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Abstract: A microgrid is a set of decentralized loads and electricity sources, mainly renewable. It
can operate connected to and synchronized with a traditional wide-area synchronous grid, i.e., a
macrogrid, but can also be disconnected to operate in “island mode” or “isolated mode”. When
this microgrid is able to manage its own resources and loads through the use of smart meters,
smart appliances, control systems, and the like, it is referred to as a smart grid. Therefore, the
management and the distribution of the energy inside the microgrid is an important issue, especially
when operating in isolated mode. This work presents an overview of the different solutions that
have been tested during the last few years to manage microgrids. The review shows the variety
of mature and tested solutions for managing microgrids with different configurations and under
several approaches.

Keywords: microgrid management; microgrid control; optimization

1. Introduction

Over the past decades, the planet has experienced a deterioration in the weather
conditions and an increase in natural disasters. The aforementioned problems have been
discussed at climate conferences [1]. As the energy crisis and environment pollution arise
from the great demand for electric energy, one of the solutions to reduce harmful emissions
to the environment and demand for electric energy is to reduce the use of fossil energy
sources (FESs) and accelerating the use of renewable energy resources (RESs), especially
solar energy, which is useful in the production of electric energy through photovoltaic (PV)
panels [1,2]. There is currently great worldwide interest in assessing: (i) the performance
of a PV system, (ii) the price per PV module, (iii) the solar resource of the place of energy
generation, etc. [3].

A microgrid (MG) is a small part of a power distribution system that interconnects
distributed generation (DG) (mini wind turbine generators (MWTs), fuel cells, PV, etc.),
energy storage systems, and controllable loads, which can turn into a self-sufficient energy
system. An MG can connect to or disconnect from public grids and operate connected or
in island mode [4–9]. An MG mostly operates in grid-connected mode, but sometimes,
there is low energy demand or faults in the public grid and the MG must change to island
mode. Under island mode, the renewable power systems operate with PV and/or MWT,
whose production is uncertain. In order to manage this uncertainty, the MG employs
energy storage systems (ESSs) for situations with low renewable generation [10]. This is
an interesting solution for power generation; thus, it is under continuous research. The
present research analyzes the MG’s many characteristics, topology, energy management, or
test beds around the world, among other targets [11–15].
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Taking into account the topology of an MG, this can be classified into three groups:
alternate current (AC), direct current (DC), and hybrid [11]. An AC MG is the most widely
used configuration, as it connects directly from DG units in the public grids. However,
its major disadvantage is the difficulty in controlling it, as it has four major components
that must be taken into account: active power, reactive power, harmonics, and unbalanced
components [11,12]. Most of the DC MGs are still in the research stage. The DC MGs
advantage with respect to the AC MGs is the general performance, since fewer converters
are used and there is no circulation of reactive current in the grid [11,13,14]. Finally, hybrid
AC/DC MGs are having a great impact, as they combine the advantages of both AC and
DC. The AC/DC MGs are a great solution for conventional public grids, although there are
few articles about such a configuration [11]. These topologies need an energy management
strategy, since their correct operation provides many benefits.

An MG must have an efficient energy management system (EMS) to monitor the oper-
ation of a complex system formed by electrical, thermal, and mechanical components with
results in the short-term (adapt to the demand and production) and long-term (extending
the lifespan of the most expensive and sensitive MG elements), resulting in a decrease in
the costs of the system and an increase in the benefits. However, inappropriate decisions
may lead to aging and early failure of the MG’s elements [16–18]. Besides that, an efficient
control system for managing the MG is useful when this operates in isolated mode since
the control system is able to manage the energy source and loads in order for the MG to
be self-sufficient. Hence, a control algorithm is essential for efficient energy management;
some of these algorithms are available in [16–21]. It is often intended to minimize the
operating cost, minimize pollution emissions, and maximize energy production through
an objective function. A quadratic objective function model used in many EMSs is shown
in Equation (1). Additionally, the net sum of all energy flows can be represented by an
energy balance depending on the RESs, the ESSs, and the power of the grid, as shown in
Equation (2).

J =
∞

∑
i=1

[δPsto(t + j|t)− Psto,re f (t + j)]2 +
∞

∑
i=1

[λ∆Pgrid(t + j− 1)]2 (1)

subject to:
∞

∑
i=1

Pgen,i(t) +
∞

∑
i=1

Pgrid,i(t) +
∞

∑
i=1

Psto,i(t)−
∞

∑
i=1

Pload,i(t) = 0 (2)

where (i) Psto is the storage power, (ii) Psto,re f is the setpoint for storage power, (iii) Pgen is
the power generated, for example by renewable sources, (iv) Pgrid is the power for the main
grid, and (v) Pload is the power load.

On the other hand, the constraints can be of different types with the aim to minimize
the operating cost, maximize energy production, maximize the useful life of the elements,
etc., through the constraint equations expressed in Equations (3)–(6). Additionally, one
of the most important constraints that is intended to be minimized is the greenhouse gas
emissions through the constraints Equation (7).

Psto,min ≤ Psto(t) ≥ Psto,max (3)

Pgrid,min ≤ Pgrid(t) ≥ Pgrid,max (4)

Pgen,min ≤ Pgen(t) ≥ Pgen,max (5)

SOCmin ≤ SOC(t) ≥ SOCmax (6)

Pg f ,min ≤ Pg f (t) ≥ Pg f ,max (7)

where (i) Psto,max and Psto,min are the storage power maximum and minimum, respectively,
(ii) Pgrid,max and Pgrid,min are the maximum and minimum power for the main grid, re-
spectively, (iii) Pgen,max and Pgen,min are the maximum and minimum power, respectively,
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generated by, for example, renewable sources, (iv) SOCmax and SOCmin are the maximum
and minimum state-of-charge of the storage systems, respectively, for example batteries,
flywheels, hydrogen tanks, and so on, and (v) Pg f ,max and Pg f ,min are the maximum and
minimum power generated through nonrenewable energy, respectively.

The main innovative aspect of this work is to present a contemporary review of the
main elements, architectures, advances in technology, and control algorithms for efficient
energy management in MGs. To this aim, the main latest references that can be found in
the literature about the current technologies in the research field of energy management in
MGs are presented and summarized. The methodology of this review was a deep search of
the main conference proceedings and scientific databases. From this search, the main recent
references in the area of management in MG were selected. The search was focused in the
EMSs of MGs, focusing on the new control trends (distributed, centralized, and cooperative
control). The control strategies studied for this article are based on the control of devices
or the planning methodologies that allow the MG users to optimize the use of resources.
Additionally, the articles are classified by the optimization methodology that was used to
minimize the objective function. The paper is organized as follows: The elements of an
MG are described in Section 2, whereas in Section 3, the control algorithms used in the
energy management of MGs are presented. Finally, the main conclusions are discussed in
Section 4.

2. Elements of an MG

An MG is considered an energy distribution system that can be formed by PV panels,
MWTs, fuel cells, process heat, natural gas, etc. It is also composed of an ESS, controllable
loads, a control system, and planning methodologies for the optimization of resources. On
the other hand, MGs can operate connected to or disconnected from the public grid [5,9].
The growth in the area of MGs in recent years has made it possible to combine different
generation sources, and it is for this reason that MGs can be categorized as electric MGs
(composed only of electric energy), combined heat and power MGs (composed of process
heat and power), and multi-carrier MGs (composed of power and natural gas) [22,23];
on the other hand, it is important to mention that this review was based on the study of
electric MGs.

