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Abstract: Six supplementary cementitious materials (SCMs) were identified to be incorporated
in concrete exposed to high-temperature cycling conditions within the thermal energy storage
literature. The selected SCMs are bauxite, chamotte, ground granulated blast furnace slag, iron
silicate, silica fume, and steel slag. A microstructural characterization was carried out through an
optical microscope, X-ray diffraction analysis, and FT-IR. Also, a pozzolanic test was performed to
study the reaction of SCMs silico-aluminous components. The formation of calcium silica hydrate was
observed in all SCMs pozzolanic test. Steel slag, iron silicate, and ground granulated blast furnace
slag required further milling to enhance cement reaction. Moreover, the tensile strength of three
fibers (polypropylene, steel, and glass fibers) was tested after exposure to an alkalinity environment
at ambient temperature during one and three months. Results show an alkaline environment entails
a tensile strength decrease in polypropylene and steel fibers, leading to corrosion in the later ones.

Keywords: supplementary cementitious materials; fibers; thermal energy storage; sensible heat
storage technology; concrete

1. Introduction

Depletion of fossil fuel energy sources is becoming every day a noteworthy prob-
lem, both its environmental impact generated and the technology dependence on fossil
energy [1]. Renewable energies are thriving to reduce climate change consequences, in
particular solar energy. Sunlight is globally available, easy to harvest, and being able
to frame the solar radiation hours in relation to the location [2,3]. Among the different
technology options to harness solar energy, concentrating solar power is one of them, which
converts the heating generated by the sun into electricity. One drawback of solar energy
is that when the sun sets or the meteorological conditions are not favorable, the energy
demand cannot be covered, leading to the implementation of thermal energy storage tanks
in concentrating solar power (CSP) plants to ensure continuous energy demand [4,5].

So far, cutting edge energy storage sensible heat materials were studied, highlighting
in CSP applications the commonly used molten salts [6,7]. In this context, are distinguished
two possible storage media materials, in liquid and solid. When considering a liquid
media, hot and cold layers are separated in the tank, storing and releasing the heat. Molten
salts, water, and synthetic oil are some examples of liquid media. On the other hand, in a
stable solid media, ceramics and metals are identified as suitable materials [8]. Also, within
potential sensible heat storage (SHS) materials, concrete shows attractive properties to be
used as thermal energy storage materials at high temperature [9].
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Concrete is a composite construction material having a cementitious matrix and
aggregates as filler. This ancient material is commonly used for structural purposes in
buildings and civil works. For this reason, the interest in improving the properties of
concrete has always been a challenge. As a ceramic material, concrete can achieve high
compressive strength, while tensile strength is poor and cracks are generated. In addition,
concrete has a well-known range of service temperatures, and it does not have good
behavior at temperatures higher than 400 ◦C, which would be of interest for its use in CSP
plants, as stated by several authors [9,10].

The composition of concrete could be complemented by adding supplementary cemen-
titious materials (SCMs) as a partial cement replacement. These materials have a powder
format, usually lower or equivalent to cement fineness, with high siliceous and aluminous
components [11]. To be considered as an optimal SCM they should have hydraulic or
pozzolanic properties. Some SCMs have hydraulic potential, which are capable of setting
and hardening under water. In comparison, others are complementary and have higher
pozzolanic properties, ensuring the key reaction of silico-aluminous components with lime
(calcium hydroxide) [12].

During the pozzolanic reaction (usually an irreversible process) a strong cementing
matrix is formed involving dissolved silicic acid, water, and CaO or Ca(OH)2 or other.
For this reaction to happen, enough free calcium ion and a high pH of 12 and above
are needed [13].

