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Abstract: Microbial fuel cells (MFCs) have recently attracted more attention in the context of sustain-
able energy production. They can be considered as a future solution for the treatment of organic
wastes and the production of bioelectricity. However, the low output voltage and the low pro-
duced electricity limit their applications as energy supply systems. The scaling up of MFCs both
by developing bigger reactors with multiple electrodes and by connecting several cells in stacked
configurations is a valid solution for improving these performances. In this paper, the scaling up of a
single air-cathode microbial fuel cell with an internal volume of 28 mL, has been studied to estimate
how its performance can be improved (1523 mW/m3, at 0.139 mA). Four stacked configurations
and a multi-electrode unit have been designed, developed, and tested. The stacked MFCs consist
of 4 reactors (28 mL × 4) that are connected in series, parallel, series/parallel, and parallel/series
modes. The multi-electrode unit consists of a bigger reactor (253 mL) with 4 anodes and 4 cathodes.
The performance analysis has point ed out that the multi-electrode configuration shows the lowest
performances in terms of volumetric power density equal to 471 mW/m3 at 0.345 mA and volumetric
energy density of 624.2 Wh/m3. The stacked parallel/series configuration assures both the highest
volumetric power density, equal to 2451 mW/m3 (274.6 µW) at 0.524 mA and the highest volumetric
energy density, equal to 2742.0 Wh/m3. These results allow affirming that to increase the electric
power output of MFCs, the stacked configuration is the optimal strategy from designing point
of view.

Keywords: microbial fuel cell; scaling up; stacked configurations; volumetric power density; series
and parallel connection modes

1. Introduction

MFCs can be considered as a future option for the treatment of organic wastes, biore-
mediation, and the recovery of bioenergy from wastes [1–4]. MFCs employ exoelectrogen
microorganisms to transform energy stored in the chemical bonds of organic compounds
(as fuel) into electrical energy, catalyzing oxidation and reduction reactions in the area
between two electrodes. The low voltage output is the main disadvantage of the MFC
technology, which limits its use as electricity supply system and its success on the market
of the renewable energy technologies. In order to overcome this critical factor, solutions
towards the MFCs scaling-up must be investigated.

Walter et al. [5] studied the potential of scaling up a self-stratifying MFC operating
in supercapacitive mode. They tested cells with different electrodes area (from 6 cm2 to
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12 cm2 and 18 cm2) and reactor volumes of 49 mL, 68 mL, and 88 mL. Organic molecules in
the hydrolyzed urine were used as anodic substrate. The authors noticed that the large size
electrodes displayed the lowest power density (460 µW/cm2) whilst the small and medium
size electrodes showed higher densities (668 µW/cm2 and 633 µW/cm2, respectively).
Regarding the volumetric power densities, the small, the medium and the large had similar
values 264 µW/mL, 265 µW/mL and 249 µW mW/mL, respectively.

Liu et al. [6] compared the performance of a small MFC to that of a larger one realized
with a relatively higher anode surface area and a reduced electrode spacing. The small
MFC produced 14 W/m3 with an electrode spacing of 4 cm, while the large MFC produced
16 W/m3 with a lower average electrode spacing (2.6 cm) and a higher anode surface area
per volume. The main results of this study were that the power output was substantially
not changed during reactor scale-up and that the electrode spacing was a key design factor
in maximizing power generation.

Ahn and Logan [7] studied the scaling up of microbial fuel cells by developing a
compact reactor with multiple graphite fiber brush anodes and a single air-cathode cathode
chamber. The maximum voltage produced in fed-batch operation was 0.65 V (1000 Ω) and
the maximum power density was 975 mW/m2.

The development of small MFC modules integrated in stacked configurations is an
efficient strategy for increasing the power output. In this case the integration of MFCs can
be carried out by using different electrical connection modes: (a) the series connection, that
allows to increase the voltage while one common current flows through the cells; (b) the
parallel connection, that allows to increase the current output while the voltage output
does not increase; (c) mixed series and parallel connections.

