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Abstract: Nonlinear control problems in turbofan engines are challenging. No single nonlinear
controller can achieve desired control effects in a full flight envelope, but in the case of multiple
controllers, there exist problems in the bumpless transfer between different controllers. To this
end, this paper presents a bumpless transfer mechanism for an uncertain switched system based
on integral sliding mode control (ISMC), and the mechanism can be used for the speed control of
turbofan engines. The uncertain switched system is used to describe the turbofan engine dynamics.
Then, the ISMC controller is derived for subsystems of the uncertain switched system. A resetting
scheme is introduced for the ISMC controller to ensure the continuity of control inputs during the
controller transition, as well as the bumpless transfer. In view of the transient behavior caused
by controller switching, the global stability of the switched system is analyzed using the multiple
Lyapunov function approach and average dwell time condition. Simulation results validate that the
designed resetting scheme can ensure the continuity of control input signals and avoid the instability
caused by high-frequency controller switching, and increase the control effectiveness of the proposed
ISMC method within the full flight envelope.

Keywords: bumpless transfer; uncertain switched system; integral sliding mode control; multiple
Lyapunov function; global stability; turbofan engine

1. Introduction

The aircraft engine is a highly complex thermodynamic system whose dynamic varies
with flight conditions, operating states and component deteriorations [1]. To ensure the
safety, reliability and economy, control system plays an important role in engine operation.
Over the past decades, many classical control theories and advanced control techniques,
such as sliding mode control, adaptive control, and H∞ control, have been proposed to
improve the engine control performance [2–4]. However, no single model-based controller
can achieve the required control effect across the flight envelope [1,2]. When multiple
controllers are adopted, the scheduling using gain-scheduling or the LPV technique is not
always feasible, and the stability condition based on the frozen-time theory or the common
Lyapunov function method is rather conservative [5–7].

A switched system is a class of hybrid systems [8,9], with vast engineering applications
in various practical situations and as such, it has been thoroughly investigated [8–10].
It consists of a family of continuous time subsystems, including the discrete logical rule
regulating the switching between these subsystems [11]. As a special dynamic system,
exponential stability of all subsystems cannot guarantee the global stability of the switched
system [12]. Thus, traditional stability analysis methods cannot be directly applied to
switched systems [8]. The switched system stability analysis attracts considerable attention,
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and various tools have been developed [13–16]. Of these methods, the multiple Lyapunov
function technique is widely used in stability analysis and control synthesis because of
less conservatism.

Uncertainties in switched systems can seriously complicate system dynamics [17,18].
Hence, these uncertainties should be considered in control synthesis and stability analysis [18].
Additionally, the uncertainties caused by the modeling error should also be taken into
account. A series of results for uncertain switched systems are available in the existing
literature [19–21].

Bumpless transfer is another essential aspect of the switched system control [22–24].
Switching between two controllers can result in abrupt change of the control input signal.
This change generally implies the existence of undesired transient behaviors which de-
grades the system performance. As a result, system trajectory may not simply move from
one region to the other [25]; instead, the system state resides in the neighborhood around
the switching boundaries, forming a high-frequency switching phenomenon between
neighboring controllers. In extreme cases, those behaviors will destabilize the switched
closed-loop system [22]. In model reference adaptive control (MRAC) of a switched system,
the frozen parameter method was proposed to ensure the control input continuity [25,26].
In sliding mode control (SMC) of multiple loops, a smooth transition law using the natural
exponential function was designed to gradually transform the control signal transmitted to
engines [27]. Therefore, bumpless transfer between controllers cannot simply be taken for
granted [22,28].

In this paper, bumpless transfer of an uncertain switched system is achieved by the
designed resetting scheme, which can avoid abrupt change of the control input signal.
Firstly, an uncertain switched system is constructed to describe turbofan engine dynamics
within the flight envelope. In this model, parametric uncertainties, disturbance, and
modeling error are regarded as a lumped uncertainty of the uncertain switched system.
Secondly, an ISMC controller is designed to compensate the lumped uncertainty and
regulate engine speed. Given the controller transition, the finite time convergence of
tracking error can also be guaranteed by the designed controller. Thirdly, a resetting
scheme is proposed for ISMC controller to ensure a smooth controller transition. Unlike the
conventional ISMC method which resets the initial state to eliminate the reaching phase, the
designed resetting scheme is used to ensure the control input continuity during controller
switching. Finally, the global stability of the switched closed-loop system is proven using
the multiple Lyapunov function method and average dwell time condition. The transient
behavior caused by controller switching was predominantly considered in the method.

The scientific contribution of this paper can be summarized as follows. First, bumpless
transfer between different controllers is achieved by the designed resetting scheme. In this
scheme, supernumerary complex switching logics such as hysteresis logic are not needed.
Meanwhile, the designed ISMC control law can still ensure finite reachability of the system
state. Second, the mismatch between a switched system and a nonlinear system is modeled
by lumped uncertainty, which can be compensated by the control law. Third, the global
stability considering nonlinear dynamic behaviors caused by controller switching is proved.

The remainder of the paper is organized as follows: an uncertain switched system
describing the engine dynamic is shown in Section 2, along with the ISMC controller
design, resetting scheme, and global stability analysis. Based on a turbofan engine model,
simulations were performed in Section 3 to verify the proposed control method and
resetting scheme. Finally, conclusions are given in Section 4.

