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Abstract: This study evaluates temperatures measured at district heating (DH) valves in manholes
and their usability for non-destructively assessing the thermal performance of buried DH pipes. The
study was conducted as a field test in which part of a DH network was shut down and the temperature
decline in the valves was analysed in terms of absolute temperature and thermal response time from
the DH pipe to the top of the valve. The calculated and measured supply pipe temperatures by the
drainage valves were in good agreement, with 1% deviation. The valve measurement analysis from
this study shows that the drainage valve has good potential to serve as a measurement point for
assessing the thermal status of a DH network. However, the shutdown valve measurements were
greatly affected by the manhole environment.

Keywords: district heating network; non-destructive testing; cooling method; valve; thermal response
time; polyurethane

1. Introduction

District heating (DH) networks have been used for decades and their usage in-
creased substantially in the 1960s in the USA and Europe. The pipe types used vary,
but polyurethane (PUR)-insulated single pipes are very common [1]. The heat energy pro-
duced and delivered to customers is measured by the energy companies, so the heat losses
throughout the whole network can be determined. In Sweden, around 10% of the energy
supplied to DH networks is lost through heat losses from the distribution pipes [2], with
aging and degradation of the PUR increasing the heat losses [3]. A common rigid DH pipe
in a Swedish DH network consists of an inner service pipe of steel and an outer casing pipe
of polyethylene (PE); between them is the PUR insulation, a gas-filled closed-cell structure.

As the pipes age, energy companies need to renew their DH networks. However,
it is hard to assess the thermal status of an aged section, since the age by itself does not
equal to poor insulation status. Thermography is a method used by energy companies to
detect heat and especially water leakage, although it cannot assess the thermal status of
pipe insulation with high resolution. The absence of a suitable non-destructive method
for assessing the thermal performance of a network has previously been identified by
the present authors [4]. To fill this research gap, a “cooling method” has been developed
for use during network maintenance with an excavated pit [5–7]. This cooling method is
based on the temporary shutdown of part of the pipe network, while the cooling process is
registered by thermocouples to capture the temperature decline in the service pipe (i.e.,
supply pipe). Furthermore, the thermal status of the network can be calculated using the
temperature decline of the supply pipe.

The purpose of this paper is to develop and evaluate a cooling method for assessing
the thermal status of a DH network, focusing on an operating and unexcavated network.
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The method is based on measuring the temperatures of a shutdown valve and a drainage
valve. The paper presents a thermal response time analysis of the valves during the cooling
period. Furthermore, the supply pipe temperature before a shutdown is evaluated by
estimating the time lag and temperature drop, using data collected from DH users on the
network outside the evaluated part. The measurements evaluated in this study therefore
create prerequisites for capturing the actual temperature in the supply pipe, which can be
used for assessing the thermal status of a DH pipe section.

2. Concept for Developing the Cooling Method

For measurements of pipes excavated during maintenance, previously investigated
by the authors [8], four possible measurement positions and the importance of accurate
measurements were highlighted as the key to using the cooling method with high precision.
For DH pipes in operation, the shutdown and drainage valves have been addressed as
parts of the system where sensors could be placed. The measured value temperatures can
be used for calculating the temperature decline of the DH pipe section. However, it is
difficult to capture the actual absolute temperature in the supply pipe by means of valve
measurements due to time lag of the valves and interactions with ambient air temperature
in the manhole.

The initial temperature of a supply pipe, before a shutdown, is important for estimat-
ing the absolute temperature decline of the supply pipe during the cooling period. Energy
companies measure the supply temperature at several points in a DH network, mainly
at the customers’ DH centrals and at the heating plant in the outgoing supply water, i.e.,
the supply temperature is known before shutting down part of the network for thermal
performance assessment. The distance from the supply temperature measurement points
to assessed parts of the network will be case specific, and the accuracy of these temperature
measurements is governed by the point-to-point heat losses.

2.1. Requirements

The cooling method concept involves shutting down a section of an operating DH
network for a few hours, measuring temperatures at one or several points in a pipe section,
and finally calculating the temperature decline along the section [8]. In this paper we are
using two valves as measurement points, i.e., the drainage and shutdown valves, which
are accessible via the manholes in a network.