Aelterman et al. [8] proposed six individual continuous MFC units in a stacked config-
uration with electrical connections in series and parallel modes. The authors demonstrated
that the maximum volumetric power outputs were unaffected by the series or parallel
connection (228 W/m3 and 248 W/m3, respectively) and that an individual MFC was able
to produce a higher averaged power output (until to 275 W/m3); however, the stacked
configurations allowed producing an averaged power at higher voltages and currents.
Wu et al. [9] proposed a pilot-scale stacked MFCs consisting of three anode chambers and
three biocathode chambers (the total volume was 72 L) separated by cation exchange mem-
branes (CEMs). Synthetic wastewater was fed into the anode chambers. They tested the
stacked MFCs in fed-batch operation, measuring a maximum power density of 50.9 W/m3,
as well as in continuous operation in which the volumetric power density was 42.1 W/m3.

Estrada-Arriaga et al. [10] proposed, two different air-cathode stacked microbial fuel
cells configurations under continuous flow for municipal wastewater treatment and electric-
ity generation. The cells were connected in series. The first stack, formed by 20 individual
air-cathode MFCs, was able to produce a maximum power density of 79 ± 0.65 mW/m2

(the current density was 1.3 ± 0.4 mA/m2); the second stack, consisted of 40 air-cathode
MFCs, was characterized by a power production of 4.2 ± 0.6 mW/m2 (the current density
was 0.04 ± 0.006 mA/m2).

Tominaga et al. [11] evaluated the effect of the connection type in series and parallel
between the anode and cathode on the power generation of MFCs that used the mud
(MMFC) for assuring the anaerobic condition of the anode. A carbon felt (5 × 5 cm) was
used for the anode; it was placed at bottom of a square-shaped vessel (20 × 10 × 6 cm)
filled with sea sediment up to 6 cm from the bottom. A bigger carbon felt (10 × 10 cm) as
cathode was placed in the electrolyte solution. By applying different external resistance,
the power densities were measured. The series configuration produced 40 mW/m2 and
the parallel configuration was able to generate 80 mW/m2.

Jafary et al. [12] proposed series and parallel configurations of stacked MFCs fed by
using glucose, fructose, and sucrose. The single-cell consisted of a double chamber reactor
in which the working volume of each chamber (anode and cathode chambers) was 600 mL.
The electrodes, realized in graphite felt (80 × 45 × 2 mm) were separated by a proton
exchange membrane (9 cm2). The experimental activities showed that the highest power
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density was achieved by using the parallel configuration (128 mW/m2) in comparison with
the series one (109 mW/m2).

Zhao et al. [13] studied a self-stacked submersible microbial fuel cell (SSMFC) powered
by glycerol. The cells were connected in series and in parallel modes. The working volume
(total volume was 1000 mL) of the anaerobic reactor was 500 mL. The wastewater amended
with 1000 mg/L glycerol was fed into the reactor to enrich the anodic microorganism. The
anode was made of non-wet-proofed plain carbon paper (9 cm2). The cathode chamber
was open to the air through the plastic tube. Results highlighted that the maximum power
density (normalized by the projected surface area of the anode) of the series connection
was 488 mW/m2 and that of the parallel connection was 450 mW/m2.

Ieropulos et al. [14] studied the polarization curves trends of 10 identical MFCs
connected in series, parallel, and series/parallel configurations (pairs of MFCs in series
and the 5 pairs in parallel). Results of this study highlighted that volumetric power
densities were 0.45 W/m3, 0.81 W/m3, 0.56 W/m3 for the above-mentioned configurations,
respectively. The authors observed that the series configuration was mainly affected by
ohmic losses and the parallel one suffered from low levels of activation losses.