2. Methods
2.1. Problem Formulation

A general case of the nonlinear aero-thermodynamic model of the turbofan engine
can be described as:
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{
ẋ = f (x, u)
y = g(x, u)

(1)

where x ∈ Rn is the state vector, u ∈ Rm is the control input, y ∈ Rp denotes the output
vector, while f (·) and g(·) are the n-dimensional nonlinear functions representing the
engine dynamics and the p-dimensional measurement output function, respectively.

The space including the allowable engine operating ranges is denoted by X ∈ Rq,
where q ∈ Z+. Space X can be partitioned into a series of subregions, i.e., Xi ∈ X, i ∈ I =
{1, 2, · · · , l}. Furthermore, to describe the engine dynamics using a switched system, either
the linearized models or system identification methods are needed in these subregions.
For convenience, it was assumed that the selected equilibrium point (xe,i, ue,i) ∈ Xi satisfies
the equation ẋ = f (xe,i, ue,i) = 0. The linearization approximation model in the vicinity of
the steady-state point (xe,i, ue,i) can be expressed as:{

ẋ = Ai · ∆x + Bi · ∆u
∆y = Ci · ∆x + Di · ∆u

(2)

where Ai = ∂ f /∂x, Bi = ∂ f /∂u, Ci = ∂ f /∂x, Di = ∂ f /∂u are parameter matrices, i is the
subregion index, and ∆x = x− xe,i, ∆u = u− ue,i, ∆y = y− ye,i.

When the system state is the controlled output variable, the model can be simplified as:

ẋ = Ai · ∆x + Bi · ∆u (3)

However, the nonlinear system (1) cannot be accurately approximated by model (3) in
larger operating ranges. Thus, bearing in mind the mismatch between the nonlinear
system (1) and the system (3) in each subregion, the following system was adopted in this
paper as an improvement of the model (3):

ẋ = Aix + Bi
(
u + ξa,i

)
+ f a,i(x)− Ai · xe,i − Bi · ue,i (4)

where f a,i(x) is the characteristic system uncertainty and ξa,i(x) represents the matched
uncertainty and external disturbance.

The dynamic term ge,i(t) = −Axe,i − Bue,i contained in (4) is a piecewise constant
that varies with the steady-state points. Additionally, the dynamics term ge,i(t) can be
treated as an additional term and be compensated under specific matching conditions, by
applying the modifications to the selected control scheme [26]. Hence, it will be ignored,
which means that the system (5) is used in the controller design:

ẋ = Aix + Bi
(
u + ξa,i(x)

)
+ f a,i(x) (5)

The uncertainty fa,i(x) satisfies the Lipschitz continuity condition, and ξσ,i(x) satisfies∥∥ξa,i(x)
∥∥ ≤ α · ‖x‖, where 0 < γ2,i ∈ R.

2.1.1. Uncertain Switched System

The uncertain switched system structure is shown in Figure 1. For each subregion,
engine dynamics were described by a subsystem like the one shown in Equation (5).
Therefore, the nonlinear system (1) can be approximated by the uncertain switched system.
It should also be noted that each subregion has a deterministic boundary, which means
that there is no intersection between the adjacent subregions.
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Figure 1. Uncertain switched system structure.

To simplify the switched system formulation, the notation χi(t), i ∈ I is introduced.
In the engine operation, the current operating state and flight conditions determine whether
the subsystem is active or not. When the system trajectory enters the subregion Xi, the i-th
subsystem will be activated and χi(t) will be equal to 1. In the opposite case, the subsystem
will be deactivated and χi(t) will be equal to 0, meaning that the subsystem state can be
determined by the following indicator function:

χi(t) =

{
1, x ∈ Xi

0, otherwise
(6)

The common boundary between the two adjacent subregions is merged into one of them,

i.e.,
L
∑

i=1
χi(t) = 1, allowing the uncertain switched system to describe the nonlinear system

dynamic (1) as:
ẋ = Ax + B(u+ξσ(x))+ f σ(x) (7)

where A =
l

∑
i=1

Ai · χi(t), B =
l

∑
i=1

Bi · χi(t), ξa(x) =
l

∑
i=1

ξa,i(x) · χi(t), and

f a(x) =
l

∑
i=1

f a,i(x) · χi(t).

For each subsystem, a controller was designed aiming to achieve the control perfor-
mance. Furthermore, all the controllers can be combined into a super controller able to
regulate the engine speed within the full operating envelope. Figure 2 shows the control
structure of the uncertain switched system.

y
Engine

Switching 
Logic

H,Ma

Resetting n Controller n

Resetting m Controller m

Resetting 2 Controller 2

Resetting 1 Controller 1

Figure 2. The control structure for the uncertain switched system.
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To describe the switched system evolution, the following switching sequence is provided:

E = {(l0, t0), · · · , (li, ti), (li+1, ti+1), · · · (le, te) }, ti ∈ R+, li ∈ I ∈ Z+

where ti denotes the switching time and li indicates that the li-th subsystem is activated. The
term (li, ti) suggests that the system evolves according to equation ẋ = Ali x+ Bli

(
u+ξa,li(x)

)
+ f a,li

(x) over t ∈ [ti, ti+1)], meaning that the equality χi(t) = 1 holds for ti ≤ t < ti+1.
Moreover, E(j)={[tj1 , tj1+1), [tj2 , tj2+1), · · · , [tjm , tjm+1)} denotes all the time intervals dur-
ing which the j-th subsystem is switched on. Finally, sequences E and E(j) are not infinite.