The temperature decline along a supply pipe section during a shutdown, determined
by measuring the temperature decline between the valves, is influenced by seasonal soil
temperature variations, shutdown duration, the supply pipe temperature history, the
supply pipe water volume, and the PUR insulation status anticipated by the method. We
assume that the ambient temperature in the manhole will not influence the temperature of
the observed supply pipe section during a shutdown period. However, the ambient air
temperature in the manhole does influence the valve measurements and will therefore be
considered in the valve temperature analysis.

2.1.1. Influence of Seasonal Soil Temperature Variations on Estimating the Thermal
Conductivity of the Pipe

The fluid temperature in the supply pipe is governed by the outgoing supply temper-
ature from the DH plant and by the heat loss to the surroundings. The latter is determined
by the fluid temperature itself and by the outdoor temperature. The annual average out-
door temperature and the seasonal variation amplitude constitute the main components of
interest. The geometric dimensions of the pipe and the thermal properties of the insulation
are of course also important for the heat loss magnitude. The annual average temperature
in the supply pipe and the annual average outdoor temperature result in an average soil
temperature around the pipe over the year. Superimposed on this is the seasonal variation
in the soil temperature, the amplitude of which is much less than that of the outdoor
temperature due to the dampening of the soil layer [9]. We can expect the temperature of
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the soil surrounding the pipe to be fairly stable over time, so the heat transfer from the DH
pipe can be considered a quasi-steady-state condition.

Let us first assume that the supply pipe temperature and the soil temperature have
been constant for a couple of days before the shutdown (see Figure 1). The impact of a
non-stable temperature history and of short-term temperature variations on the time scale
of hours and days will be investigated later in Section 2.1.3. The supply fluid temperature
before time zero, i.e., the time of shutdown, is denoted Tf (0) (K); the corresponding
temperature in the surrounding insulation is denoted Ti(r, t = 0) (K), while the immediately
surrounding soil temperature is Ts,s. The quasi-steady-state heat flow through the pipe
and into the soil is q f , s (W/m). The heat loss is balanced by the heat release due to the

temperature drop along the length of the pipe, q f

(
= q f ,s

)
.
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the heat supply, which must be zero after shutdown for the total process. The initial tem-
perature inside the pipe is zero for the second process. 

Figure 1. Quasi-steady-state thermal process in the insulated district heating (DH) pipe. The fluid
temperature before time zero, i.e., the time of shutdown, is denoted Tf 0 (K); the corresponding tem-
perature in the surrounding insulation is denoted Ti(r, t = 0) (K), while the immediately surrounding
soil temperature is Ts, s. The heat loss is q f ,s (W/m).

Figure 2 shows how the heat transfer, after the shutdown, can be analysed by super-
posing two separate processes. The first panel on the left (a) depicts the total transient
thermal problem to be solved. In the first process, shown in panel (b), the heat loss to
the soil from the pipe at time zero, q f ,s, continues to be balanced by the heat supply, q f .
Additionally, as the initial temperature inside the pipe is the same as for the total process,
the pipe temperatures will be the same as those before the shutdown. The second process
in Figure 2, shown in panel (c), then needs to have a negative heat source, −q f , to cancel
out the heat supply, which must be zero after shutdown for the total process. The initial
temperature inside the pipe is zero for the second process.
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The heat transfer between the water and the insulation can be neglected over short
periods, since these temperatures are both approximately zero. The temperature drop, i.e.,

the slope of the fluid temperature,
dTf
dt (K/m), over short periods, is therefore directly given

by the following heat balance, Equation (1):

ρc f A f
dTf

dt

∣∣∣∣
t≈0

= −q f (1)

Here, ρc f (J/m3K) is the volumetric heat capacity of the water and A f (m2) is the
cross-sectional area of the water pipe.