SCMs are added into the mixture during the concrete elaboration in order to improve
or achieve certain properties, either in fresh or hardened state. In the European Standard EN
197-1:2011 [14], some SCMs—such as fly ash, silica fume, pozzolana, etc.—are regulated.
Most part of deployed SCMs come as a by-product from coal, iron and steel making
industries. Despite widespread of the standard recognized SCM, there are others with
equivalent potential, which are lesser known, like volcanic ash, natural pozzolanas and
biomass ash. As stated by Snelling et al. [12], the use of SCM or its partial replacement of
cement represent three main advantages. SCM valorization renders an economic saving
and lower environmental impact resulting from cement content reduction in the mixture.
In addition, the final blending product obtains enhanced durability. Interest growth on
this material shows up as high CO2 emissions are reported from cement production.
Clinkerization process accounts up to 8% of global CO2 emissions [15]. Solutions need
to be considered reducing cement dependence to meet Paris Agreement climate change
statements. Partially substitute cement with pozzolanic materials rose attention as cement
alternative, forming a cement blend. Since cement production has a high environmental
impact, the incorporation of SCM entails the reduction of cement content.

Beside the intrinsic properties of the SCM, other important factors will influence
its characteristics and performance in concrete blend. Mixing design will be of great
importance, with water binder ratio being a key parameter. During mixture preparation,
in fresh state (hydration of the mixture), curing temperature will affect the workability
and setting time. Once in hardened state, properties will be highly depending on volume
porosity (pore structure), influencing the mechanical strength [13].

Table 1 presents a literature overview containing SCM in concrete for TES to be
used as storage media in CSP plants. In all the publications weight percentage of the
SCM is presented as well as the dosage content (kg/m3). Whereas the composition or
characterization of the SCM is rarely specified or analyzed. Fly ash and silica fume, and
the combination of both SCM are the widespread ones in concrete mixtures, followed by
ground granulated blast furnace slag.
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Table 1. SCM used in concrete for TES in CSP plant application

Type of SCM %
SCM

kg/m3

SCM
kg/m3

Cement
Cement

Type
Particle Size
Distribution

Chemical
Composition XRD TG

Maximum
Temperature

(◦C)
Reference

Fly ash

40 214 320

CAC

- - - -

[16]
50 265 265 - - - -
60 320 214 - - - -
70 374 160 - - - - 600
50 193 193 OPC - - - -
70 249 107 - - - -
43 160 210 OPC - - - - 600 [17,18]

Ground granulated
blast furnace slag 30 CAC yes yes yes yes 550 [19]

Silica fume 10 66 596 OPC - - - - 600 [10]
- - - - - 600 [20]

Fly ash
Silica fume

56
11

267
54 214 CAC - - - - 600 [16]

47
5

160
18 178 OPC - - - - 600

Silica micro powder
Aluminum powder - - - CAC - yes - - 1100 [21]

John et al. [16] demonstrated that depending on the cement used in the concrete
mixture, silica fume contributed or not to compressive strength. For instance, needs
calcium hydroxide to contribute in compressive strength. Therefore, the combination of
silica fume with calcium aluminate cement can contribute in other physical properties, such
as bulk density. The same article states that a combination of fly ash and silica fume with
Portland cement gives a higher refractory performance to the concrete mixture in a ternary
binder. In another research, Alonso et al. [19] added ground granulated blast furnace slag
(GGBFS) to control any risk or early conversion of calcium aluminate cement. Bauxite
powder, silica micro powder, and aluminum micro powder were used by Chengzhou
et al. [21] to improve refractory and thermal conductivity properties.

Moreover, characterization of industry by-products was previously studied to be used
as thermal energy storage material by itself [22–25].

On the other hand, to compensate the flexural strength of concrete, fibers are included
in concrete formulations. Fibers are materials that are being used for 4000 years ago as an
addition to improve the properties of raw material. As an example, in lower Mesopotamia,
the mud bricks cooked under the sun were modified with straw and, until some years ago
goat and horsehair were used to modify the gypsum. The ‘fibrocement’ was composed of
cement paste in which were added with 8–16% of asbestos fibers to improve 2 or 4 times
the bending strength. Synthetic fibers are also used since they are industrially produced in
1935 [26]. The first evidence of fiber reinforced concrete was in the 1960s, to solve concrete
cracks generated by shrinkage [27–29].

The main goal of using fibers is to increase the structural properties and to prevent or
mitigate the spalling effect, which is produced in the concrete when it is heated up to high
temperatures [27]. The incorporation of fibers in the concrete increases the cracks resistance
and the fragility is reduced. Simultaneously, the increment of the fracture toughness of
the material is noticed, improving the absorption of energy while the plastic deformation
without a cracking takes place. The objective is to achieve a concrete with fibers highly
appropriate to support dynamic actions or to prevent cracking control situations [30].