2.1.2. Error-Tracking Dynamic System

The error tracking dynamic system was derived to solve the switched system tracking
problem. Assuming that r denotes the desired trajectory and e = x− r is the tracking error,
the error tracking dynamics can be expressed as:

ė =Ax− Ar + Ar + B(u + ξa(x)) + f a(x)

=Ae + B(u + ξa(x)) + f a(x) + Ar
(8)

The last term on the right can be treated as disturbance and thus compensated by the control
law [26]. Hence, the derivation will utilize the following error tracking dynamic system:

ė = Ae + B(u + ξσ(x)) + f σ(x) (9)

The progression of the error tracking dynamic still follows the partition of Xi. Finally,
Equation (9) can be expressed as:

ė = Ae + B(u + ξσ(e)) + f σ(e) (10)

where ξσ(e) =
l

∑
i=1

ξσ,i(e) · χi(t), and f σ(e) =
l

∑
i=1

f σ,i(e) · χi(t) represent the uncertainties

residing in the control input and system dynamics, respectively.
Therefore, the objective is to derive the ISMC control law and design the bumpless

transfer scheme for the uncertain switched system. Within the resulting scheme, the
tracking error e(t) will exponentially converge to the ball centered at the origin. To simplify
the controller design, the following assumptions can be made regarding the uncertainties:

Assumption 1. The uncertainty ξσ,i(e), i ∈ I satisfies
∥∥ξσ,i(e)

∥∥ ≤ hi,1‖e‖ + hi,2, where
hi,1, hi,2 ∈ R+.

Assumption 2. The uncertainty f σ,i(e), i ∈ I satisfies
∥∥∥ f σ,i(e)

∥∥∥ ≤ di,1‖e‖, where di,1 ∈ R+.

The engine time response near the idle can be much different from the response near
the maximum rotational speed [1]. It should be noted that the response varies with flight
conditions, but this difference is not infinite. Hence, it is implied that the uncertainty term
ξσ,i(e), f σ,i(e) boundness is reasonable.

Before concluding the section, the definition and lemma constituting the necessary
theoretical foundation for the global stability analysis of the switched closed-loop system
are presented.

The definition of average dwell time for switched systems is as follows:

Definition 1 ([22]). Let Nσ(t1, t2) denote the number of switching of the switched system over
the interval (τ1, τ2), 0 ≤ τ1 < τ2 ∈ R+. If the inequality Nσ(t1, t2) ≤ N0 + (t2 − t1)/τd holds
for τd > 0, 0 ≤ N0 ∈ Z, then τd is denoted as the average dwell time.
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Lemma 1. Consider a switched system ż = Amz, where z ∈ Rn, Am = ∑ Am,i · χi(t). The
Lyapunov function for each subsystem is Vi(t) = zTPm,iz. For the switching time, there exists a
positive constant µ such as:

Vk−1(tk) ≤ µ ·Vk(tk)

where µ = max{λmax(Pk−1)/λmin(Pk)}.

Proof. Consider the switching at a time instant tk. For the k-th switched system subsystem
ż = Amz over [tk, tk+1), we have:

λmin(Pm,k) · ‖z‖2 ≤ Vk(t) ≤ λmax(Pm,k) · ‖z‖2

A lower bound for the Lyapunov function is defined as:

‖z‖2 ≤ 1
λmin(Pm,k)

·Vk(t)

where λmin(·), λmax(·) denote the minimum and maximum matrix eigenvalues, respec-
tively. For the (k− 1)-th subsystem over [tk−1, tk), the following expression can be written:

λmin(Pm,k−1) · ‖z‖2 ≤ Vk−1(t) ≤ λmax(Pm,k−1) · ‖z‖2

At the switching time tk, it is possible to derive:

Vk−1(t−k ) ≤
λmax(Pm,k−1)

λmin(Pm,k)
·Vk(tk) ≤ µ ·Vk(t)

2.2. Controller Design
2.2.1. Integral Sliding Surface

Given the i-th switched system subsystem (10), the integral sliding surface is designed
as follows:

s = Gie− ∫ t
0 Gi · (Ai + BiKi)edτ (11)

where Gi and Ki are parameter matrices to be designed. The matrix Gi should be selected
to ensure that GiBi is non-singular, while the Ki will be designed later.

Given the sliding surface (11), the equivalent control law can be derived as:

uequ = Ke− (GiB)
−1 ·

(
Gi · f σ,i(e)

)
− ξσ,i(e) (12)

By substituting the equivalent control (12) into the system (9), the following sliding motion
equation is obtained:

ė = (Ai + BiKi)e +
(

I − B(GiB)
−1Gi

)
f σ,i(e) (13)

The following theorem provides a sufficient condition for the sliding motion equation
stability (13).