The estimated thermal conductivity, λi (W/mK), of the pipe insulation, can then be
calculated using Equation (2):

ρc f A f
dTf

dt

∣∣∣∣
t≈0

= −qs = −
2πλi

ln(Rout/Rint)
Tf ,0 − Ts (2)

⇒

λi ≈
ρc f A f

2πTf ,0 − Ts
ln
(

Rout

Rint

)∣∣∣∣dTf

dt

∣∣∣∣
t≈0

Here, the outer casing pipe and inner supply pipe radii are Rout (m) and Rint (m),
respectively.

Using superposition, the heat transfer process can be simulated numerically by coding
a finite difference method (FDM) in MATLAB. The required shutdown time and influence
of thermal history in the pipe can then be calculated if adequate assumptions are made
as to the involved parameters, i.e., fluid temperatures, soil temperature, and thermal
conductivity of PUR.

2.1.2. Shutdown Time

The required shutdown time depends on the dimensions of the pipes, due to the heat
capacity of the water volume in the pipe and the insulation thicknesses and thermal prop-
erties. Previous work [6] indicates that a minimum of approximately 1–2 ◦C of temperature
decline during the shutdown is required for a high-accuracy analysis, which partly depends
on the use of high-precision measurement equipment. Figure 3 shows examples of the
decline in the supply water temperature. The decline is approximately exponential, with
a rapid temperature change at the beginning when the temperature difference between
the water and the casing pipe/soil is large and slow when the temperature difference
becomes smaller throughout the cooling phase. The supply temperature is assumed to be
constant prior to shutdown. As seen in Figure 3, larger-dimension pipes such as DN500,
in which the nominal diameter (i.e., the actual supply pipe diameter) is 508 mm, require
approximately 8 h of shutdown time to reach a ∆T of 1 ◦C, whereas smaller-dimension
pipes, such as DN100, require only 1 h to reach a ∆T of 1 ◦C (see Figure 3a,b).

To analyse the impact of the surrounding soil on the temperature decline after shut-
down, the heat transfer process is simulated numerically using FDM in MATLAB as
described above, now also accounting for the soil outside the DH pipe, extended to in-
finity. A starting soil temperature of 10 ◦C is assumed (annual mean temperature at the
location) and the soil types are wet sand, dry sand, and loam, with a large range of thermal
properties (see Table 1 and Figure 4).



Energies 2021, 14, 5192 5 of 15

Energies 2021, 14, x FOR PEER REVIEW 5 of 16 
 

 

DN500, in which the nominal diameter (i.e., the actual supply pipe diameter) is 508 mm, 
require approximately 8 h of shutdown time to reach a ΔT of 1 °C, whereas smaller-di-
mension pipes, such as DN100, require only 1 h to reach a ΔT of 1 °C (see Figure 3a,b). 

 
Figure 3. (a) Expected cooling times for pipes of different dimensions; (b) close-up of expected temperature declines dur-
ing a shutdown; MATLAB model according to Section 2.1.1, Ts fixed at 10 °C. 

To analyse the impact of the surrounding soil on the temperature decline after shut-
down, the heat transfer process is simulated numerically using FDM in MATLAB as de-
scribed above, now also accounting for the soil outside the DH pipe, extended to infinity. 
A starting soil temperature of 10 °C is assumed (annual mean temperature at the location) 
and the soil types are wet sand, dry sand, and loam, with a large range of thermal prop-
erties (see Table 1 and Figure 4). 

Table 1. Soil properties [10]. 

Soil Type Water Content 
(m3/m3) 

Thermal Conductivity 
(W/mK) 

Volumetric Heat Capacity 
(106 J/ m3K) 

Loam 0.295 1.01 2.16 
Sand dry 0.022 1.53 1.36 
Sand wet 0.351 3.08 2.68 

 
Figure 4. Illustration showing the small effect of different soil types on cooling time; MATLAB FDM model. 

Figure 3. (a) Expected cooling times for pipes of different dimensions; (b) close-up of expected tempera-
ture declines during a shutdown; MATLAB model according to Section 2.1.1, Ts fixed at 10 ◦C.

Table 1. Soil properties [10].