The autonomous and decentralized operation in an MG can introduce a cost-effective
solution for future distribution systems. The advances in communication and control
systems have grown in recent years, which has increased the research into the different
elements of an MG [24]. The main elements of an MG are presented in the following
subsections, in which a quick description of the technologies and a summary of their
characteristics are provided.

2.1. Energy Generation System

An important part of energy systems is governed by the generation of centralized
energy such as coal, natural gas, nuclear, and hydroelectric plants. These carry out the
transmission of their high-voltage energy over long distances, in order to distribute it to
their final users. However, the fast entry of RESs into the market is changing the landscape.
In addition, the large centralized energy systems mentioned above are aging and may
generate conflicts with the current large demand for energy [25]. Many countries have
reacted to this problem with adjustments to their public policies, promoting the generation
of distributed energy with low carbon emissions and high efficiency. The distributed
energy resources involved in MGs promote solar and wind energy sources due to their
sustainability and economic performance [25,26].

The technologies in an MG include new concepts such as combined heat and power
(CHP), MWTs, PV, microturbines or fuel cells, as well as consolidated technologies (syn-
chronous generators driven by DC engines, single-phase and three-phase induction gener-
ators, or small hydro). A detailed description of these can be found in [8,26–29].
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2.2. Energy Storage System

The ESS is one of the main components of some MGs, which must be cost effective at
energy generation. The ESS plays a key role in geographic areas with unstable weather condi-
tions due to its capacity to preserve power, as well as balance energy demand and generation.
These systems comprise three necessary functions for their correct operation [25,30]:

1. Ensure power balance in an MG under unfavorable conditions such as transients and
load fluctuations, since DG, having a lower inertia, cannot manage to provide a fast
response to these disturbances;

2. Ensure energy transport capacity when dynamic variations occur in intermittent
energy sources, for which even DG can operate as dispatchable units;

3. Supply the initial power for the transition between network-connected and island
mode operation in the MG.

Mature EES technologies and those in development were described in [31–36]. Batter-
ies, supercapacitors, hydrogen storage, and flywheels are the most applicable storages in
MGs [25,33,34,36]. Currently, there is an extensive variety of ESSs, which encourages MGs’
development towards self-sufficiency.

2.3. Power Electronics

Microgrids usually use PV technologies (generating DC power) or MWTs (gener-
ating high-frequency AC power), which need an inverter interface, such as DC/AC or
DC/AC/DC. This interface can consist of a single inverter or a converter and an inverter, to
transform the energy generation of the MG into energy compatible with the loads and/or
the public grid [15,25]. Additionally, it is important to mention the importance of inverters
in MGs, since they control the frequency and voltage, such as black start strategies [29].

Most of the distributed energy resources (DERs) include solar PV, fuel cells, or batteries,
which generate DC power, together with many loads such as fans, heating, lighting systems,
and even power electronics systems, which operate on direct current. As a consequence, DC
MGs [28,37–40] have been proposed to avoid waste in the DC/AC conversion stage, since
this means a loss of between 5% and 15% of the total energy generated [30]. However, it is
worth noting that the promising applications of DC MGs have been limited by the shortage
of household DC loads, which has boosted the appearance of AC/DC hybrid MGs with
applications such as data centers or maritime and remote MGs [39,41–45]. Some examples
of the different generation, storage, and interface options along with their advantages and
disadvantages are provided in Table 1.

The components of an MG previously described in this section are an important part
of the operation of an MG. It is possible to see in Figure 1 a simplified representation of
an MG with systems coupled to DC and AC. In systems coupled to a DC-link, the battery
bank is connected before the DC/AC inverter through a charge regulator, whereas systems
coupled to an AC-link are connected after the DC/AC inverter through a charge regulator
and inverter; finally, the data of all the elements of the MG are sent to the cloud through an
intelligent interconnection.
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Table 1. Interface, advantages, and disadvantages of different MG configurations.

Category Type Typical Interface Advantages Disadvantages

RES PV [46–50] Converter (DC-DC-AC) Free fuel supply Depends on random weather conditions
MWT [46,50,51] Converter (AC-DC-AC) Zero greenhouse gas emissions Not dispatchable without storage

Small hydro [40,52] Synchronous or induction generation

Fuel cell [37,53,54] Converter (AC-DC-AC) Zero pollution on-site High cost
CHP can be used Limited lifetime

Dispatchable

FES Internal combustion engine [51] Synchronous or induction generator Fast startup Greenhouse gas emissions
CHP can be used Noise generation

Dispatchable Generates pollution particles

Storage Battery [36] Converter (DC-DC-AC) Proven technology with many years of research Generates waste
Limited charge and discharge cycles
The price of this technology is high

Flywheel [55] Converter (AC-DC-AC) High efficiency High losses
Limited discharge time

Supercapacitor [33] Converter (AC-DC-AC) High storage capability and power output Low energy density
Longer lifecycle compared to modem secondary batteries Continuous research for improvement

Hydrogen from hydrolysis [53,54] Fuel cell Zero pollution Low system efficiency
Hydrogen storage under investigation
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2.4. Loads

A load is considered as an energy-consuming device that needs a supply to operate.
In the studies carried out in [56,57], the loads could be classified into noncontrollable,
shiftable, controllable comfort-based loads, and controllable energy-based loads.

The controllable loads, also called smart loads, are considered as a fusion between a
noncritical load that can withstand voltage/frequency variations in short periods of time
and a power electronic interface that isolates the load from the power. The smart loads are
a possible solution to obtain better efficiency and power quality in an MG, and they can be
classified into two types: (i) smart static load and (ii) smart motor load. They also have
the possibility of connecting to the smart assistants that have become so popular in home
automation for the loads’ operation planning [58,59].

Figure 1. Simplified diagram of an MG with a DC-link (left) and a AC-link (right) of an ESS.

3. Microgrid Management

The integration of RESs, ESSs, and consumption carried out through MGs allows the
users to exchange information with the distributed generation centers. Indeed, an EMS is
necessary for the optimal operation of these DERs in an intelligent, secure, and coordinated
way. Energy management in MGs is defined as a control and information system that aims
to operate with the minimum possible costs both in the generation and distribution system
and in the power supply [60–63].

Optimization in MGs is directly linked with the maximization of the output power
of the generators in a particular instant, the maximization of the ESS’s lifetime, and the
minimization of the environmental impacts and of the operating costs. It is necessary to
establish limitations and a objective function that relates to the operative cost of an MG.
Some variables for this are maintenance, fuel, startup and shutdown, degradation, and the
purchase of energy from the public grid. The optimization techniques presented in this
review for the control of MGs are classified according to the optimization method used
and the objective function to minimize [60,63,64], as expressed in Figure 2.

Optimal Microgrid Control



Optimization Objective



Economic/Environmental


Energy dispatch
Demand-side management
Economic dispatch
Carbon dioxide emissions

Power flow

{
Optimal power flow
Load shedding

Optimization Techniques



Metaheuristics
Linear and nonlinear programming
Dynamic programming
Stochastic and robust programming
Predictive control
Multiagent
Artificial intelligence
Other techniques

Figure 2. Classification of optimal control strategies for MGs’ control.
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3.1. EMS Based on Metaheuristic Methods

A metaheuristic method is a higher-level method or a heuristic one designed to find,
generate, or select a partial search algorithm that may provide a sufficiently good solution,
that is a local solution, not necessarily global, to an optimization problem. These methods
are used with incomplete or imperfect information or limited computational capacity.