Lemma 2. Considering the sliding motion Equation (13), if there exist positive and definite matrices
P1,i ∈ Rm×n and W i ∈ Rm×n, such that the following matrix inequality (14) holds, then the sliding
motion Equation (10) is stable, and the parameter matrix Ki can be designed as Ki = W iP−1

1,i .[
P1 A + QT BT + AP1 + BQ + I P1ḠT

i
ḠiP1 −1/l2 · I

]
< 0 (14)

where Ḡi = I − B(GiB)
−1Gi.
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Proof. Consider the Lyapunov function candidate Vi(t) = eTPie. The time derivative of
the Lyapunov function can be written as:

V̇i(t) ≤ 2eT(Ai + BiKi)
TPie + eTPT

i Pie + f T
σ,i(e)Ḡ

T
i Ḡi · f σ,i(e) (15)

By applying basic inequalities and the Lipschitz continuity condition f σ,i(x), the following
expression is obtained:

V̇i(t) ≤ eT
[
(Ai + BiKi)

TPi + Pi(Ai + BiKi) + PT
i Pi + l2 · ḠT

i Ḡi

]
· e (16)

This expression is, by algebraic transformation and Schur’s complement, equivalent to the
linear matrix inequality (14). Finally, with the inequalities (14), it is trivial to prove that the
sliding motion Equation (11) is stable.

2.2.2. ISMC Control Law for Uncertain Switched System

Based on the aforementioned analysis, the control law (17) can be designed. The
following theorem presents the designed method effectiveness for the ISMC control law.
Moreover, the system trajectories whose initial state are located at any point can reach the
sliding surface in finite time.

Theorem 1. Consider the uncertain switched system (10) subject to Assumptions 1 and 2. Let the
uncertain switched system be controlled by the control law (17). Then, the error tracking system
trajectory can reach the sliding surface in finite time.

ui = Kie + u1,i

u1,i = −{k1,i · (h1,i‖e‖+ h2,i) + k2,i · (d1,i‖e‖+ d2,i) + i} · sgn(s)
(17)

where k1,i =
∥∥∥(GiBi)

−1
∥∥∥ · ‖GiBi‖, k2,i =

∥∥∥(GiBi)
−1
∥∥∥ · ‖Gi‖ , and εi > 0 .

Proof. When the i-th subsystem is activated, consider the following Lyapunov function candidate:

V1,i(t) =
1
2

sT(GiBi)
−1s

the time derivative of which is given by:

V̇1,i(t) = sT · ξσ,i(e) + sT(GiBi)
−1 ·Gi f σ,i(e) + sTu− sTKie (18)

According to Assumptions 1 and 2, we have:

V̇1,i(t) ≤ ‖s‖
∥∥∥(GiBi)

−1
∥∥∥ · (‖GiBi‖ · (h1,i · ‖e‖+ h2,i) + ‖Gi‖ · (d1,i · ‖e‖+ d2,i)) + sTu1 (19)

By substituting the control law (17) into (19), one obtains:

V̇1,i(t) ≤ −ε · ‖s(t)‖ (20)

As can be seen, Equation (20) implies that the trajectories of the state will be driven to the
specified sliding surface. Next, it is necessary to prove that the system state will reach the
sliding mode surface in a finite time. An upper Lyapunov function bound is given as:

V1,i(t) ≤
1
2

λmax(GiBi) · ‖s(t)‖2 (21)

Combined with (20) and (21), it is possible to derive:

V̇1,i(t) ≤ −εi ·
√

2/λmax

[
(GiBi)

−1
]
·V1,i(t) (22)
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By utilizing the basic equality that Vi(te) = 0, where te denotes the time when the system
trajectory reaches the sliding surface. After integrating both sides of Equation (22), we have:

∆T ≤ εi ·
√

V1,i(t0)√
2/λmax

[
(GiBi)

−1
]

where ∆T = te − t0 denotes the time needed to reach the sliding surface. Combined
with (21), one can obtain that:

∆T ≤ ε

2
· λmax

[
(GiBi)

−1
]
· ‖s(t0)‖ (23)

It is obvious that the tracking error e(t) will reach the sliding mode surface in finite time.
Additionally, the length of time interval ∆T can be adjusted through the selection of εi
and s(t0).

2.3. Bumpless Transfer Scheme

A sliding surface resetting scheme was designed to achieve the bumpless transfer
between neighboring controllers. In this scheme, when switching the j-th sub-controller
to the i-th one, the initial value of the i-th sub-controller sliding surface will be reset to
minimize the objective function in Equation (24). Hence, the resetting scheme can be
converted into the optimization problem:

si(ti) = arg min
{∥∥ui(ti)− uj(t−i )

∥∥}, i, j ∈ I (24)

where ui(·), uj(·) are the control input signal generated by the i-th and j-th sub-controller,
respectively, si(ti) is the initial value of the i-th sub-controllers sliding surface, and t−i
denotes the moment prior to time ti.

The scheme is proposed to ensure the control input continuity during controller
switching by resetting the initial state of sliding surface. To achieve this task, sigmoid-like
functions are introduced to replace the sign function. With the resetting scheme, input
continuity can be ensured, which means that the system trajectory can directly enter another
subregion without system output variables oscillation.

2.4. Global Stability of the Uncertain Switched System

When t ∈ [ti, ti+1), the i-th subsystem is active and χi(t) = 1. By substituting the
designed controller (17) into (10), the closed-loop subsystem is found as:

ė = (Ai + BiKi)e + Biu1,i + Biξσ,i(e) + f σ,i(e) (25)

The system can be rewritten as:

ė = Aa,ie + Biu1,i + Bi · ξσ,i(e) + f σ,i(e) (26)

where Aa,i = Ai + BiKi .
With the parameter matrix Ki, i ∈ I in Theorem 1, the following theorem presents the

global stability and tracking properties of the switched closed-loop system.