Vilajeliu-Pons et al. [15], proposed MFCs stacked configurations in which the cells
consisted of six anodic and cathodic compartments (90 × 40 × 1.5 cm each one) hydrauli-
cally connected to an external nitrifying reactor (150 cm × 20 cm diameter) and with a total
volume of 65 liters. The anode and cathode compartments were separated by an anionic
exchange membrane and the cells were fed by the swine manure. The authors evaluated
the performances of the stacked MFCs fed by swine manure in series, parallel and mixed
connections obtaining 0.03 W/m3, 0.27 W/m3, and 0.33 W/m3, respectively.

Yuvraj and Aranganathan [16] presented a study by examining the behavior of stacked
microbial fuel cells for treating brewery waste effluent by using a standard glucose media.
The single cell consisted of a dual-chambered reactor with a working volume of 50 mL
for each chamber and two graphite blocks (a surface area of 0.0015 m2) were used as
electrodes. The stacked MFCs, connected in series, parallel, and series–parallel were able to
produce a power density of 813 mW/m2, 1546.5 mW/m2, and 2418 mW/m2, respectively.
The best performance was obtained by the series–parallel setup arrangement underlining
the interest in finding the best electrical connections for reaching combining stable and
high-power outputs for practical applications.

The study published by Wang et al. [17] was the only paper in which 4 electrical
connections (series, parallel, series/parallel, and parallel/series) were analyzed. The
authors wanted to propose the series–parallel stack mode, as an alternative approach to
series and parallel stacks to enhance the output of both voltage and current. The tested
MFCs consisted of the two-chambered reactors (Plexi-glass) in which the anodic and
cathodic chambers (the working volume of each chamber was 125 mL) were separated
by a cation exchange membrane; both the electrodes were prepared with graphite felt
and their surface areas were 16 cm2. Results, in terms of power outputs (mW) were
4.02 (±1.01), 6.84 (±0.24), 4.58 (±0.30), and 5.64 (±0.96) for the series (6 cells), parallel
(5 cells), series/parallel (5 cells) and parallel/series (5 cells) connections, respectively.

Thus, by analyzing the technical literature, it can be noticed that several papers were
focused on the increase in voltage and current outputs with series and parallel stacks. These
studies highlighted the advantages and disadvantages of these configurations. Otherwise,
few studies were devoted to evaluating the behavior of mixed solutions like series/parallel
or parallel/series that could overcome some of their disadvantages.

Therefore, this paper aims to contribute to the knowledge of mixed series and parallel
configurations that can represent the most interesting solutions in the scaling up MFCs.

Thus, this paper is focused on the analysis and the comparison of the performance
of all possible electrical connections in terms of volumetric power density (normalized
with respect to the total volume of reactors) and electric power production. Four stacked
MFCs configurations have been designed, realized, and tested. Moreover, a multi-electrode
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configuration, as an alternative solution for realizing the scale-up of MFCs, has been tested
too and compared to the others.

Results allowed us to find the best configuration that satisfies the increase in the power
output as required for suppling sensors or other devices.

2. Materials and Methods

Before starting the experimental activities, an accurate procedure based on the design
and development of reactors, the substrate preparation, the biofilm growth, and the bacteria
acclimation, has been carried out.

2.1. Reactors Design and Development

The scaling up of MFCs has regarded the development of both stacked MFCs configu-
rations and a multi-electrode reactor.

The stacked MFCs consist of 4 reactors operating in batch mode (28 mL × 4) connected
in series, parallel, series/parallel, and parallel/series modes. The reactors are fluidically
isolated, i.e., fed from individual lines. Each MFC shows a cubic shape with an internal
volume of 28 mL. It has been realized by using the Poly-Lactic Acid (PLA)-based material,
which represents a good solution in terms of sustainability as it is not toxic for microor-
ganisms and is completely recyclable. A 3D printer (Delta Wasp 20 × 40), based on the
FDM (Fused Deposition Modeling) technique, has been employed for manufacturing the
reactors. The 3D printer consists of a mobile nozzle with a hot end that melts the material
while setting it down on a flat plate, so that the construction process is obtained by adding
thin layers one by one [18]. This additive process ensures that no waste is produced and
very complex shapes can be obtained with high precision (5 µm) in a short time. The 3D
printer requires a GCODE file as input that is generated by using the open-source software
CURA (Ultimaker, Framingham, MA, USA).