One of the most widely used techniques in the literature is particle swarm optimization
(PSO). Optimization methods such as PSO are widely used in different areas, which allows
developing variations of their operation to obtain better results. The literature shows
some techniques that use these variants. For example, Aghajani and Ghadimi in [65]
presented multi-objective PSO (MOPSO), considering an intelligent EMS for an MG aimed
at minimizing both the operating costs and pollution emissions. The MG in this research
case included generation resources such as MWTs, PV panels, battery units, a wind turbine
(WT), and a fuel cell. The results obtained in this paper were analyzed in three cases:
(i) basic operation, which represents the normal function of the grid, (ii) operation at
maximum capacity with RESs, and (iii) operation when the energy is unlimited. The third
case proved to be the most favorable, since the amounts of emission were reduced by 23%
and the operating costs were reduced by 5%, concluding that renewable resources are
important for minimizing pollution from MGs, whereas the costs increase in the short term.
Another similar work was presented in [66], in which Indragandhi et al. used MOPSO as a
technique for the energy management of a hybrid DC/AC MG. The MG was composed of a
PV system with modules (Trina Solar TSM-250-PC), a wind system with WTs (Elsonic India
Group), and a fuel cell (Horizon H-1000 PEM). This paper applied the MOPSO strategy
by defining the objective functions for the power cost and energy loss probability so as to
obtain significant benefits in terms of sustainability, efficiency, and reliability. On the other
hand, Hossain et al. [67] presented a PSO algorithm for the real-time energy management
of a community MG that could work in island or grid-connected mode. The community
consisted of twenty homes with six wind systems (5 kW/generator), five PV generators
with a nominal power of 4 kW each, and an ESS installed. The proposed objective function
had the aim of reducing the electricity costs and increasing the benefits by exchanging
the energy of the MG with the public grid. The results obtained by this objective function
decreased the operational cost by 12% compared with the original objective function over
a time horizon of 96h. An example for which a multiobjective problem was proposed
and solved by PSO can be found in [68], in which a novel algorithm, called guaranteed
convergence PSO with Gaussian mutation (GPSO-GM), aimed at minimizing the capital
investment and fuel costs of the system. The GPSO-GM’s energy management was used
in an MG composed of a PV system, WTs, and an ESS including batteries and diesel
generators. The wind speed and solar irradiance data were obtained from [69], which were
used in the modeling stage. Finally, the results of GPSO-GM demonstrated precision and
robustness. In addition, they showed that the economic evaluation of the proposed system
was a more attractive investment compared to other alternatives. As a fifth example, in [70],
the methods of regrouping PSO (RegPSO) and a genetic algorithm (GA) were compared to
validate its performance. The MG considered in this document was a real industrial MG,
referred to as “Goldwind Smart Microgrid System”, located in Beijing (China). This MG
was composed of three PV systems, a diesel generator, and an ESS, including a lithium-ion
battery and a vanadium redox flow battery. The EMS was aimed at minimizing both the
operation and energy costs, and RegPSO presented better results than the GA. Finally, Zeng
and Berti [71] proposed a new PSO multiobjective optimization algorithm, which was based
on a fuzzy mechanism to minimize the operating and emission costs in demand response.
The algorithm was used with a grid-connected MG composed of several production and
storage systems containing CHPs, fuel cells, ESSs, energy-only units, and heat buffertanks.
The proposed algorithm could reduce the cost by about 10%.

As an alternative evolutionary algorithm, a new powerful optimizer was proposed
in [72] based on a crow search algorithm (CSA) in a hybrid DC/AC MG. In order to obtain
realistic solutions, the data for the forecast PV and WT output power, the reactive and
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active power values, and the market prices were used. The CSA optimization method
followed the same principle as that of the survival of crows, since they steal food from
other birds and hide it to then eat it. They predict the behavior of other crows, using their
experience as thieves to avoid becoming victims. Each crow represents a possible solution
and, at the same time, a vector that contains elements with a possible value/optimal state
for each variable. In this problem, the optimal value and state of the GDs, the ESS, and
the main network are each crow’s elements. The CSA algorithm minimized the operating
costs of the MG, choosing the best among the three previous test solutions, for which the
best result was 22.58%, 10.90%, and 15.24%, obtaining a significant reduction compared to
previous outcomes obtained with PSO and the GA.

On a different note, there were some papers in the literature that dealt with a rule-
based EMS (REMS) to minimize or maximize several characteristics of the MG. In [47],
Torres et al. proposed a rule-based controller (RBC) for optimal energy management in an
AC MG located at the CIESOL bioclimatic building at the University of Almería (Spain).
The system was composed of PV panels, battery systems, an electric vehicle (EV), and a
relay board, which allowed or rejected the power fluxes according to certain rules aimed
at minimizing the energy consumption from the public grid. Another similar work can
be found in [73], in which an REMS with a nature-inspired grasshopper optimization
algorithm (GOA) was presented. This optimization method was aimed at minimizing
the cost of energy (COE) and the probability of the deficiency of energy supply. The MG
used as a testbed incorporated a WT, PV modules (STP275S-20/Wem), a battery bank,
and a diesel generator. It used meteorological data from the database of the Nigerian
Meteorological Agency. The method that offered the minimum value for the objective
function was REMS-GOA (USD0.3656/kWh), as compared to REMS-CSA and REMS-PSO,
which had a COE of USD 0.3662/kWh and USD 0.3674/kWh, respectively.

Finally, Rana et al. [74] presented a novel consensus filter based on a dynamic state
estimation algorithm to stabilize energy production and consumption in a grid-connected
MG. This MG was composed of a PV system, a wind generation system, and loads. The
results showed that the proposed method could estimate the system states in 0.00004 s.
These states were estimated with good accuracy; therefore, they could be used to design
control strategies to stabilize energy production and consumption with respect to the
public grid.

3.2. EMS Based on Linear and Nonlinear Programming

Linear programming optimization is used in optimization problems in which the
objective function and the constraints are linear mathematical expressions. On the other
hand, if any of them are nonlinear, the problem is referred to as nonlinear programming.
In recent years, some optimization linear problems have mixed discrete (integers) and
continuous (real) variables. In this case, this is called a mixed-integer linear programming
(MILP) problem, and its solution is more expensive, in computational terms, than a simple
linear programming problem.