Theorem 2. Consider the closed-loop system consisting of the uncertain switched system (10)
and the controller (17) with the sliding surface (11). For the given matrix Ki which satisfies
the inequality (14), if there is a positive and definite matrix P2,i and matrix Qi such that the
inequality (27) holds, the closed-loop system (26) is stable.

Γi =

[
Φi BT

i P2,i
P2,iBi −β1 · I

]
< −Q (27)
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where Φi = (Ai + BiKi)
TP2,i + P2,i(Ai + BiKi) + βP2,i + 2l · P2,i + 2hi · BTP2,i.

Proof. Considering the Lyapunov candidate V2,i(t) = eTP2,ie, the derivative of which is:

V̇2,i(t) = eT(AT
a,iP2,i + P2,i Aa)e + 2uT

1,iB
TP2,ie + 2 f σ

T(e)P2,ie + 2ξT
i (e)BP2,ie (28)

Define the following auxiliary function:

Ji(t) = V̇2,i + βV2,i + β1 · uT
1 u1 (29)

By applying Assumptions 1 and 2, Equation (29) can be written as:

Ji(t) ≤eT
[
(Ai + BiKi)

TP2,i + P2,i(Ai + BiKi)
]
e

+ βeTPie + 2uT
1,iB

TPie + 2ξT
i BTP2,ie + 2 f i

TP2,ie + β1 · uT
1 u1

≤eT
[
(Ai + BiKi)

TP2,i + P2,i(Ai + BiKi) + βP2,i + 2h1,iBT
i P2,i + 2d1,i · P2,i

]
e

+ 2uT
1,iB

TPie + β1 · uT
1 u1 − β1 · uT

1 u1 + 2h2,i

∥∥∥BT
i P2,i

∥∥∥‖e‖+ 2d2,i‖P2,i‖‖e‖

(30)

Using the Schur complementary and the inequality (25), we write:

Ji(t) ≤ −ζT
i Qζ − β1 · uT

1 u1 + 2h2,i

∥∥∥BT
i P2,i

∥∥∥‖e‖+ 2d2,i‖P2,i‖‖e‖ (31)

where

Γi =

[
(Ai + BiKi)

TP2,i + P2,i(Ai + BiKi) + βP2,i + 2lP2,i + 2hiBT
i P2,i BiP2,i

P12,iBi −β1 I

]
ζ = [e, u1]

T

Let ri = 2(1+ k)/(1+ α) · (h2,i‖BiP2,i‖+ d2,i‖Pi‖)/(λmin(Qi)), where 1 < α < 2, 0 < k ∈ R,
and define the Ball B(ri) = {e|‖e‖ ≤ ri }. When e(t) ∈ Rn/B(ri), we have

Ji(t) ≤ −(1 + α) · ζTQiζ + 2
(
h2,i
∥∥BT

i Pi
∥∥+ d2,i‖P2,i‖

)
· ‖e‖

≤ −ηi · ‖e‖
2

where ηi = (1 + α) · k/(1 + k) · λmin(Qi). Thus, it can be observed that:

V̇2,i(t) ≤ −β ·V2,i(t) (32)

Integrating the above presented equation yields:

V2,i(t) ≤ V2,i(ti) · e−β·(t−ti) (33)

When e(t) ∈ B(ri), one obtains:
V2(t) ≤ vi (34)

where vi = λmax(P2,i) · r2
i .

Finally, this can be summarized as:

V2(t) ≤
{

V2(ti) · e−β·(t−ti), ‖e‖ > ri
λmax(P2,i) · r2

i , ‖e‖ ≤ ri

Once the system trajectory enters B(ri), it stays in the ball. Therefore, V2(t) ≤
max

{
λmax(P2,i)r2

i , V2(ti)
}

, and the closed-loop system stability can be confirmed. In each
subregion Xi, the system trajectory exponentially converges to a relatively small neighbor-
hood around the origin.
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In the complete engine operation process, the system trajectory will pass through a
series of subregions, and two cases might happen. Firstly, the system trajectory can enter
into balls in multiple subregions, but has not passed through all the subregions (Case 1), i.e.,
e ∈ B(ri), i ∈ I. The second possibility is that in each subregion, the system trajectory will
always be outside of the ball (Case 2), i.e., e /∈ B(ri), i ∈ I. In the following paragraphs,
we will prove that the tracking error can enter into a boundary layer region, regardless of
the case.

Case 1 : e ∈ B(ri), i ∈ I
In this case, the system trajectory enters into the balls in multiple subregions, i.e.,

V2(t) ≤ λmax(P2,i) · r2
i occurs in multiple elements E during the entire control process. We

will show the stability of the origin in the sense of Lyapunov.
According to Equations (33) and (34), it can be concluded that the system trajectory

starts at the ball B(rj), j ∈ I and stays within it for any t > t0. The system trajectory starts
in Rn/B(rj) and converges exponentially faster B(rj). The system trajectory enters the ball
B(ri), which can be described as V2(t) ≤ vi. Finally, Figure 3 depicts the history of multiple
subsystems’ Lyapunov functions over time for l = 3.

𝜒 𝑡 = 1 𝜒 𝑡 = 1 𝜒 𝑡 = 1𝜒 𝑡 =2 𝜒 𝑡 =2𝜒 𝑡 =3

𝑡

𝑉 2
,𝑖
(𝑡
)

Figure 3. Discontinuous Lyapunov functions (for l = 3).