Soil Type Water Content
(m3/m3)

Thermal Conductivity
(W/mK)

Volumetric Heat
Capacity (106 J/ m3K)

Loam 0.295 1.01 2.16

Sand dry 0.022 1.53 1.36

Sand wet 0.351 3.08 2.68
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model.

Figure 4 depicts the shutdown of a DN200 pipe showing the only slightly varying
impacts of the different soil types on the temperature decline, which was approximately
6 ◦C over 10 h for all soils. Hence, the impact of soil type on the shutdown time is small,
with different pipe dimensions having more significant effects.

2.1.3. Influence of Thermal History of the Supply Pipe Temperature

The influence of the pre-shutdown thermal history of the supply water on the temper-
ature decline in the pipe is investigated using numerical simulations. Temperatures and
shutdown times are used for three simulated shutdowns using Equation (3), where u is
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dimensionless, Tf (t) is the supply temperature during a shutdown, Tf (0) is the supply
temperature at the start of a shutdown, and Ts is the temperature of the surrounding soil.

u =
Tf − Ts

Tf (0)− Ts
(3)

Three shutdowns of 24 h each are illustrated in Figure 5, showing various recent
supply temperature histories: one with a recent increase of 10 ◦C after a low-temperature
period prior to shutdown, one with a recent decrease of 10 ◦C after a high-temperature
period, and one with a long period of stable temperatures. All histories start at 70 ◦C
(u = 1), decline with the same slope to 60 ◦C (u = 0.83), and after a longer period reach
temperature balance with the surrounding soil (u = 0).
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Figure 5. Illustration of the insignificant effect of recent temperature history in the supply pipe
prior to a shutdown; equal temperature declines for the three shutdowns at 61–85 h, 139–163 h, and
291–315 h.

Regardless of the thermal history, with increasing, decreasing, or constant tempera-
tures in the supply pipe, the slopes of the temperature declines are approximately equal,
thereby not affecting the shutdown time (see Figure 5).

2.2. Measuring Fluid Temperature through Valves

Valves welded to the service pipe permit the measurement of service pipe temperature.
These valves are commonly reachable through manholes or culverts. Temperature sensors
(thermocouples) can be attached to, for example, drainage valves, which are in direct
contact with the medium water, or installed at shutdown valves. The vertical valves
reached through a manhole are shown in Figure 6.
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Drainage valves contain standing water up to almost the top part. The top part of the
shutdown valve (in the centre of the figure) is thermally connected to the water only via the
closing ball and its steel rod (stem). The upper parts of the two valve types are uninsulated
and directly connected to the air temperature in the manhole. The steel parts of the valves
are normally stainless; the material properties of the valves are presented in Table 2.

Table 2. Material properties of polyurethane (PUR) [12–14], high-density polyethylene (HDPE) [15], and carbon and
stainless steels used in DH networks [15]. Thermal diffusivity is calculated from the table values.

DH Component Density (kg/m3) at
20 ◦C

Thermal Conductivity
(W/mK) at 20 ◦C

Specific Heat Capacity
(J/kgK) at 20 ◦C

Thermal Diffusivity
(m2/s) at 20 ◦C

HDPE casing 950 0.38–0.51 2100–2700 1.97·10−7

PUR insulation 61 * 0.026 * 1400–1500 2.31·10−7

Mineral wool
insulation 130 0.36 840 0.22·10−7

DH water 998 0.60 4200 1.40·10−7

P235GH ** 7850 57.5 460 1.59·10−5

P235TR1/P235TR2 ** 7850 56.9 460 1.57·10−5

AISI 304 *** 7800 16.0 500 4.10·10−6

* New pipes [12], ** Carbon steel, *** Stainless steel used in drainage and shutdown valves.

The valves are insulated with PUR and have a casing made of high-density polyethy-
lene (HDPE).