In the context of concrete for thermal energy storage applied in CSP power plants,
several types of fibers were used for different purposes. Polymeric fibers [31] were added
to reduce the spalling effect generated at high temperatures. In contrast, metal fibers have
twofold roles: sewing the fissures and enhancing at the same time the thermal conductivity
of the material. Having a close look at concrete literature to be used as TES at medium-high
temperatures, an overview of fiber types used is summarized in Table 2. Typically, steel
and propylene fibers are used, but Ozger et al. [31] and Girardi et al. [32] pursued recycled
fibers. Previous authors considered the combination of both fiber types to take advantage
of each fiber performance.
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Table 2. Types and characteristics of fibers used in concrete for TES in CSP plant application

Type of Fibers Diameter Length
(mm)

Tensile Strength
of the Fiber (MPa)

Melting
Temperature

(◦C)
Density Weight in

Concrete (kg/m3)
Reference

Polypropylene fibers 33 µm 6 450 - - - [33]24 - - -
Nylon polyamide

PA66 fibers 38–41 µm 8 ± 3 286 ± 38 285 13–15 dtex - [31,32]

Metal powders 12 µm - - - - -
[32]Steel fibers 530 µm 11 ± 1 400 ± 38 1435 - -

Recycled metal
shavings 0.1–0.2 mm2 10–30 - - - -

Steel fiber 0.9 mm
50

- - – 0.2 [34,35]25
10

PP fibers 18 µm 12.7 - - - - [16]
Steel fibers - - - - - 2 [10,16,36]

Nevertheless, from Table 2, insufficient information is given of the type of fibers
and their characteristics, which request to further study the fibers that could be added in
concrete under high thermal cycle conditions.

The addition of the supplementary cementitious materials involves a chemical reaction
in the presence of water, ensuring long term durability and, generally, increasing the
resistance to alkali-aggregate reaction [37,38]. Whilst, fibers are used to control plastic
shrinkage as well as internal tensile forces, under high-temperature exposure avoids the
deterioration of concrete material. Therefore, great attention should be paid to determine
the appropriate characteristics of the fibers and the supplementary cementitious materials,
such as morphology and physical properties (size, shape, density, surface characteristics).

Considering a future use in indirect thermal energy storage system (using heat ex-
changers), the aim of this research is to characterize fibers and supplementary cementi-
tious materials to be potentially implemented in high-temperature concrete to improve
its performance. Mechanical and chemical characterization of fibers and supplementary
cementitious materials was evaluated.

2. Materials and Methods
2.1. Materials

The materials used in this research are fifteen types of fibers, divided in four families:
polypropylene fibers, tire pneumatic fibers, glass fibers, and metal fibers. Moreover, seven
types of SCMs are also considered.

The SCMs used in this study are shown in Figure 1 and their chemical composition as
provided by their data sheets are presented in Table 3. In this research, four out of the seven
selected supplementary cementitious materials are by-products coming from industries.
Ground granulated blast furnace (GGBFS), iron silicate (IS), silica fume (SF), and steel
slag (SS), are residues from the steel and iron industry. Additionally, to have a variety of
materials, two refractory materials were selected to analyze their potential, bauxite (BAU),
and chamotte (CHA).

Bauxite is a sedimentary rock with high alumina (Al2O3) content, used in aluminum
production. The bauxite sample used in this research has a gibbsite origin and was
previously calcined in a rotary kiln and later milled to achieve a fine powder. The other
refractory material is chamotte, also known as grog. This comes from kaolin ore calcination
and subsequently milling process. As it can be appreciated in Table 3, chamotte alumina
content is 40%, nearly half of the bauxite. Both materials come from the same enterprise,
Arciresa, arcillas refractarias S.A. (Spain).
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Figure 1. Supplementary cementitious materials used in this research. (a) bauxite, (b) chamotte, (c) ground granulated blast
furnace slag, (d) iron silicate, (e) silica fume, and (f) steel slag.