Consider the ball B(α) = {e : ‖e‖ ≤ α} of radius α > 0 around the origin, and define
the set Rm = {e : V2(t) ≤ cm}, cm > 0 in B(α). When χj(t) = 1, the set for the z-th element
of E(j) is defined as Rj,z =

{
e : V2,j(t) ≤ cj,z

}
, cj,z > 0. For each element in the sequence

E(·), a set similar to Rm was constructed. Moreover, the set Rj,z+1 is contained in Rj,z, and
all the sets can be denoted as Rj,·. According to Equation (34), it can be obtained that rj ≤ cj.
Similarly, a series of sets Rk,·, k ∈ I can be defined for the series E(k), and all these sets are
contained in B(α). More details can be seen in Figure 4 (for l = 2).

Denoted by δ, the ball radius around the origin lies in the intersection of all the nested
set sequences Rj,·, j ∈ I. According to Equations (33) and (34), it can be found that these
sets have the property that any trajectory starting in B(rj) at t0 stays in B(rj), j ∈ I for
all t > t0, and that the trajectory starting in B(α)/B(δ) at t0 stays in B(α) for all t > t0.
Furthermore, if the dwell time of the j-th subsystem is long enough, which means that
the system trajectory converges to B(rj), j ∈ I at the end [16]. Figure 4 depicts the system
trajectory over time (l = 2).
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𝑹𝒌,𝟐

𝑩(𝒓𝟏)

𝑩(𝒓𝟐)

𝑩(𝜹)

Figure 4. Case 1 proof.

Case 2: e /∈ B(ri), i ∈ I
In this case, the system trajectory is always outside of balls, with the last subregion

being the exception, i.e., B(ri), i ∈ I, in each element E over t ∈ [t0, tend), where t0, tend
are initial and end times of the control process, respectively. It can be concluded that the
tracking errors are exponentially convergent.

According to Lemma 1 and Equation (33), when the i-th subsystem is active, for any
t ∈ [ti, ti+1), we can obtain:

V2,i(t) ≤ µ ·V2,i−1(t−i ) · e
−β·(t−ti)

By using the iterative method, it is derived that:

V2,i(t) ≤V2,i(ti−1) · e−β·(t−ti)

≤µ ·V2,i−1(t−i ) · e
−β·(t−ti)

≤µ ·V2,i−1(ti−2) · e−β·(t−ti−1)

≤µ2 ·V2,i−2(t−i−2) · e
−β·(t−ti−1)

≤ · · ·

≤µ2Nσ(t0,t)−1 ·V2,1(t0) · e−β·(t−t0)

≤µ−1 · e2Nσ(t0,t)·ln µ−β(t−t0) ·V2(t0)

(35)

Due to the fact that Nσ(t0, t) ≤ N0 + (t − t0)/τd and N0 = 0, Equation (36) can be
rewritten as:

V2,i(t) ≤ µ−1 · e2Nσ(t0,t)·ln µ−β(t−t0) ·V2,1(t0) (36)

Finally, it can easily be concluded that:

‖e(t)‖ ≤
√

ρ
/

µ · e(t−t0)/τd ·ln µ− 1
2 β(t−t0) · ‖x(t0)‖ (37)

where ρ = λmin(P2,1)
/

λmax(P2,i).
It can be concluded that if the average dwell time τd satisfies the bound τd ≥ 2 ln µ/β,

the Lyapunov function V2,i(t) converges to the ball B(ri) exponentially as t → ∞. This
allows for the upper tracking error bound to be determined, which proves the global
asymptotic stability of the switched closed-loop system.
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3. Numerical Simulation

In this section, an uncertain switched system describing the engine dynamics was used
to illustrate both the applicability and effectiveness of the proposed control method with
the resetting scheme. The maximum fan and core speeds of the high bypass ratio turbofan
engine were N1= 3390 rpm and N2 = 10,300 rpm, respectively. The component level engine
model used in the simulations was based on the Toolbox for the Modeling and Analysis
of Thermodynamic Systems (T-MATS) [26]. Moreover, all the engine performance maps
and relevant component data were acquired from the Gas Turbine Simulation Program
(GSP) [29]. In the nonlinear model, N1 and N2 were selected as the state variables, while the
fuel flow was regarded as the control input. Moreover, the thrust was controlled indirectly
by controlling N1 according to the turbofan engine control practice.

The allowable operating range of the engine should be partitioned based on the op-
erating conditions and operating state of the engine when aiming to describe the engine
dynamics using an uncertain switched system. As the first step of operating range parti-
tioning, the flight envelope is divided into several zones. Additionally, the generalized
distance d in Equation (38) is defined to evaluate the level of similarity between the two
different flight points located on the envelope.

d =

√√√√(P1 − P1
k

P1
k

)2

+

(
T1 − T1

k

T1
k

)2

+

(
V0 −V0

k

V0
k

)2

(38)

where P1
k, T1

k, and V0
k are inlet total pressure, inlet total temperature, and flight speed of

the k-th zone’s nominal point, respectively; P1, T1 , and V0 are the inlet total pressure, inlet
total temperature, and flight speed of a specified point, respectively. These variables can be
calculated by flight altitude H and Mach number Ma.