Starting with the latter, an MILP problem was presented in [75] that minimized the
power supplied by the public grid, which included continuous variables to model the
power flow and binary variables for the state of the relays enabling or disabling certain
power fluxes. The problem was solved for an MG located in the CIESOL bioclimatic
building at the University of Almería, which was described in [47]. This MILP was able to
reduce the electricity cost by 48.1%, since it took into account the hourly tariff to determine
the consumption from the public grid. Another algorithm based on MILP was described
in [76], in which the authors proposed an MILP with a new multi-objective solution
that minimized the operating costs and pollution emissions in an MG composed of a
PV system, a WT, a fuel cell, an MWT, a diesel generator, and a battery ESS (BESS). The
operating cost, emission penalty, and power losses were reduced by 2.25%, 2.1%, and
3.56%, respectively. In addition, the results showed that carbon dioxide emissions were
reduced by 51.60% per year with respect to the conventional grid. Another similar work
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can be found in [77], in which Hussain et al. proposed an EMS based on MILP, which had
a function that minimized the operating cost of the MG network in grid-connected mode
and maximized the service reliability in islanded mode. Each MG was a level of the MG
network and was composed of controllable and renewable distributed generators, an ESS,
and electric loads. The MILP algorithm obtained a reduction of 50% in the daily operating
costs compared to hybrid EMSs. However, they were restricted to specific applications,
this is not acceptable to many users. As a fifth example, in [78], Farsangi et al. presented a
scenario with a reduction method based on MILP to minimize operational costs. The MG
model was composed of a PV system, a WT, power-only units, CHP units, a heat-only unit,
a heat buffer tank, plug-in EVs, and thermal and electric loads. The results showed that the
operational cost was reduced by USD123.2819 (grid-disconnected) and USD246.4966 (grid-
connected). Additionally, Farzin et al. [79] proposed a stochastic optimization problem that
minimized the operating costs, which was formulated as an MILP model. The study of the
MG was carried out in island mode and subsequently in grid-connected mode, which was
composed of two dispatchable DG units, a WT, and one battery storage unit. The results
showed that the MG’s expected operating costs were minimized, through the proposed
stochastic energy management strategy based on MILP, for which five cases with different
time horizons were analyzed, obtaining the best result in the fifth case with an expected
cost of reduction of 3.5% and reduction in the risk value of 3%. In [80], the problem was
formulated using a parametric MILP (p-MILP) to operate seamlessly and in sync with a net
cost minimization objective. The residential-level MG was located in Sarnia, Ontario, and
was composed of a PV system, a WT, a BESS, a microturbine, and a utility grid connection.
The results showed that the system made intelligent decisions under both external and
internal uncertainties, without exceeding the operational limitations. As a final example,
in [81], the authors formulated an optimization problem that was transferred into an MILP
model. To evaluate the effectiveness of the proposed optimization model, an MG was
considered, which was composed of a WT (250 kW), a PV system (150 kW), an aggregator
EV unit, two WTs, two similar fuel cells, and a gas turbine. The maximal amount of power
exchange with the main grid was 800 kW. The integration of EVs and renewable energies
in the MG allowed the MILP to minimize the operating costs and pollution emissions in
five different cases.

As regards linear programming, an iterative Newton–Raphson linear programming
algorithm (NRLP) was proposed in [82], in which the objective function minimized the
battery value loss and the power supply cost. A case study was used for an IEEE 34-
bus distribution MG in Okinawa, Japan, to check the algorithm and analyze potential
investments. The results of the NRLP reflected a high computational efficiency, which
means that it may be a very useful tool for the long-term evaluation and optimization of
complex power systems in the future. On the other hand, Tavakoli et al. [83] presented a
linear optimization programming problem to maximize the resilience of an MG located in a
commercial building with a peak load demand of 450 kW: it was composed of a PV system
and a BESS connected to the power grid. In addition, the time horizon considered for the
simulation was one week (168 h). The results showed that the operating costs increased
slightly by 0.19%, while the resilience of the system increased by 41.1%.

Not only can linear problems be found when continuous and discrete variables are
mixed, but nonlinear problems can as well. For example, in [84], Shuai et al. presented
a stochastic mixed-integer nonlinear programming (MINLP) method, and then, the ap-
proximate dynamic programming decomposed the original MINLP to be implemented
in an MG, which was composed of a PV system, a WT, a BESS, a gas microturbine, and
a diesel generator. The simulation results of the energy management algorithm based
on an approximate dynamic programming showed that the optimization cost of the MG
was USD 97.17.

Lastly, it is important to highlight the work in [85], in which Wang et al. used a two-
stage energy management strategy, based on Markowitz’s theory of mean variance. The
first stage used hierarchical optimization to minimize the operating cost of a networked
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MG, with the grid-connected mode strategy, whereas the second stage employed a rolling
horizon optimization strategy to minimize the imbalance cost between the day-ahead elec-
tricity and real-time electricity markets. The MGs of this paper were networks composed of
community distribution generation units and a community ESS. The results were expressed
in two cases to verify the effectiveness. In the first case, the mean operating cost was USD
226.70 and the standard deviation was 97.14, while in the second, the mean operating
cost was USD 347.92 and the standard deviation was 93.35. The standard deviation in the
former was less than in the latter with a confidence level of 95%.

3.3. EMS Based on Dynamic Programming

Dynamic programming methods are used to deal with highly difficult problems so
as to reduce the execution time of an algorithm, which can be discretized and sequenced.
The problem is transformed into subproblems, which are solved optimally. Finally, the
solutions are superimposed to find the result for the original problem.

Recently, Jafari and Malekjamshidi [86] presented an ESS, which had an offline stage
based on dynamic programming optimization and a real-time RBC to minimize the cost of
energy received from the public network, the energy bill, and the benefits from sending
energy to the network. The MG operated as a connected or disconnected network, located
in a residential household with a maximum power of 4.5 kW and an average daily energy
consumption of 22 kWh. It was composed of a PV system, a fuel cell, and a BESS. The
results showed that the efficiency of the system increased by 4%; additionally, when the
MG was connected to the network, the total energy cost was reduced by USD 2.13/day,
while in disconnected mode, the reduction was only of USD 0.315/day. Another similar
work can be found in [87], in which the authors proposed an optimal operation strategy
using dynamic programming in a DC MG, comprising a PV system, a diesel generator
(100 kW), a BESS with a nominal power of 100 kW, an EV, and constant output loads. The
operation was based on dynamic programming developed to minimize the operational
costs. This optimal operation allowed the MG to purchase energy from the public network
at the lowest cost possible, with a price equivalent to KRW 60/kWh. In [88], a methodology
based on dynamic programming was developed, with the objective of minimizing primary
energy consumption over the simulation period. The hybrid MG used in this paper was
located in a commercial building in the north of Italy. Additionally, it was designed for
electric energy production, space heating, and hot water. It was composed of a PV panel,
ground- and air-source heat pumps, a solar thermal collector, an auxiliary boiler, and a
hot water storage. The results of this methodology based on dynamic programming were
compared with a GA, showing an energy and computation time savings of over 5.4% and
41%, respectively. As a fourth example, in [89], Liu et al. presented an action-dependent
heuristic dynamic programming method in a residential MG, which had the objective of
finding a function that solved both the cost and energy transmission problems between
dwellings. The MGs were distributed in n homes operating in grid-connected mode. Each
of them was composed of a PV system, a BESS, and loads. The results of the method were
compared with the PSO method, showing that the cost of buying energy from the public
grid with the dynamic programming method was 75,569 centsover a whole month (30.7%
saved), while the cost in the PSO algorithm was 80,476 centsover a whole month (26.2%
saved). Thus, the dynamic programming method was able to reduce the economic cost
of managing the MG more than the PSO method. As a last example, in [90], Jafari et al.
presented a predictive 2D dynamic programming-based energy management method for a
residential MG that could operate in either grid-connected or island mode, to minimize the
energy costs. The MG was designed to supply a 4 kW residential load. It was composed of
a PV system, a BESS, an electrolyzer, and a fuel cell stack that could operate as a load to
generate the required hydrogen for the fuel cell, since it improved the storage capacity. The
results of this algorithm showed a reduction of the energy cost by about 85% for a typical
day, which implied a significant gain for RES users.
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Dynamic programming can be combined with other techniques such as robust pro-
gramming. Thus, in [91], Shi et al. developed a novel multistage robust EMS model for a
public network-connected MG composed of a WT, three diesel generators, uncertain loads,
and an ESS, with a maximum capacity of 90 kWh and a minimum storage level of 20 kWh.
To solve the multistage EMS problem, a robust version of the dual-dynamic programming
method was used to minimize the generation costs. The results obtained were compared
with stochastic dual-dynamic programming, sample average approximation (SAA), and a
deterministic method. They concluded that the generation costs of the SAA method were
the most economical.