Figure 1a shows the reactor designed by using the CAD support and realized with
the 3D printer. In the front side of the reactor, there is a hole for the cathode positioning;
the anode is put orthogonally to the cathode on the opposite side. Moreover, on the upper
side, a 10 mm circular hole is realized for the substrate inoculation. Table 1 summarizes the
main geometric details of the reactor.

Figure 1. Reactors design: (a) Single chamber reactor, (b) multi-electrode reactor.

Table 1. Geometric data of a single-chamber MFC.

Geometric Details Units Values

External Dimensions mm 50 × 50 × 46.5
Internal Dimensions mm 30 × 40

Internal Dimensions (diameter) mm 30
Total internal volume mL 28

Cathode surface cm2 7
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Figure 1b shows the CAD design of the multi-electrode reactor. On the front side of
the reactor, there are 4 holes for the cathode positioning; 4 anodes are put orthogonally on
the cathode on the opposite side. Moreover, on the upper side, two 20 mm circular holes
for substrate inoculation are realized. Table 2 summarizes the main geometric details of
this reactor.

Table 2. Geometric data of a multi-electrode MFC.

Geometric Details Units Values

External Dimensions mm 200 × 60 × 40
Internal Dimensions mm 179 × 49 × 29
Total internal volume mL 253

Cathode surface cm2 28

A carbon fiber brush and activated carbon coated with both a PTFE (polytetrafluo-
roethylene) layer and a nickel mesh (as a current collector) have been selected as the anodic
and cathodic electrodes, respectively [19]. The anode size is 25 mm in diameter and 50 mm
in length, each carbon fiber has a diameter of 7.2 µm and is fixed on titanium wires (the
fiber brush is made by Mill-Rose); based on the mass of fibers used in a single brush and on
the fiber diameter, Logan et al. [20] estimated a surface area of 0.22 m2. Figure 2 illustrates
the anode and cathode electrodes. They have been chosen because are characterized by
high conductivity, large surface area, high porosity, good biocompatibility.

Figure 2. Selected electrodes: (a) Anodic electrode, (b) and cathodic electrode.

2.2. Substrate Preparation

Different types of organic substrates can be used for producing electricity: acetate,
glucose, cellulose, zootechnical waste, cysteine, brewery waste, and organic fraction of
municipal solid wastes. The substrate selected in this study consists of a mixture containing
50 mL of sodium acetate 1 M, Compost (from organic wastes), and a mineral solution pre-
pared as suggested in ref. [21]. Sodium acetate has been chosen since provides the highest
energy yield to sustain exo-electrogenic bacteria metabolism if compared to fermentable
compounds like glucose, lactose, starch, and sucrose [20]. The substrate’s pH is checked to
always assure values in the range of 7–8 (the pH affects the growth of microorganisms). The
pH monitoring is very important because low values with respect to the neutral condition
cause problems to the catabolic activities of anaerobic bacteria.