Table 3. Chemical composition in wt % and physical properties of SCMs. Data provided by the suppliers.

Product Bauxite Chamotte Ground Granulated
Blast Furnace Slag Iron Silicate Silica Fume Steel Slag

Al2O3 89.94 40.70 9–13 6–12 0.15 13.50
SiO2 5.36 55.24 34–38 22–30 97 19.10

Fe2O3 1.14 0.32 - 25–35 0.03 27.00
TiO2 3.02 1.09 <1 - - -
CaO 0.02 <0.10 40–44 5–8 0.20 27.90
MgO 0.02 <0.10 6–9 - 0.30 2.50
Na2O 0.02 0.02 - - 0.05 -
K2O 0.03 1.47 - - 0.80 -
CuO - - - 0.3–0.9 - -
ZnO - - - 5–9 - -

Cr2O2 - - - - - 2.50
MnO - - - - - 5.4

apparent density
(g/cm3) 3.15 2.44 1.1 3.3 2.25 3.57

apparent porosity
(%) 12 6 - - - -

Ground-granulated blast-furnace slag (GGBS or GGBFS) is a dried and ground fine
powder. It comes from a blast furnace as a by-product of steelmaking and it is obtained by
quenching molten iron slag in water or steam. CaO is the main component of GGBS, acting
as a retardant during the concrete hardening process, resulting in lower heat of hydration
and lower temperature rises. The company EDERSA—Masaveu Industria (Spain) provided
this material. Silica fume is a by-product generated during the production of silicon metal
or ferrosilicon alloys. Mainly composed of SiO2 and hence having a high pozzolanicity,
this product was provided by Mapei (Italy). Iron silicate comes from copper melting
process converting into a powder material with a high content of iron and silicon dioxide.
Abrasivos Mendiola, S.L. (Spain) provided this material for the present research. Steel
slag (SS) is a by-product of steelmaking and was provided by Promsa-Megasa (Spain);



Energies 2021, 14, 5190 6 of 25

it is produced during the separation of the molten steel from impurities in steelmaking
furnaces. The slag is a complex solution of silicates [12].

On the other hand, fibers are considered a group of filaments of a material, which are
created to be added in a matrix material to increase the characteristics and the properties
of those. Figure 2 shows the aspect of the several fibers used in this study, and their
characteristics are shown in Table 4. Since tire fibers (TF-TR and MF-TR) and metal fiber
MF-FP do not have a datasheet from the company, they are not presented in the table.
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Figure 2. Fibers used in this research. Polypropylene fibers: (a) ST30, (b) ST42, (c) NS12, (d) NS18, (e) CN54. Pneumatic
fibers: (f) TF-TR, (g) MF-TR. Glass fibers: (h) HD3 (i) HD6 (j) HD12 (k) HP. Metal fibers: (l) RW50+, (m) RW50, (n) MF-FP.

Table 4. Characteristics of fibers considered in this study as given by the technical datasheet

Characteristics
Fiber Type

Polypropylene Fibers Glass Fibers Metal
PP-

ST30
PP-

ST42
PP-

NS12
PP-

NS18
PP-

CN54
GF-

HD12
GF-
HP

RW
50

RW
50+

Aspect */shape NF NF F F F F F NF NF
Color Grey Grey White White Grey White White Grey Grey

Length fiber (mm) 30 42 12 12 54 ± 5% 12 18 50 ± 3 50 ± 3
Equivalent diameter (mm) 0.80 0.80 0.032 ± 0.002 0.032 ± 0.002 0.32 ± 5% 0.014 0.014 1.0 ± 0.05 0.6–0.9

Density (g/cm3) 1.00 1.00 0.91 0.91 0.91 ± 0.02 2.68 2.68 7.80 7.80
Water absorption (%) ≤0.1 ≤0.01 - - ≤0.01 - - - -

Melting point (◦C) 155–165 155–165 165 ± 5 165 ± 5 165 ± 5 860 860 - -
Alkali, salt, and acid resistance High High High High High High High - -

Tensile strength (N/mm2) 450 450 - - ≥500 1.700 1.700 ≥1000 850
Elastic modulus (N/mm2) 3900 3900 400–500 400–500 ≥5000 72,000 72,000 - -