In addition to those examples, some works that dealt with adaptive dynamic pro-
gramming (ADP) have been published in recent years. For example, Wu and Wang [92]
proposed a strategy of optimal management based on ADP deep learning. Additionally,
the objective function was defined to optimize the cost of generating and supplying power
in the MG. The MG used in this paper was composed of PV generation, wind generation,
gas power, hydro power, and a BESS. From the data obtained with ADP deep learning,
it was possible to see a reduction in the energy costs and, at the same time, a reduction
in pollution emissions. In [93], the authors presented a method of optimization based on
evolutionary ADP to minimize the operational costs and maximize the energy demand.
The MG system was composed of PV generation (40 kW), wind generation (30 kW), a
diesel generator (10 kW), a BESS, and loads. The results showed that the controllable
load demand was 100% met and that its dispatch strategy extended the lifecycle of the
battery. As a final example, a novel mixed iterative ADP algorithm on a residential MG
was presented in [94], which had the objective of minimizing the finite electricity cost in
each iteration. To validate the mixed-iterative ADP algorithm, the results were compared
with a dual-iterative Q-learning algorithm, when the load was high, the electricity rate
was expensive, and the BESS did not discharge its maximum power. In conclusion, the
ADP method showed better results from an economic point of view, since with the ADP
method, the electricity cost was 3451.55 cents, while the electricity cost with the dual
iterative Q-learning algorithm was 5001.19 cents.

3.4. EMS Based on Stochastic and Robust Programming

Stochastic methods and robust programming are used to solve optimization functions,
with random parameters and uncertainties that can vary over time. Both methodologies
are different in the way in which they deal with uncertain parameters. In the stochastic
programming approach, the uncertain parameters are captured by a discrete number of
probabilistic scenarios, whereas in the robust optimization approach, their value ranges
are defined by a continuous set [95]. Additionally, they have the ability to deal with errors
while the algorithm is running.

An example of the use of stochastic methods in MGs is a hierarchical stochastic EMS
in interconnected MGs to improve the cost and real-time power deviations of a multi-MG
system [96]. The multi-MG system here was composed of three MGs with a total capacity
of 3790 kW, 3700 kW, and 4150 kW, as well as a peak load of 2600 kW, 2700 kW, and
2750 kW for MGs 1, 2, and 3, respectively. According to the data shown in this paper,
this optimization method had good performance in the energy exchange between the
multi-MG system and the main grid throughout the optimization. Another example can
be found in [97], in which the authors developed a stochastic optimization based on a
two-stage stochastic programming model, which had the objective of finding a function
to reduce the total installation cost of MG devices. The MG was located at the Institute
of Nuclear Energy Research in Taiwan. It included a high-concentration PV generator
(100 kW), two wind power generators (25 kW and 150 kW), a fuel cell (2 kW), and a BESS.
The results obtained in this paper demonstrated the efficiency of the proposed system in
improving the MGs’ operation and investment under uncertainty. Another similar work
can be found in [98], in which Zhang et al. proposed a method for stochastic nonconvex
optimization programming based on a modified Lyapunov optimization technique to



Energies 2021, 14, 5202 12 of 25

obtain the minimum MG operating cost in grid-connected mode. The MG was formed
of wind generation, CHP, and energy storage for both electricity and heat. The results
presented in this article showed that the modified Lyapunov optimization strategy reduced
the operating cost of the MG. One last example of stochastic methods in MGs is [99], in
which Reddy proposed an optimization technique for a hybrid MG using a multi-objective
stochastic technique, in which the cost function tried to minimize the system losses and
reduce the operating cost of the RES. The hybrid MG was modeled with renewable energy
sources, PV generation and wind generation, and loads. Later, it was tested on the IEEE 37
node distribution system located in California. The results showed the efficiency of the
proposed method, generating 9813.97 MW with a total generation cost of USD 30,995.13
during a time horizon of 24 h.

Additionally, to take robust optimization methods into account, a distributionally
robust optimization (DRO) method was proposed by Shi et al. in [100] to minimize several
objectives: (i) the generation cost, (ii) the ESS degradation, cost and (iii) the emission cost
of diesel generators. The islanded MG model considered conventional generators, a wind
generation system, an ESS, and load demand. The results of the DRO were compared with
SAA and the stochastic optimization method, for which DRO showed its effectiveness and
reliability versus the other methods compared. Another similar work was given in [101],
in which Giraldo et al. presented a convex mixed-integer second-order cone programming
model to minimize the costs of the energy imported from the public grid in grid-connected
and island mode for single-phase or balanced three-phase MGs. The MG had a total peak
demand of 18.31 MW and was composed of dispatchable DG units, PV, a WT, a BESS
and loads. The results from this paper showed a compensation between the operating
costs and the robustness level obtained for the MG. As a third example, in [102], Luo et al.
proposed a robust optimization method incorporating a piecewise linear electrical and
thermal efficiency curve to obtain the desired operating cost in a combined cooling, heating,
and power (CCHP) MG located on a building in Shanghai, China. The CCHP MG was
composed of a PV system (80 kW), a gas microturbine (200 kW), a boiler (258 kW), an
absorption chiller (200 kW), a battery (200 kWh), an electric chiller (100 kW), a thermal
storage tank (150 kWh), and a heat exchanger (200 kW). The results showed that the
proposed optimization technique performed better than the deterministic optimization
model with respect to the expected operating cost. Additionally, in [103], a two-stage robust
optimization problem was proposed based on Internet-oriented MG energy management
to maximize the benefits of energy production. The MG was located in China, Beijing
Goldwind Industrial Park, and composed of PV panels, a WT, a BESS, CHP, heat pumps,
EVs, and loads. The simulation results showed that by exporting the surplus generation
with the operation of the robust optimization algorithm, the benefits of the MG increased
compared to the traditional business mode. In [104], a robust energy management method
accounting for the worst-case scenario was developed. It had an objective function aimed
at maximizing the total exchange cost and obtaining the minimum social benefit cost.
In addition, the Taguchi orthogonal array testing method was used to evaluate an MG
in various possible testing scenarios, which was composed of PV panels, microturbines,
fuel cells, diesel engines, and a BESS. The results showed a good balance in performance
(economic benefits), showing positive results.

Finally, Dini et al. presented a strategy in [105], in which stochastic and robust methods
were combined. Specifically, a hybrid stochastic/robust coordinated energy management
strategy was presented to minimize the difference between the energy costs and reliability
and between flexibility and security. The MG was composed of two WTs, a PV system, a
CHP, two WTs, and a fuel cell. The results obtained by the proposed strategy showed the
capabilities of the proposed hybrid method while, at the same time, improving the energy
system adequacy indices.
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3.5. EMSs Based on Model-Based Predictive Control

Model predictive control (MPC) is a control methodology that uses a model of the
system to predict its behavior. MPC is presented as a reliable, solid, and valid solution to
counteract the uncertainties found in MGs, while it is able to guarantee effective energy
management. Additionally, it is based on iterative and finite horizon optimization and
uses the receding horizon strategy, that is, at each time, the optimal control sequence is
calculated, the first control signal for that time instant is applied, while the remainder is
discarded. Later, the horizon is displaced towards the future, and the control sequence is
recalculated at the next time instant with new and updated information [106]. Typically, it
combines stochastic programming and control.