2.3. Biofilm Development and Bacteria Acclimation

The biofilm consists of endogenous bacterial species of the Compost, which generally
are Bacillus, Geobacillus, and Brevibacillus [22–24]. The biofilm growth on the anodic
electrode and the bacteria acclimation under a specified voltage difference is realized by
applying a procedure consisting of 4 steps:
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i. Anode pretreatment: the anode is pretreated by soaking it into 0.5 M hydrochloric
acid for 3 h; then the anode is rinsed with distilled water, as to suggest in ref. [20].

ii. Anode incubation: the anode is incubated for 30 days at 30 ◦C in a solution consisting
of Compost and sodium acetate.

iii. Reactor assembly: the reactor is assembled by accurately inserting the electrodes and
filled with the prepared substrate (OCV condition); for assuring that the MFCs work
in anaerobic conditions, the substrate must cover completely the anode.

iv. OCV and acclimation: the reactor is kept in OCV condition for 48 h before starting
with the acclimation phase, in which different resistances, in the range 2200–33,000 Ω,
are applied during a period of about 10–15 days. Before changing the resistance, the
OCV is monitored and measured. This phase will conclude when the OCV will reach
a value higher than 550 mV. This procedure allows to “train” the electrogenic bacteria
in releasing the electrons to the anode and to work effectively under different voltages
conditions. Results of the acclimation phase on the single cell are summarized in
Table 3.

Table 3. Results of the acclimation phase on the single cell.

Resistance (Ω) 33,000 10,000 5600 2200

Days 1 2 3 4 5 6 7 8 9 10 11 12

Average voltage (mV) 163 236 245 314 238 196 250 266 276 326 210 215
OCV (mV) 231 - - 390 - - - 428 507 564

The electrochemical behavior of the biofilm on the electrode has been characterized
by using Cyclic Voltammetry (CV). It has been performed by means of AUTOLAB system
model PGSTAT204 (Metrohm Autolab) with an Ag/AgCl as reference electrode (+0.200 V)
and with a scan rate of 2.5 mV/s. Figure 3 depicts the CV shape and a consequence of
the biofilm activity; it can be noticed redox peaks at −0.04 V and −0.86 V. The anode CV
parameters were a start potential at 1 V, a stopping potential at 0.2 V.

Figure 3. Anodes Cyclic Voltammetry details with Fe redox peaks.

3. MFC Configurations

The configurations that have been designed, developed, realized, and tested in this
study are detailed as follows.
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3.1. In Series Connected Stack

The first electrical connection pattern is related to the series-based configuration, as
shown in Figure 4. This configuration allows having an increase in the output voltage
(with respect to the single-cell) that is, theoretically, equal to the sum of four voltages.

Figure 4. Series-based configuration: (a) scheme, (b) electrical connection mode and (c) stacked MFCs tested in lab.

3.2. In Parallel Connected Stack

The second MFCs connection pattern is related to the parallel-based configuration.
This configuration allows increasing the current output (with respect to the single-cell) that
is, theoretically, equal to the sum of four currents. Figure 5 shows the electrical connection
and a picture of this configuration.

Figure 5. Parallel-based configuration: (a) scheme, (b) electrical connection mode and (c) stacked MFCs tested in lab.

3.3. In Series/Parallel Connected Stack

Figure 6 depicts the stacked MFCs connection pattern related to the series/parallel-
based configuration. In this case, 2 MFCs have been connected in series and two series
connections have been connected in parallel mode. This configuration allows achieving a
higher output voltage as well as an output current compared to a single cell.

Figure 6. Series/parallel-based configuration: (a) scheme, (b) electrical connection mode and (c) stacked MFCs tested in lab.
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3.4. In Parallel/Series Connected Stack

The last stacked MFCs connection pattern regards the parallel/series-based config-
uration. In this case, 2 MFCs have been connected in parallel mode and two parallel
connections have been connected in series mode (Figure 7). In this case, the output current,
as well as the output voltage, are increased compared to values of a single cell.

Figure 7. Parallel/series-based configuration: (a) scheme, (b) electrical connection mode and (c) stacked MFCs tested in lab.

3.5. Multi-Electrode MFC Configuration

The single-chamber multi-electrode reactor (Figure 8) consists of 4 anodes and 4 cath-
odes. From an electrical point of view, the electrodes are connected in parallel mode.

Figure 8. Multi-electrode MFC configuration: (a) scheme, (b) electrical connection mode and (c) multi-electrode MFC tested
in lab.