Elongation at break (ISO 527) (%) - - - - ≤20 - - - -

* Aspect: Non-filamentous (NF), filamentous (F).
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Among the six types of polymeric fibers, at first sight, they have a difference in their
length, color, and shape. ST-30 and ST-42 present waves along the fiber, while NS12, NS18,
and PP-CN54 are smoothly straight. Unlike the other fibers NS12, NS18, and PP-CN54
fibers are multifilament fibers, being NS12 and NS18 with higher multifilament proportion.
Within the polymeric group of fibers, a tire rubber fiber from pneumatics waste (TF-TR) is
found. It has a different aspect compared with the previous commented fibers, with an
undefined thin shape grouping all together. These six types of fibers were provided by
Mapei (Italy).

Besides polymeric fibers, four glass fibers are analyzed. All of them are multifilament
fibers from 3 mm to 18 mm length. GF-HD3, GF-HD6, and GF-HD12 were initially selected
to be characterized, but the small length limited the tensile tests. This constraint reduced
the number of glass fibers, being only possible to consider GF-HP. All glass fibers were
provided by Comercial Coll Vila (Spain).

The last fibers selected for this study are four types of metal fibers. RW50+ and RW50
fibers are wavy, with some difference in shape, being RW50+ multifilament. MF-FP fibers
are quite different from the other metal fibers, being straight in the center with a hooked
finish on both sides of the fiber. The fourth metal fiber comes from the metal wire from the
pneumatic tire waste. As it can be seen in Figure 2, they have irregular shapes and length.
Thus, this is something to take into account if it is desired to use them in concrete. MF-TR
were provided by Gestión Medioambiental de Neumáticos S.L. (Spain) and MF-FP fibers
from MAC (Perugia, Italy).

2.2. Analytical Methods
2.2.1. Supplementary Cementitious Materials

To study the morphology and microstructure of SCM particles, Figure 3 shows the
sample preparation procedure. A small portion of each SCM was embedded in epoxy
resin, and further cured at room temperature. Once the samples were hardened, they were
smoothed with roughing paper and polished with a polishing machine and diamond paste
until the surface was as flat and shiny to be tested on the metallographic bench camera of
the microscope. The optical microscopy analysis was carried out through the microscope
“Axiovert 100 A, Zeiss” and the software AxioVision 4.6 viewer from Carl Zeiss was used
for the image visualization.

X-ray diffraction analysis (XRD) was carried out according to European standard EN-
12698-2 [39,40]. The equipment used was a PANalytical X’Pert PRO MPD Alpha1 powder
diffractometer in Bragg–Brentano θ/2θ geometry of 240 mm of radius: Cu Kα1 radiation
(λ = 1.5406 Å), with a working power of 45 kV–40 mA.

To study the potential of the SCMs a key parameter is the pozzolanic reaction between
the SCMs and the calcium hydroxide (Ca(OH)2). This was studied by preparing a mixture
of each SCMs in a solution of Ca(OH)2 and water, simulating the SCM and Portland cement
blend with the ratio: 100 g Ca(OH)2:25 g SCM:187.5 g H2O. After the mixing process,
the resulting mixture of each SCM was divided in four pots, as shown in Figure 4. One
pot exposed to the air and another one closed for two days before the analysis. Two
more samples without SCM were prepared only with Ca(OH)2 and H2O, to use them
as references.
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Moreover, it was considered interesting to study if there are differences between
samples exposed to the air and others not exposed. Holes were done in the cover of the pot
in some sample while the others were fixed with parafilm (Figure 4).

These blends were analyzed in the Fourier transform infrared spectroscopy (FT-IR)
after 14 and 28 days, to analyze the reactivity of the SiO2 of each SCM with the Ca(OH)2.
(FTIR) was performed using a Fourier Perkin Elmer frontier spectrum equipment and
selecting the attenuated total reflectance sampling (ATR) technique. The sample in powder
format was used and placed in the equipment crystal for the spectrum analysis. In the
software analysis a wavelength scanning was selected between 4000 cm−1 and 450 cm−1.
When the diagrams were generated to analyze if the silicon of the SCM reacts with the
calcium of the Ca(OH)2 and produces tobermorite, which means that CSH (calcium silicate
hydrate) is formed [41].