2.2.1. Shutdown Valve

Knowledge of the valves’ thermal response is essential for analysing the decline in
the temperature of the water in the supply pipe. In analysing its thermal response, the
shutdown valve can be assumed to be a perfectly insulated rod in contact with water in
a supply pipe, with no heat losses perpendicular to the direction of the valve. Therefore,
one-dimensional heat transfer by conduction is assumed to occur in the steel rod. In a
steel rod, the rate of thermal penetration of a sudden change in water temperature in the
supply pipe can be calculated using the analytical solution to the heat transfer differential
Equation (4). A constant initial temperature, T0, over the whole steel valve is assumed. A
sudden temperature change occurs from T0 to T1 at x = 0 at the rod’s connection to the
main DH pipe at time zero.

T(x, t) = T0 + (T1 − T0) · er f c
(

x√
4at

)
(4)

where a is the thermal diffusivity (m2/s) and t is time (s).
To find out when a certain possible temperature change has occurred at a given

position along the steel rod, Equation (5) is used. The depth at which 50% of the temperature
change is reached, i.e., the temperature has reached (T0 + T1)/2, is calculated by:

t ≈ d2

a
(5)

The temperature response versus depth of a steel rod for various times is presented in
Figure 5. The thermal diffusivity of the stainless-steel material is set to 4.1 × 10–6 (m2/s)
(see Table 1).

The results presented in Figure 7 indicate that, after 0.5 h, the heat front has reached
0.35 m into the material; however, this represents a small proportion, less than 1%, of the
total possible temperature change. It takes 8 h for half the possible temperature change to
occur at approximately the same depth (see the black dot).
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2.2.2. Drainage Valve

The thermal behaviour of the drainage valve is complex since it contains a volume of
water, and the temperature difference is enough to induce convective heat transfer in this
water. Convective movements are expected to flow upwards in the centre of the valve and
down along the side, due to the cooling from the uninsulated top part (see Figure 8).
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Figure 8. Expected convective water movements in a drainage valve.

A shorter thermal response time is expected, due to heat transfer by convection, than
in the shutdown valve. Thus, using a drainage valve for assessing a network makes it
possible to reduce the shutdown time.

3. Field Measurement of a DH Network

The cooling method was implemented in selected parts of Borås Energy’s DH network.
Three shutdowns were performed in May 2020. The measurements were made in a newly
installed and operating supply pipe network consisting of a DN200 pipe, i.e., a 219 mm
diameter steel supply pipe in a 355 mm diameter casing pipe. The studied part of the
DH network (i.e., measurement points B–D, 900 m) is presented in Figure 9; the normal
flow direction is from A to D. The DH network shown in Figure 9 is the end circle of
a newly installed network branch dimensioned for future customer connections to the
network. Furthermore, the circular configuration allows the flow to change direction
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depending on the demand from DH customers; this always results in the flows meeting at a
location that can shift within this circle depending on customer demand. The temperature
measurements in the field tests were performed using fiberglass type-K thermocouple
sensors, range 0 ◦C to +400 ◦C, accuracy ±0.4 ◦C, diameter 0.2 mm, while a Testo 176 T4
logger was used for data acquisition.
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from the field test are shown in Figure 11, together with the three shutdowns and open-
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pipe temperature was measured by the energy company [16] at several nearby customers, 
with B being of greatest interest as it was closest (400 m) to the measurement point, man-
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Figure 9. Pipe network and measurement location C (i.e., valves). Normal flow direction is A–E.
During shutdown at valve point D, the flow between B and D (dashed line) stops. Supply water is
shown in black and return water in grey.

Thermocouple positions are shown in Figure 10a: one on the steel top of the right
drainage valve, one on top of the central shutdown valve, and one on the side of the
steel top of the left drainage valve. In addition, one thermocouple was placed on the
side of the manhole to capture the surrounding air temperature. After attachment of the
thermocouples, “hats” of 20-mm mineral wool were placed to cover the top part of the
valves (see Figure 10b).
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Figure 10. (a) Measurement set-up in the manhole, showing thermocouples attached to the three
valves and one to the side of the manhole to capture the air temperature; (b) the valves insulated
with mineral wool (the valve set-up is the same as in Figure 6).