As a first example, it is important to mention the work in [107] carried out by
Dong et al. In this work, the authors replaced the voltage source inverter (VSI) with a
dynamic matrix control (DMC) algorithm to maintain the energy stability control and
improve the dynamic response performance of the VSI in a grid-connected MG located
in Tianjin (China). DMC was the first MPC algorithm, introduced in the early 1980s and
currently, it is available in almost all commercial industrial control software packages. The
MG was composed of a PV system (2 MW), a BESS, and loads. The DMC results showed a
considerable improvement in the response performance of the dynamic process.

Another application of the classical MPC strategy was presented in [108], in which
a linear MPC model was presented that minimized the operating cost of the system and,
at the same time, satisfied a set of constraints in a CCHP MG. The CCHP MG located in
a building in Shanghai (China) was composed of a PV system (40 kW), a wind turbine
(40 kW), an absorption chiller (200 kW), a gas microturbine (200 kW), a boiler (300 kW), a
battery (150 kWh), an electric chiller (100 kW), a thermal storage tank (300 kWh), and a
heat exchanger (200 kW). The results were divided into three cases for which the cost of the
proposed linear MPC model was similar to the ideal cost in the three cases, which increased
by 0.14%, 0.98%, and 2.64%, respectively. Another work in which the operating costs
was minimized can be found in [109], in which Petrollese et al. presented a novel control
strategy for the optimal energy management of MGs based on the integration of optimal
generation scheduling with MPC. This strategy was tested in a laboratory-scale MG located
at the University of Seville, which included an electronic power source that emulated a
PV system, a BESS, a hydrogen production, and a storage system. The results showed that
with the integration of MPC, the hydrogen storage, and the production storage system,
the state-of-charge of the battery was far from its minimum value (40%). Additionally,
the operating cost of the MG was reduced by 50%. On the other hand, Rigaut et al. [110]
proposed an MPC strategy, for energy management in subway stations, with the aim
to minimize the cost of consumed electricity in a thermo-electrical MG that connected
regenerative braking energy sources, heating, ventilation, and air conditioning systems,
specific profiles of electricity consumption, and a BESS (480 kWh). The proposed strategy
was tested in a theoretical subway station, and the obtained results showed that a battery
controlled for 20 h could save energy and economic cost by 32% and 34%, respectively,
compared to the energy management of current stations.

Not only can the operation or economic costs be optimized in an MG through an
MPC strategy, but other objectives may be achieved as well. For example, Bruni et al. [111]
proposed a deterministic and stochastic MPC. The objective function of this EMS was
aimed at maximizing the energy savings and improving the comfort conditions in a
domestic DC MG. The MG was composed of PV panels, a fuel cell, a BESS, and the house
load (mainly electric appliances and the thermal load of the heat pumps). The MPC
results were compared to RBC, and the MPC test results were better than those of RBC,
improving the comfort conditions. In addition, the energy savings were relevant, since
they went from around 10% up to 30% or even more in the case of high RES availability.
In [112], a horizon MPC was proposed to minimize the costs related to battery losses and
depreciation. In this research, there were three types of prosumers (i.e., an element in the
MG that both produced and consumed) in the distribution grid: (i) green prosumers (PV



Energies 2021, 14, 5202 14 of 25

system and BESS), (ii) philanthropic prosumers, and (iii) low-income households. The
results showed that if the owner and prosumers faced price competition, they could not
improve the objective function. However, if there was no external competition, they could
maximize their own benefits. On the other hand, the unscheduled power exchange level
of the MGs with the main grid was minimized in [113], in which Bazmohammadi et al.
proposed a hierarchical control structure of a multi-MG system, in which the second level
adopted a two-stage stochastic MPC strategy. The simulated system was composed of
three MGs that were equipped with a BEES of 350, 300, and 400 kWh, respectively. Then,
the unscheduled power exchange level of the MGs with the main grid was evaluated in the
AC Microgrid Research Laboratory at Aalborg University (Denmark). The results showed
that adopting this energy management strategy could reduce the average unplanned
daily energy exchange of the multi-MG by about 47%. The power losses in the islanded
MG based on IEEE 13 were minimized by Morstyn et al. in [114], in which the authors
developed a new convex MPC strategy. This islanded MG was composed of a PV system
(100 kW) and four BESSs of 100 kWh each. The results of the convex MPC strategy provided
a means of generating reasonable values based on the MG operating state.

If several MGs are considered with the aim to minimize a global objective MPC, this
could be a good technique. It is possible to find in the literature some works that dealt
with cooperative or distributive MPC, for which each MG had its own individual MPC
and all of them exchanged information to try to minimize a shared objective. As examples,
Kou et al. [115] proposed a new distributed economic MPC. The objectives of this method
were: (i) to maintain the supply–demand balance, (ii) to obtain an optimal trajectory for
the energy exchange, and (iii) to minimize the operating cost in a multi-MG. In this work,
a distribution grid encompassing several MGs was considered, for which each MG was
composed of several WTs, a gas microturbine, a BESS, and local loads. The results of the
distributed economic MPC not only achieved the supply–demand balance in each MG, but
also in all distribution grids. Another control algorithm based on distributed MPC was
presented by Torres et al. in [116], in which the authors proposed a distributed MPC in a
network of interconnected MGs, with a hybrid ESS, to improve the benefits of the exchange
of energy with the public grid. The network of interconnected MGs was composed of four
grid-connected MGs, which had one PV system each, a WT, an electrolyzer, a hydrogen
tank, a fuel cell, a BESS, and an ultracapacitor. The results showed two procedures in both
the daily market and the regulation service market. These procedures were compared
to a single mode and a network of MGs, for which the networked operation of the MGs
could improve the economic benefits in comparison with the single-mode operation. Lastly,
in [117], a novel cooperative MPC was presented to minimize the energy exchanged with
the distribution grid and the overall energy costs in urban districts, which could deal with
multiple MGs. The system of multiple MGs was studied in three experiments: Experiments
1, 2, and 3 were composed of 5, 15, and 15 MGs, respectively. Each MG was connected to
the distribution grid and equipped with a PV system (1 kWh/kWp), a micro-CHP (25 kW),
a heat pump (2 kW), and a BESS (1 kWh). The results obtained by cooperative MPC showed
a minimum cost saving of 10% with a prediction horizon of 24 h.

3.6. EMS Based on Multiple Agents

The optimization methods based on a multi-agent system (MAS) are applied to com-
plex systems (systems that are composed of many interacting variables). These methods
are used in MGs for the decentralized management of the MG and to operate the tasks
with defined objectives.

Moghaddam et al. [118] proposed an MAS to reduce operating costs in a residential
MG. The MG included different generation sources and ESSs, as well as controllable
loads. Each residential building was equipped with a micro-CHP, a domestic hot water
system, a heating/cooling system, and an ESS. The simulation results demonstrated that
the proposed MAS was able to reduce the operating cost and, at the same time, ensure
users’ needs in any weather condition. On the other hand, Li et al. [119] presented a
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three-layer MAS model to promote the use of RESs and reduce the operating cost of an
MG. The three-layer MAS for the MG was composed of a PV system, a WT, a BESS, a heat
storage tank, an electric boiler, and a CHP. The results demonstrated that the MAS could
reduce the operating cost by 1.84%, whereas the generation of the PV and WT increased by
14.67% and 11.86%, respectively.