2.2.2. Fibers

First, fiber samples were weighted using a scale model Mettler Toledo AG135, and
measured the length with a caliper. Also, the optical microscopy analysis used the optical
microscope “Axiovert 100 A, zeiss” using a binocular loupe to measure the diameter of the
fiber, to determine if the fiber is solid or hollow, and other morphological characteristics.

Apart from the characterization of fibers without any treatment (reference fiber), this
research pretended to go one-step further and study fibers under service conditions being
in contact with concrete. A NaOH solution with a pH of 13.5 was prepared to simulate pH
conditions of fresh concrete to submerge the fibers. Six replicates for each kind of fiber were
placed inside tubes for one month and six more for three months. These six repetitions of
fibers samples were used for the tensile strength tests.

The tensile test was carried out to fibers without any treatment, fibers exposed to
pH for one month, and another group of fibers tested after three months inside the basic
solution. The tensile test was performed following the literature standards ASTM (D638)
and UNE 40 -248-75 [42,43] with a Zwick/Roell zmart pro equipment (Figure 5). The strain
rate for this test was 5 mm/min for the PP fibers and 50 mm/min for the metal fibers.
Moreover, two types of load cells were used: 200 N and 10 kN, depending on the sample.
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3. Results
3.1. SCM

In Figure 6 are shown the SCM images obtained with optical microscope. Bauxite,
chamotte, ground granulated blast furnace slag, iron silicate, and steel slag are composed
by irregular polyhedral shape particles with sharp corners and edges, whether regular
circular shape particles compose silica fume. Regarding the surface, chamotte, silica fume,
GGBFS, and iron silicate present massive particles that have a smooth surface, while bauxite
and steel slag have a rough surface.
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From a qualitative perspective, Table 5 shows that the particle size observed through
the metallographic bench. Bauxite and chamotte have the smallest particle size from 11
to 55 µm. The other SCM analyzed have a higher particle size and a wide dispersion
in-between particle size.
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Table 5. Particle size of SCM

SCM Particle Size

Bauxite 11 and 31 µm
Chamotte 17 and 55 µm

Ground granulated blast furnace slag 50 and 420 µm
Iron silicate 75 and 332 µm
Silica fume 39 and 287 µm
Steel slag 80 and 390 µm

In XRD diagrams presented in Figure 7, Bauxite and Chamotte samples show a
diffractogram of a crystalline sample formed by a mixture of phases. In Bauxite sample
(a) the main crystalline phases are Al2O3 (aluminum oxide) followed by Al4SiO8 (Mullite),
while in Chamotte sample (b) the main phases are Al6O13Si2 (mullite, aluminum silicate)
and SiO2 (quartz). Otherwise, Steel slag diffractogram (c) shows both: peaks corresponding
to crystalline phases and amorphous phases seen by the non-flat baseline that goes up
at higher angles and is typical of amorphous phases with high Fe content. The peaks
corresponding to crystalline phases were identified as Al2Ca2O7Si (Gehlenite, calcium
aluminum silicate) and manganese magnesium oxide ((MgO)0.59(MnO)0.41) as major phases,
and Fe3O4 (magnetite) and Ca2O4Si (calcium silicate) as minor phases. On the other side,
the iron silicate sample (d) is mainly amorphous, while few low-intensity crystalline peaks
are identified, and these correspond to Fe2SiO4 (iron silicate). As in sample (c), the high Fe
content of the sample produces a baseline that goes up at higher angles.

Nevertheless, some crystalline SiO2 (Silicon Oxide) phase peaks are identified, being
silica fume diffractogram (e) in general amorphous. On the other hand, ground granulated
blast furnace slag is amorphous and does not present peaks of crystalline phases.

FT-IR was used to follow the pozzolanic reaction. From this test, were checked the
decrease in the intensity of the Si-O peaks and the appearance of new phase peaks of
tobermorite (CSH).