The network part under assessment extends from points B to D. Measurement data
from the field test are shown in Figure 11, together with the three shutdowns and openings
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of the supply water, marked “off” and “on”, respectively. Furthermore, the supply pipe
temperature was measured by the energy company [16] at several nearby customers, with
B being of greatest interest as it was closest (400 m) to the measurement point, manhole C
(see Figure 9).
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Figure 11. Temperature measurements during the three shutdowns (i.e., off to on) followed by
normal operation starting at approximately 4500 min.

It should be noted that the flow takes another path between the DH customers during
shutdown, so only the supply temperature between openings and closures is of interest.
The results presented in Figure 11 show that the valve responses to shutdowns differ
between the drainage valves and the shutdown valve. Sharper temperature changes can be
seen for the drainage valves, while the shutdown valve indicates smoother changes, more
in line with the manhole temperature. Furthermore, the manhole temperature also varies
with shutdowns as well as being influenced by daily changes in air temperature.

4. Analysis of Valve Measurements

Three parameters should be analysed to assess the usability of the valves as measure-
ment points: the absolute temperature in the supply pipe versus the absolute temperature
in the valves, the thermal response time from the shutdown in the supply pipe to an actual
temperature decline in the valves, and the temperature decline in the valves.

4.1. Absolute Temperature

To assess the interaction and temperature difference between the supply pipe and
valves during an operating period without shutdowns, supply temperature data collected
at point B are compared with the temperatures measured on the valves. The absolute
valve temperature and how it was influenced by the supply and manhole temperatures
can be described using a matching factor. However, prior to the assessment, the supply
temperature had to be adjusted for time delay due to the 400 m difference in location. This
time delay can be seen during normal operation, by comparing the black and grey curves
in Figure 11: for example, note the temperature increases after 8000 min, i.e., at 8300 min
for the supply and at 8500 min for the drainage valve. This time delay illustrates both the
flow velocity of the DH water over 400 m and the thermal response time within the valve
material. The flow is approximately 0.1 m/s, which can be considered very low, although
the circular network design and the few customers connected so far mainly explain this
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low flow. When the supply temperatures, Tf, and valve temperatures, Tv, are matched
in time, a matching factor, F, can be calculated to illustrate how well the temperatures
measured on the valves correlate with the actual supply temperature in the DH pipe. F is
calculated according to Equations (6) and (7). A factor of zero indicates a perfect match
with the supply temperature and no impact of manhole temperature, Tm; likewise, a factor
closer to one indicates an undesirably poor match with the supply temperature:

Tv = Tf + F ·
(

Tm − Tf

)
(6)

F =
(

Tv − Tf

)
/
(

Tm − Tf

)
(7)

The results presented in Table 3 indicate that the drainage valve temperature matches
the supply temperature much better than does the shutdown valve temperature. However,
the drainage valve and shutdown valve sensors were equally insulated, meaning that the
design and material properties of the different valves have a great impact on the resulting
temperatures. The supply temperature in the DH pipe below the valves can now be
calculated using factor F. In Figure 12, the drainage valve measurement and its factor have
been used to calculate the supply temperature. Results show that the deviation between
measured and calculated supply temperature is approximately 1%.

Table 3. Calculated average matching factors for the two valve types, with their standard deviations
and coefficients of variation.

Drainage Valve Shutdown Valve

Factor (F) 0.15 0.71

Standard deviation 0.02 0.28

Coefficient of variation 13.5% 39.0%
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Figure 12. Calculated supply temperature in the DH pipe based on factor F for the drainage valve.

Due to the thermal response time of the valve, to be analysed in the next section, a
small time lag can be seen in Figure 12 between the measured supply temperature and the
measured drainage valve as well as calculated supply temperatures. The matching is very
good after the measurement period (after the shutdowns, starting at 80 h). The time delay
due to distance between measurement points B and C has been taken into account.
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4.2. Thermal Response Time of Valve Material

The resulting matching factors indicate a large difference in heat transfer throughout
the two valve types, as can be seen in terms of both absolute temperature and thermal
response time.