Relevant results can be obtained if an MAS is used in a distributed or in a decen-
tralized manner. A distributed EMS architecture based on MAS was proposed in [120]
by Khan et al. with the aim to improve efficiency and minimize power losses. The MG
comprised PV systems, WTs, micro-hydropower systems, diesel generators, BESSs, and
grid loads. The results were based on a case study located on Tioman Island (Malaysia),
using meteorological data from the Malaysian Meteorological Department. These results
of the MAS were compared with a centralized EMS, for which the proposed architecture
obtained a higher performance with respect to the centralized EMS. Another similar work
can be found in [121], in which Samadi et al. proposed an MAS-based decentralized EMS
to optimize the behavior and the operating costs of an MG connected to the grid. The MG
comprised a PV system, a wind and a diesel generator, a microturbine, a fuel cell, and an
ESS. The operating costs of the MG were reduced by about 44% and 48% in comparison
with MILP optimization and the nonlinearcondition, respectively. As a third example,
in [122], a distributed peer-to-peer multi-agent framework was proposed to maintain a bal-
ance between generation and demand in a grid-connected DC MG. The MG was composed
of six PV systems with a total nominal capacity of 14 kW, six residential loads with a total
demand of 24 kW, and six EV units. Specifically, these EVs were three Ford Escapes and
three Nissan Leafs equipped with 12 kWh batteries and three of with 24 kWh, respectively.
The results of the proposed scheme guaranteed a faster performance, as well as ensured
the energy supply.

In addition to the aforementioned examples, it is possible to find some papers in the
literature that combined MAS with other techniques in order to obtain better results for
the MGs’ management than those using MAS exclusively. For example, Jin et al. [123]
presented the structure of an MG based on MAS together with a game-theory-based
optimization model to improve the stability of the power grid and reduce the operating
costs. The MG was composed of several generation agents such as: a PV agent, a gas turbine
agent, and a WT agent. The benefits of the WT, PV, and gas microturbines accounted for an
increment of 6%, 19%, and 88%, respectively, when compared to a noncooperative game
optimization. As a second example, in [124], Kofinas et al. presented a cooperative MAS
for the energy management of a stand-alone MG, through a distributed, collaborative
reinforcement learning method called fuzzy Q-learning, to guarantee electricity supply
and increase the reliability of the MG. The MG was composed of an energy production
group including a PV source, a diesel generator, and a fuel cell. On the other hand, the
energy consumption group included a desalination plant, an electrolyzer, and a variable
electric load, which simulated the energy consumption of a building. The MAS results
presented energy production and consumption for two consecutive days in both winter
and summer seasons. Lastly, in [125], an MAS based on deep neural networks and the
alternating direction method of multipliers was presented to minimize the energy and
operation losses’ cost of agents in an MG operated in a multi-agent structure. This MG
was composed of a conventional distributed generator, WTs, PV systems, and BESSs. This
proposed EMS allowed forecasting the prices of the daily market, for which the results
demonstrated that the highest possible curtailment was 35%.

3.7. EMS Based on Artificial Intelligence

Optimization methods based on artificial intelligence try to solve an optimization
problem, usually a nonlinear one, using a method that replicates human behavior and/or
its nature. Examples of these techniques are artificial neural networks (ANN), which
are vaguely inspired by the biological neural networks that constitute the human brain,
or GAs, which are inspired by the process of natural selection (only the phenotypes of
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the individuals that are the best adapted ones to the environment are passed from one
generation to the next).

Cruz et al. [126] presented a dynamic ANN to minimize both the operating costs and
the costs of energy purchase from the public grid, in a grid-connected MG. This MG was
located in the Engineering Faculty at the Autonomous University of Yucatan (Mexico). The
MG was composed of a PV system, a wind generation system, electric loads, and a BESS.
The results of the ANN showed a prediction of the energetic variables presented in the MG
with good estimation results.

On the other hand, there are several works in literature that dealt with GAs to minimize
several features of the MG. In [127], an optimization problem was presented that was solved
through GA to minimize the operating cost of an MG located in China and to make full
use of clean energy. The MG had generation units such as a PV system, a CCHP, and
an ESS. The results showed that the monthly system operating cost savings rate was
between 1.38% and 1.68% after the demand response. Aldaouab et al. [128] proposed a
GA approach to minimize the total annual cost of the system in an MG composed of a PV
system, wind microturbines, a backup diesel generator, and a BESS, with a total residential
consumption for a year of 73,492 kWh. The simulation results showed that using a backup
power source to support the RES reduced the overall costs of the MG. As a third example,
in [129], different strategies were developed for the synthesis of a fuzzy inference system
EMS, by means of a hierarchical GA. The main aim of the proposed strategy in this work
was to maximize the benefits generated by the energy exchange with the public grid in a
residential MG composed of a PV system, a BESS, and loads. The results showed that the
performances were 10% below the ideal reference solution.

Another artificial intelligence-based methodology that has been widely used in MG
management is fuzzy logic. Fuzzy logic is based on the observation that humans make
decisions based on imprecise and nonnumerical information. Fuzzy logic is a form of many-
valued logic in which the true values of variables may be any real number between zero and
one, both inclusive, unlike Boolean logic, for which the true values of variables may only
be the integer values of zero or one. In [130], an EMS was proposed based on a fuzzy logic
controller (FLC) to improve the MG’s performance from both a technical (to prolong the
device’s lifespan) and an economic (to have the highest profitability and efficiency) point of
view. The proposed controller was tested in a residential MG found at the Spanish Institute
of Aerospace Technology. The MG was composed of a monocrystalline technology PV field
(5 kWp), a fuel cell, an EV, and a hybrid hydrogen ESS together with batteries. Specifically,
the batteries were made up of both a Li-ion battery bank (43.2 kWh) and a lead-acid battery
bank (36 kWh). The simulation was carried out with data from Huelva, southwestern Spain.
The results showed that the EMS based on the FLC guaranteed the residential demand
and, at the same time, allowed for savings of up to EUR 630/year on the electric energy
bill. Another similar work can be found in [131], in which Al-Sakkaf et al. proposed an
EMS based on a low-complexity FLC to maximize the energy savings and, at the same time,
minimize the cost in an autonomous DC MG for a residential house. The MG consisted of
a PV system, a WT, a fuel cell, a diesel generator, and a BESS. The simulation was carried
out in Dhahran City located in the eastern part of Saudi Arabia. The simulation results
were compared with the PSO, GA, and artificial bee colony methodologies. The proposed
method showed an energy savings of 10.79% and a reduction in the generation cost of
11.19%, with respect to conventional methods. In [132], the design of a low-complexity
FLC was presented to minimize the grid power fluctuations while keeping the battery
state-of-charge. This method was tested on a real residential MG located at the Public
University of Navarre (Spain). The MG included a domestic AC load (7 kW), a PV system
(4 kW), a small WT (6 kW), and a BESS made up of a lead-acid battery bank (72 kWh).
The simulation was performed with the aim to make a comparison with other approaches
seeking the same objective using real data, for which the improvements of the proposed
design were evidenced. On the other hand, Ulutas et al. [133] developed an EMS based
on a neuro-fuzzy inference system to reduce the energy exchange with the public grid
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in a grid-connected MG composed of a PV system, a BESS, and loads. The results of the
neuro-fuzzy inference system verified that the EMS predicted the load and generation with
high accuracy. Additionally, the public grid usage was reduced, which ensured that the
electric bills would be lower.