As a general trend observed in Figure 8, there is no difference between the mixture
samples of SCM and Ca(OH)2 which were exposed to an air environment and the mixtures
without being exposed to an air environment. These results were not expected since CO2
should have reacted with the material. For this reason, it is thought that the no air samples
were not isolated in a proper way. The ground granulated blast furnace slag was not
possible to test.

Bauxite after the pozzolanic test shows at 3500 cm−1, the OH peak. Moreover, at
805 cm−1 indicates the tobermorite presence after the pozzolanic test, corresponding to
CSH formation. The bauxite reference sample and the mixtures had some differences.
In the reference samples bauxite has an important peak in the 400–500 cm−1 caused by
bending of the SiO4 tetrahedral units.

Before the pozzolanic test, in silica fume, stands out the 1060 cm−1 peak, which
represents Si-O. After the pozzolanic test, the OH peak was observed, corresponding to
band 3500 cm−1, tobermorite at 1050 cm−1, and calcium carbonate at 1400 cm−1.

Since chamotte, iron silicate, and steel slag are formed by silicates, they showed practi-
cally the same FT-IR result. Differences were observed between the reference cementitious
materials and the mixture with Ca(OH)2. The FTIR peaks observed were the same as in the
four previous commented SCM. One important peak at 805 cm−1, which corresponds to
Si-O. After the pozzolanic test, at 3500 cm−1 a OH peak appeared in the FTIRs. Also, it can
be seen peaks at 3000–2800 cm−1 in some mixtures, which correspond to H2O, meaning
that the mixture was not dry enough. Like bauxite, the tobermorite peak that ensures the
pozzolanic activity was found at 805 cm−1.
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Ca(OH)2 with no addition was tested in order to have a reference to compare with the
other spectra. The peak of tobermorite is also seen here but with less intensity as the SCM’s
increase the formation of CSH, suggesting that in the Ca(OH)2, there are some silicates as
minor phases or impurities.

Also, in Table 6 are observed the peak values of the FT-IR results. The six supplemen-
tary cementitious materials studied present the common peak when they were mixed with
Ca(OH)2, an intense peak at 1400 cm−1 which is from the calcium carbonate.

Table 6. FT-IR peaks of the SCM pozzolanic test

SCM Band (cm−1) Phases

Silica Fume

Before pozzolanic test 1060 Si-O (stretching)
805 Si-O (bending)

After pozzolanic test
3600 Ca(OH)2
1400 Calcium carbonate
1050 Tobermorite

Bauxite

Before pozzolanic test 400–500 SiO4 (bending)

After pozzolanic test
3600 Ca(OH)2
1400 Calcium carbonate
805 Tobermorite

Iron Silicate-
ChamotteSteel

slag

Before pozzolanic test 805 Si-O (bending)

After pozzolanic test
3600 Ca(OH)2

3000–2800 H2O
1400 Calcium carbonate
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3.2. Fibers

When looking at the fibers using the optical microscope (Figure 9), the description
found in the datasheets could be corroborated.

First, the changes seen in the fibers after 1 and 3 months under alkaline conditions
were visually assessed. Figure 10 shows that metallic fibers RW50 and RW50+ present
oxide in the surface after the immersion in the basic solution. After three months, the
oxidation results were also present with a similar oxidation extent on the metal surface.

During the tensile strength testing, some difficulties were found in the shortest fibers
since the jaws could not hold the fibers properly. While PP-ST42 and PP-CN54 fibers were
tested, PP-ST30, NS12, NS18, all glass fibers (HD3, HD6, HD12, HP) and tire rubber fibers
were impossible to test. From the datasheet of the manufacturer, the tensile strength of
NS12 and NS18 is 400–500 N/mm2. Unfortunately, for tire rubber no datasheet is available.

Figure 11 shows that before the pH test, MF-RW50+ has the highest tensile strength,
1442 ± 200 MPa, while MF-RW50 the lowest, 557 ± 15 MPa. Comparing the tensile strength
provided by the company, MF-RW50 + has similar values while MF-RW50 does not reach
the minimum tensile strength of 1000 MPa. After one month in pH, all metal fibers had a
slight tensile strength decrease. Whereas, after three months in pH, MF-RW50 + falls down
its tensile strength to 1059 ± 37 N/mm2, having the same tensile strength as hooked fiber
MF-PF. Despite the decrease observed in MF-RW50 +, tensile strength is still above the
minimum of 850 MPa, provided in the company datasheet.
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Figure 11. Tensile strength of metal fibers.