From Figure 13 it can be seen that the thermal response time is faster in the drainage
valve (43 min) than in the shutdown valve (337 min) during the second shutdown. Similar
results are observed for shutdowns 1 and 3, where the response times for the drainage
valve are 70 and 33 min, respectively, and for the shutdown valve are 510 and 270 min,
respectively. The faster response time in the drainage valve is thought to derive from
convective water movement within the drainage valve, which constantly supplies the
upper part of the valve with hot water from below at a temperature close to the supply pipe
temperature. Without the convective heat transfer, the high absolute temperatures cannot
be explained. The low thermal conductivity of water in comparison with stainless steel
would in that case result in a smaller temperature change than that of the shutdown valve.
The shutdown valve’s longer thermal response time is reasonable and can be confirmed by
the calculations based on the error function (see Figure 7). Results from the shutdown valve
suggest that the manhole temperature has a greater impact on the resulting temperature
than does the supply temperature, as also captured by the matching factor.
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Figure 13. Thermal response time from shutdown to temperature decline for the drainage valve (left panel) and shutdown
valve (right panel); temperature data from the second shutdown, at 1627 min.

4.3. Temperature Decline during Shutdown

The measured temperatures of the drainage and shutdown valves during shutdown
are presented in Figure 11. A closer look at the temperature decline phases during the
shutdowns for the drainage valve reveals a linear temperature decline with time (see
Table 4 and Figure 14).
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Table 4. The three shutdowns with thermal response times to the temperature declines, and temperatures at one of the
drainage valves.

Thermal
Response Time

(min)

Temperature
Decline,

Duration (min)

Temperature,
MAX (◦C)

Temperature,
MIN (◦C)

Temperature
Difference (◦C)

Temperature
Decline (◦C/h)

First shutdown 70 1316 67.4 58.0 9.4 0.43

Second
shutdown 43 1075 66.8 58.4 8.0 0.45

Third
shutdown 33 1461 67.2 56.5 10.6 0.44
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Figure 14. Three shutdowns showing temperature difference versus duration of temperature decline for the drainage valve.

The thermal behaviour of the shutdown valve cannot be assumed to be linear, indi-
cating the great influence of other temperature factors, such as the manhole temperature.
The first shutdown has a lower temperature difference than does the second shutdown,
even though its duration is longer (see Table 5 and Figure 15). Furthermore, the shutdown
period is difficult to distinguish in Figure 11 due to the long thermal response time of the
stainless-steel shutdown valve, and also due to the strong interaction with the manhole
temperature.

With the present field test set-up, the drainage valve measurements could be used to
capture the temperature decline throughout the pipe section (i.e., B–D). However, with
the present set-up, the shutdown valve measurements are too complex and unreliable for
further thermal assessment of the DH pipe status.

Table 5. The three shutdowns with thermal response times to temperature declines, and temperatures at the shutdown
valve.

Thermal
Response
time(min)

Temperature
Decline,

Duration (min)

Temperature,
MAX (◦C)

Temperature,
MIN (◦C)

Temperature
Difference

(◦C)

Temperature
Decline (◦C/h)

First shutdown 510 853 35.1 29.9 5.2 0.37

Second
shutdown 337 833 36.7 30.6 6.1 0.44

Third
shutdown 270 1173 36.7 30.2 6.5 0.33
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5. Conclusions

The cooling method has been developed through field measurements of a network in
operation. Shutting down part of the network resulted in a temperature decline, which
could be captured with high accuracy by measuring the temperature decline at a drainage
valve. The method was tested during three shutdowns, and the results for the drainage
valve indicated little deviation between the tests. The supply temperature data were col-
lected from nearby DH customers during normal operation. The supply temperature was
calculated through analysis from valve measurements. The calculated supply temperature
agreed well with the measured supply temperature at nearby DH customers. Furthermore,
the thermal response time of the valve material was evaluated, and the repeated short
response times of the drainage valve constituted a prerequisite for it to serve as a mea-
surement point. The shutdown valve measurements were greatly affected by the manhole
environment in the present field test set-up. However, this effect was not seen in the
drainage valves, so measurements there were assessed to be usable for further predicting
the thermal status of the pipe network. The usage of the shutdown valve should not be
dismissed entirely, although an alternative and improved set-up would be required.
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