As a last example of artificial intelligence use in MGs, Mondal et al. [134] developed a
solution for the problem of scheduling and energy exchange between MGs. The problem
was studied as a multileader multifollower noncooperative Stackelberg game to maximize
energy supply benefits by strategically choosing the optimal value in an MG that predicted
the maximum amount of energy required by the load. The results of the simulation showed
that the benefits of the energy supply increased.

3.8. EMS Based on Other Techniques

The methods described in this subsection cannot be classified into the previous ones
since their characteristics do not fit well with those previously described. Hence, this section
was created to present new algorithms that have been found in literature, developed for
the optimization of EMS in MGs.

In the literature, it is possible to find dozens, even hundreds, of different optimization
methods that have been tested in MGs, most of them in simulation mode. To name just a
few examples, in [135], an EMS was proposed based on a rolling time horizon to maximize
the benefits generated by the energy trade and, at the same time, to minimize the energy
oscillations with the main grid. The method was tested in a grid-connected MG composed
of a PV system, system loads, and a BESS. The results showed that the EMS based on a
rolling time horizon provided better performance even in the presence of uncertainty in
the predictions.

On the other hand, in [136], a fitted Q-iteration algorithm was developed based on
Markov’s decision process to minimize the energy cost and, therefore, maximize the self-
consumption of local PV production in a residential grid-connected MG. This MG was
composed of a PV system, a BESS, a residential load, and a transformer that connected the
MG to the public grid. The developed method was compared with a model-based strategy,
and the simulation results showed a performance difference of 19%.

An optimization method based on a generalized reduced-gradient algorithm to mini-
mize the operating cost in a grid-connected MG was presented in [137] by Jordehi et al. The
MG was composed of a PV system, a wind generation system, and a BESS serving a fleet of
EVs. The results showed that the operating cost of the MG was significantly reduced.

The work presented in [138] must not be forgotten, in which the authors proposed
an improved differential evolution algorithm to minimize the operating and maintenance
cost, while at the same time reducing the energy losses. The method was tested in a
grid-connected DC MG that was composed of a PV system, a WT, and an ESS made
up of batteries and ultracapacitors. The simulation results of the proposed algorithm
demonstrated its feasibility and effectiveness.

To close this subsection, MGs stand out in the area of smart grids, and for this reason,
every day, new methods are emerging to improve their performance; one of these methods
is the reconfiguration of MGs. It is important to mention that this method has become very
prominent in recent years, and its operating principle is based on the correct change of the
closed/open state of the switches, which results in a radial network or in a mesh, with
the aim to improve the efficiency and sustainability of the distribution grid. In addition,
this method minimizes losses and maximizes load balance at the network level [139–141].
However, this article was focused on the optimization methods described in Figure 2.

3.9. Summary

This study selected, from the most important conference proceedings and scientific
databases, the most relevant works on energy management in MGs and tried to classify
the selected works depending on the optimization method used to solve the cost function
to optimize the energy management in MGs.
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The results are summarized in Tables 2 and 3, which show both the number of
references according to the optimization method implemented in the work and according
to the addressed problem, respectively.

Table 2. Summary of the optimization methods for energy management in MGs.

Optimization Method Reference Number of References

Metaheuristic [47,65–74] 11
Linear and nonlinear programming [75–85] 11

Dynamic programming [86–94] 9
Stochastic and robust programming [96–105] 10

Model-based predictive control [107–117] 11
Multi-agents [118–125] 8

Artificial intelligence [126–134] 9
Other techniques [135–138] 4

Table 3. Summary of the addressed problems in energy management in MGs.

Addressed Problems Reference Number of
References

Operative cost [65,68,70–72,76–79,81,85,87,
91,93,97–99,108,109,115,117–
119,121,123,127,137,138]

28

CO2 reduction [65,71,92,104] 4
Public grid consumption [47,66,67,70,73–76,81,88,90,92–

94,101,105,110,113,115,116,126,
129,136]

23

Balance generation and demand [91,92,100,103,118,122,124,130,
131,133–135]

12

Others [80,82–84,86,89,96,100,102,107,
111,112,114,120,125,128,132]

17

As can be seen, although there is no predominant optimization method and its choice
depends on the problem addressed or the authors’ knowledge in the optimization field,
the cost functions most used when addressing the energy management in an MG deal with
the operating cost and consumption from the public network.

4. Conclusions

In this work, the most relevant optimization techniques for MG management and
operation were presented and briefly discussed. Among others, we discussed: MILP and
MINLP, predictive control, heuristic methods, artificial intelligence, multi-agent based
methods, and dynamic programming or stochastic and robust programming. Some of
these techniques are classic ones and have been widely used in the management of MGs
for several years. However, other techniques cannot be classified into known methods,
since they are still under development, as was shown previously in Figure 2, but they have
obtained promising results in this research field.

As pointed out previously, several optimization procedures to manage MGs were
presented, but no particular one can be chosen as the “best” since this election depends
on the features of the MG, that is it depends on the different elements that make up the
MG or the objective to be maximized or minimized. The main idea that may be deduced
from this review is that an energy management technique is mandatory at the time of
operating an MG. Regardless of whether the objective is to maximize the MG production,
reduce the CO2 emissions, increase the benefits of the MG, or any other, a good EMS can
increase the stability and efficiency of the MG while being able to extend the service life of
its components. Not only can one objective be optimized at a time, but several ones can be
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at the same time, as has been pointed out in several works of this review, as in [71,76,99].
In this case, the EMS has multiple objectives since it can simultaneously present a response
to economic, environmental, and technical problems.

With the creation and development of more and more MGs in the next few years and
the need for them to interact so as to reach shared objectives, the optimization techniques
to solve big problems for which several MGs are involved are of great interest due to the
increase in this kind of system’s complexity. The works [89,115–117,124,134] should be
highlighted, in which distributed or cooperative optimization techniques were presented
and tested with good results when it comes to managing the energy flows through several
MGs. These techniques are most suitable to deal with this kind of problem, instead of
using a centralized optimizer, due to the complexity of the optimization problem and the
computational time needed to solve it. Distributed or cooperative techniques are able to
reach solutions almost as good as if a centralized optimizer were used, but spending much
less computational time.

Finally, other similar papers to this work can be found in [60,63]. These works
have many interesting references. In this paper, we tried to update and complement the
information related to managing the EMS of an MG from the authors’ perspective.
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AC Alternating current
ADP Approximate dynamic programming
BESS Battery ESS
CCHP Combined cooling, heating, and power
CHP Combined heat and power
COE Cost of energy
CSA Crow search algorithm
DC Direct current
DER Distributed energy resource
DG Distributed generation
DRO Distributionally robust optimization
DMC Dynamic matrix control
EV Electric vehicle
EMS Energy management system
ESS Energy storage system
FES Fossil energy source
FLC Fuzzy logic controller
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GA Genetic algorithm
GOA Grasshopper optimization algorithm
GPSO-GM Guaranteed convergence PSO
MG Microgrid
MILP Mixed-integer linear programming
MINLP Mixed-integer nonlinear programming
MPC Model predictive control
MAS Multi-agent system
MOPSO Multi-objective PSO
NRLP Newton–Raphson linear programming algorithm
Pgen Renewable power generated
Pg f Power from a fossil generator
Pgrid Public grid power
Pload Demanded power
PSO Particle swarm optimization
Psto ESS power
PV Photovoltaics
RegPSO Regrouping PSO
RegPSO Regrouping PSO
RES Renewable energy source
RBC Rule-based controller
REMS Rule-based EMS
SAA Sample average approximation
SOC State-of-charge
VSI Voltage source inverter
WT Wind turbine
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