Figure 12 shows a wide variation of results with general decrease trend of tensile
strength comparing fibers before pH test and after three months. The tested tensile strength
results of both polypropylene fibers before any pH treatment are far lower than the ones
provided by the company. After the first month of exposure to pH, the PP fibers report
a strength recovery. However, after three months, the tensile strength is nearly equal to
fibers without being exposed to pH.
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Figure 12. Tensile strength of polypropylene fibers.

Similar findings were reported by Micelli et al. [44], showing that tensile strength in
different fibers decreases after exposure to alkaline environments and temperatures. Also,
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Stepanek et al. [45] performed a long-term glass fiber exposure and concluded that tensile
strength decreased while elastic modulus is not highly affected.

Polypropylene fibers IRs spectra can be seen in Figure 13. The five PP fibers are
plotted together to compare them. As it can be seen they are quite similar. The obtained PP
fibers spectrums were similar to the ones reported by other researchers [46]. Concerning
glass fibers, the IR’s results show that all types of glass fibers are very similar. Like the
polypropylene fibers, glass fibers present nearly the same spectrum corresponding to glass
fiber [47]. The pneumatic fibers FT-IR correspond to a polyester fiber, in accordance with
other authors’ research [48].
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Figure 13. FT-IR of fibers. (a) Polypropylene fibers; (b) glass fibers; (c) pneumatic textile fibers.

4. Conclusions

This paper evidences the literature gaps in identifying and selecting supplementary
cementitious materials and fibers to be incorporated in concrete, within the frame of
thermal energy storage under high-temperature conditions. As an onset, this study aimed
to select and characterize different SCM and fibers available in the market, showing their
possible compatibility with concrete to be used as TES material, for instance, in a CSP plant.
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Concerning the supplementary cementitious analysis, XRD results showed that baux-
ite and chamotte have crystalline phases, while the others are more amorphous. Moreover,
in the pozzolanic test, analyzed through FT-IR, the formation of CSH (tobermorite) was
observed after the test in all the supplementary cementitious materials. The presence
of calcium silicate hydrate gel ensures the pozzolanic activity, which gives the selected
SCM the capability to react with calcium hydroxide forming hydraulic compounds. This
reaction is possible when adding SCM to Portland cement to form cementing matrix with
portlandite. On the other hand, the particle size inspection showed that most of the SCM
should have a further grinded treatment to be incorporated as a partial replacement of
cement and increase the pozzolanic activity.

In the pH test some fibers showed some oxide in the surface. The polymeric, tire, and
glass fibers were more difficult to test than the metal ones. Despite the accurate procedure
carried out during the test, some complications came across while performing the tensile
test. The fibers shorter than 2 cm, were too tiny to hold them with the jaws, not being able
to measure the tensile strength to them. Moreover, some measures were not significant
since the samples slipped and cracked from the jaws and not from the center of the sample.

It was noticed that the shape of the fibers could be determinant with their tensile
resistance. For example, the wave-shaped polypropylene fibers have higher tensile strength
than the straight shape ones. Even a shaved-wave fiber without the pH test has higher ten-
sile strength than a pH test sample with a straight shave. A different structure, crystallinity,
or orientations in the processing of these materials are other reasons for the possible tensile
strength changes.

After one and three months in a basic pH solution, polymeric fibers showed a con-
siderable dispersion in tensile strength. Concerning metal fibers, the greater decrease in
tensile strength is in the thicker fiber MF-RW50+. This tensile strength loss suggests that it
can influence the early ages of concrete chemical hardening process.

Additional studies are much needed, bracing ourselves for the next SCM generation
and their compatibility with different cement types, evaluating the fresh and hardened
state properties. A particular concern within the thermal energy storage field should be
paid in thermo-mechanical results when incorporating SCM in cementitious mixtures.
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