The flight envelope division can be transformed into a minimax problem. This type of
optimization problem aims to cover the full flight envelope using the minimum number of
zones and the least generalized distance. The optimization problem can be formalized as:

max
{αk}s

k=1

min
{d̄k}s

k=1

F(α1, · · · , αs, d̄1, · · · , d̄s)

s.t.
s

∑
k=1

αk ≤ 1

where s ∈ Z+ is the number of zones, d̄k, k = 1, 2, · · · , s is the upper limit of the generalized
distances for the point in the k-th zone, αk denotes the k-th zone coverage, and F(·) ∈ R is
the objective function, denoting the sum of all the zone coverages.

To reduce the computational complexity, the optimization method can be replaced
by a clustering algorithm. Using the k-means clustering algorithm, all points in the flight
envelope surrounding the flight profile are divided into several zones. The simulations
with five, seven and nine zones have similar results, yet the scenario with seven or nine
zones has more subsystems and nominal points to be listed. For concise illustration, five
zones are selected to conduct the simulation, and the division results are shown in Figure 5.
Based on these zones, the allowable operating range X is partitioned into seven subregions,
and the nominal points of these subregions Xi ∈ X, i ∈ I = {1, 2, · · · , 7} are shown in
Table 1. The switching rule of the switched system is also determined by these subregions.
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Figure 5. The operating envelope and flight profile.

Table 1. Nominal points for seven subregions.

No. Ma H (m) N1 (rpm)

1 0 0 1800
2 0 0 3200
3 0.31 1000 1700
4 0.31 1000 3200
5 0.6 4000 3200
6 0.78 8000 3200
7 0.78 10,000 3200

In each subregion, a subsystem as Equation (5) can be obtained to describe the engine
dynamics. All the subsystems can be written as:
Subsystem 1:

ẋ =

[
−6.1820 0.9154
−2.5747 −0.7385

]
· x +

[
3037.1
2108.6

]
· (u + ξ1) + f σ,1(x)

Subsystem 2:

ẋ =

[
−6.7006 1.0100
−0.0494 −0.4852

]
· x +

[
4293.7
2913.4

]
· (u + ξ2) + f σ,2(x)

Subsystem 3:

ẋ =

[
−5.1625 1.0785
−0.0249 −0.4830

]
· x +

[
4113.3
2980.5

]
· (u + ξ3) + f σ,3(x)

Subsystem 4:

ẋ =

[
−6.6661 0.8405
−2.3136 −0.7008

]
· x +

[
3132.3
2143.2

]
· (u + ξ4) + f σ,4(x)

Subsystem 5:

ẋ =

[
−6.4694 0.8804
−1.4859 −1.4068

]
· x +

[
2738
2238.6

]
· (u + ξ5) + f σ,5(x)
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Subsystem 6:

ẋ =

[
−4.5487 0.5715
−1.1611 −0.4838

]
· x +

[
3.0257
2.2439

]
· (u + ξ6) + f σ,6(x)

Subsystem 7:

ẋ =

[
−3.7100 0.4914
−0.8889 −0.7592

]
· x +

[
2.9036
2.4122

]
· (u + ξ7) + f σ,7(x)

All these subsystems and the corresponding switching rules constitute the uncertain
switched system as shown in Figure 1. In the controller design, the following parameter
values were selected: G =

[
1.891× 10−4−1.242× 10−4

]
, h1,i = 2.13× 10−3, h2,i = 3.4×

10−2, d1,i = 3.2, i = 1, · · · , 7 to bound the system uncertainties in system dynamics. The
YALMIP [30] was used as the LMI solver to find suitable matrices Ki, i = 1, · · · , 7. Finally,
the control structure as shown in Figure 2 was built for simulation.

3.1. The Importance of Bumpless Transfer

The control objective is to drive the Fan speed N1 to track the reference signal by
regulating the fuel flow. To illustrate the importance of bumpless transfer between two
controllers, a comparative simulation with two subsystems was performed. The operation
condition was set as H = 0, Ma = 0, and Subsystem 1 and Subsystem 2 were included
in the simulation. The partitioned subregions were X1 = {x : [1140, 5828.8]T ≤ x <
[1900, 7191.4]T}, X2 = {x : [1900, 7191.4]T ≤ x ≤ [3390, 10314.2]T}. Additionally, the
operating range starting from idle to maximum speed was covered.

According to Theorem 1, the feedback matrix Ki can be obtained by solving the LMI
in (14).

K1 = [0.01276,− 0.02489], K2 = [0.51303× 10−3,− 0.48426× 10−3]

In the simulation, a sigmoid-like function s(t)/(|s(t)|+ c), c = 0.008 was introduced to
replace the sign function.

Given the adverse effects of the noise and disturbance, the results are compared in
Figures 6–8. In the comparison simulation of the MRAC scheme, the parameter freezing
method was included into the control structure to ensure the continuity of control input.
However, the system oscillation and high-frequency controller switching during the con-
troller transition process can still be observed. This phenomenon is similar to the ISMC
method and some other control schemes without bumpless transfer mechanism. Hence,
only one simulation result was displayed in Figures 6–8.

The switching signals for various cases are shown in Figure 6. The frequent switching
phenomenon between the neighboring controllers can be seen in Figure 6b. Figures 7 and 8
show the tracking errors and fuel flows for the controller transition of various control
methods. The transient behaviors caused by controller switching are shown in the detail
views of Figures 7 and 8. As can be seen from the detail views in Figure 7, the traditional
switching method cannot ensure input continuity, and abrupt change of control input can
be seen.

