger, while the timing matching degree between wind power output
and grid load becomes worse with the increase of wind power permeability. This is in line
with the basic law that the adverse impact of wind power on the safe and stable opera-
tion of power grid increases significantly with the increase of wind power permeability.
For different wind farm cluster and grid load, the exponential function coefficients of
the source-load timing matching coefficient and volatility-based smoothing coefficient are
different, but the exponential function relationship remains unchanged.

In summary, the source-load timing matching coefficient can accurately characterize
the difference in timing matching degree between wind power output and grid load under
different wind power permeability and the influence degree on grid load, and the influence
of wind power permeability is greater than the smoothing effect of wind farm cluster
power output.

6. Conclusions

This paper proposed the quantitative evaluation methods of cluster wind power out-
put volatility and source-load timing matching in regional power grid. Firstly, the volatility-
based smoothing coefficient is defined to quantitatively evaluate the smoothing effect of
wind farm cluster power output. Then, the source-load timing matching coefficient consid-
ering wind power permeability is proposed to quantitatively evaluate the timing matching
degree of regional wind power output and load, and the corresponding function model of
the volatility-based smoothing coefficient and the source-load timing matching coefficient
is established. Finally, the validity and applicability of the proposed methods are verified
based on the actual power output of 10 wind farms and actual grid load in a certain grid
dispatching cross-section of Northeast China. The conclusions are as follows:

(1) The volatility-based smoothing coefficient can accurately represent the smoothing
effect of wind farm cluster power output, which not only can maintain the volatility
continuity of wind power output time series, but also is not affected by the data
sample size. The volatility-based smoothing coefficient presents a double exponential
growth feature with the increase of wind farm numbers, and the specific coefficients
are determined by locations and wind conditions of wind farms.

(2) The ssource-load timing matching coefficient can accurately characterize the difference
in timing matching degree between wind power output and grid load under different
wind power permeability and the influence degree on grid load. The source-load
timing matching coefficient decreases linearly with the increase of the volatility-
based smoothing coefficient under the same wind power permeability, indicating that
the source-load timing matching degree can be improved by the smoothing effect of
wind farm cluster power output. The source-load timing matching coefficient and
the volatility-based smoothing coefficient show an approximate exponential function
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relationship under different wind power permeability, indicating that the source-load
timing matching degree becomes worse with the increase of wind power permeability,
and the influence of wind power permeability is greater than the smoothing effect of
wind farm cluster power output.

(3) The exponential function model depicts the quantitative relationship between the volatil-
ity smoothing effect of wind farm cluster power output and the source-load timing
matching degree, which makes up for the deficiency of simple qualitative analysis in
previous studies.

(4) The proposed indicators can be applied to cluster wind farms’ capacity planning and
operation scheduling. In the capacity planning stage, the volatility-based smoothing
coefficient can help to determine the installed capacity proportion in wind farm
cluster joint planning to reduce the volatility of wind power combined output. In
the operation scheduling stage, the proposed source-load timing matching coefficient
can improve the timing matching degree between wind power output and grid load
to reduce the adverse impact of wind power grid connection on the power system.

There are several possible directions to further the present work. The quantitative
evaluation method of source-load timing matching degree based on the similarity measure-
ment of wind power output and grid load time series can be further studied. Moreover,
the proposed source-load timing matching coefficient can be further applied to cluster
wind farms capacity planning and operation scheduling, and it should be noted that other
parameters, such as the wind farm capacity coefficient, wind power penetration limitation
and energy storage capacity, need to be considered in the practical applications.
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