Hysteresis switching logic can avoid the high-frequency switching occurring, but it
cannot ensure the control input continuity. The output discontinuity caused by hysteresis
switching logic is shown in Figure 7. The output oscillations caused by controller transition
without bumpless transfer mechanism are also shown in Figure 7.

Finally, it can be concluded that controller switching will cause undesired transient
behaviors, significantly degrading the system performance. Therefore, it is necessary to
introduce the bumpless transfer mechanism for controller transition.
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Figure 6. Switching signal.
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Figure 8. Fuel flow.

3.2. The Resetting Scheme Effectiveness

A comparative simulation was carried out to demonstrate the resetting scheme ef-
fectiveness in regards to the controller switching. Subsystem 1, Subsystem 2, and corre-
sponding ISMC controllers were included in the simulation. Figures 9 and 10 show the
ISMC controller switching signals with and without resetting scheme, respectively, while
Figure 11 shows the N1 history (the grey line corresponds to the switching event). In this
simulation, the engine accelerates to the maximum speed in 4.97 s with almost no over-
shoot, and the system trajectories can simply cross the boundaries. This cannot be achieved
by controllers without the resetting scheme.

The fuel flows are shown in Figure 12. It can be seen that controller transition without
the resetting scheme can cause a significant control input discontinuity. As a result, the
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high-frequency switching phenomenon can occur. Such results suggest that the resetting
scheme can help effectively avoid the input discontinuity during the controller switching.

0 20 40 60 80 100 120 140 160

Time (s)

1

1.2

1.4

1.6

1.8

2

S
w

it
ch

in
g
 s

ig
n

a
l

Figure 9. Switching signal with the resetting scheme.

0 50 100 150
Time (s)

1

2

3

S
w

it
ch

in
g
 s

ig
n

a
l

67.5 68 68.5 69 69.5

1

2

117 118 119

1

2

Figure 10. Switching signal without the resetting scheme.

Figure 11. Fan speed N1.
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3.3. The Robustness and Effectiveness of the ISMC Control Scheme

The complete engine operation within the flight envelope, including takeoff, climb,
level flight, cruise, and descent was simulated to verify the ISMC method effectiveness.
The flight profile is shown in Figure 6. During the take-off and climb phases, the engine
was operating at the maximum speed, while in the cruise phase, it was operating at 85%
maximum speed. During the descent, the engine was operating at approximately 50% of
the maximum speed, which was gradually reduced to 30% as H and Ma decreased. Finally,
all seven subsystems were included in the simulation. The control objective was to obtain
the fan speed N1 to enable tracking the reference signal within the flight envelope.

The switching signals are shown in Figure 13. When the system trajectories enter
the i-th subregion, the i-th controller will regulate the fan speed N1. In the simulation,
χi(t) = 1 and χi(t) = 0 denote whether the i-th controller is active or inactive, respectively.
It can be seen that controllers switch at 34.5 s, 103.68 s, 307.61 s, 399.01 s, 517.17 s, 837.86 s,
993.14 s, 1174.22 s, and 1302.37 s. These seven controllers were activated when system
trajectories entered the corresponding pre-assigned subregion.

The simulation results for N1 and the high-pressure rotor speed N2 are shown in
Figures 14–16. It is evident that the proposed control method can enforce N1 to track the
reference signal accurately, without the steady error along with the full operating envelope.
Furthermore, the fuel flow is shown in Figure 17, and the control input continuities during
the controller transition process can be guaranteed by the resetting scheme.

Turbofan engine fan speed N1 can be regulated by the designed controller to indirectly
achieve the thrust control within the full flight envelope. The thrust produced by the engine
is shown in Figure 18.
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Figure 13. Sub-controller switching signals.
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4. Conclusions

To solve the bumpless transfer problem between ISMC controllers of an uncertain
switched system, this paper proposed the ISMC controllers with a resetting scheme. Con-
trollers were designed based on the ISMC method and were implemented in a turbofan
engine, and the simulation results have shown the effectiveness of the proposed method.
Based on the results, the following conclusions are reached:

(1) The bumpless transfer problem can be solved by using the proposed resetting
scheme, which was tested on the uncertain switched system describing the turbofan engine
dynamics across the flight envelope. After the controller switching, the changes of fuel
flow and output variables are less than 0.41% and 0.21%, respectively. Therefore, it was
shown that the input discontinuities and output variable oscillations caused by controller
transition can be avoided.

(2) Given the transient behaviors caused by controller switching, the global stability
of the switched closed-loop system was analyzed and verified by the multiple Lyapunov
function method and average dwell time conditions.

(3) The ISMC controllers designed in the paper can control the turbofan engine fan
speed to track the reference signal very well, which demonstrates the effectiveness of the
proposed method. The acceleration time from idle to maximum speed is less than 5 s, and
the steady-state error is below 0.02%. Finally, the controllers have shown strong robustness
against system uncertainties. The control performance across a wide operating range can
be ensured by one controller with the help of a well-designed desired signal.

(4) However, the control loops of limit protection were not considered in this control
structure, which may affect the control system and tracking performance. Hence, limit
protection should be considered in further research.

(5) In addition, the redundant system of the controlled plant can be considered to
solve system uncertainty, actuator fault, and engine degeneration by introducing extended
systems. This will be also addressed in future work.
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