4. MFC Testing Procedure

To compare the performances of the proposed MFCs configurations, the experimental
activity has been organized into three tests:

- Test 1: the polarization curves for each configuration have been performed at the
end of the acclimation phase; tests have been carried out according to the monocyclic
method reported in ref. [25], which consists of applying decreasing resistances every
5 min and measuring the average output voltage.

- Test 2: the polarization curves have been measured at the end of the “quiescent timing”
in which the MFCs are kept quiescent for 72 h until a stable OCV is achieved [26,27];
then the measurements have been carried out by applying the monocyclic method [25].

- Test 3: the electric energy production (µWh) has been estimated by measuring the
electricity produced over time by applying a fixed external resistance; in particular,
this resistance, which is different for each configuration, refers to that at which the
maximum electric power is achieved.

5. Results

The first step of the experimental activities campaign has been to estimate the perfor-
mance of the single cell. Figure 9 shows the polarization curve and the volumetric power
densities measured for the single MFC. The volumetric power density has been calculated
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considering the MFC internal volume of the cell equal to 28 mL. The operating ranges of
the average voltages and currents are 0.2–0.58 V and 0.02–0.2 mA, respectively. In Figure 9,
standard deviations are also illustrated. It is worth noticing that the maximum average
volumetric power density is 1523 mW/m3 (42.6 µW) at 0.139 mA.

Figure 9. Single MFC performance: Polarization curve (a), volumetric power density curve (b).

Moreover, it is worth noting that at high current densities the “power overshoot”
occurs. This phenomenon refers to a “doubling back” effect of the power density curve
in which a lower power than that measured for lower current densities is measured [26].
According to the technical literature, the power overshoot is due to the increase in internal
resistance and to the bacteria (on the anode) that are unable to produce sufficient current
at lower voltages [28]. The performance of the single cell has been compared to those
obtained testing all configurations.

5.1. TEST 1

Results of Test 1, in terms of polarization curves and volumetric power density, are
illustrated in Figure 10 where the comparison among all configurations is reported.

Figure 10. Test 1 results: polarization curves (a) and volumetric power density curves (b). The calculated standard
deviations of the maximum power densities are equal to ±323.04, ±514.53, ±170.74, ±633.05, and ±88.63 for the series,
parallel, series/parallel, parallel/series, and multi-electrode configurations, respectively.
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It can be observed that, as expected, the series-based configuration has the highest
voltage operating range (up to 2.2 V) and the parallel-based configuration has the highest
current operating range (up to 0.5 mA). The best performance in terms of volumetric
power density is obtained by the parallel/series-based configuration, which can produce
1556 mW/m3 (174.3 µW), at 0.418 mA (by applying an external resistance of 1 kΩ), and by
the parallel-based configuration that generates a volumetric power density of 1473 mW/m3

(165.0 µW) at 0.492 mA, by applying an external resistance of 680 Ω. The series-based
configuration shows a higher volumetric power density (1342 mW/m3, 150.3 µW), applying
an external resistance of 18 kΩ, compared to the series/parallel-based one (1138 mW/m3,
127.4 µW), applying an external resistance of 3.3 kΩ, even if this value is achieved at a
lower current (0.091 vs. 0.197 mA). The multi-electrode configuration shows the worst
performance; it produces a maximum volumetric power density equal to 388 mW/m3

(98 µW) at 0.313 mA (the external resistance is equal to 1 kΩ).
It is worth noticing that during TEST 1 the “power overshoot” occurs for each analyzed

configuration. Because this phenomenon is mainly due to the increase in the internal
resistance, it has been calculated as suggested by refs. [14,29]. Results of this analysis are
summarized in Table 4, where the calculated internal resistances and the current outputs, at
which the power overshoots occur by applying lower external resistances, are illustrated.

Table 4. Power overshoots conditions.

Configuration External Resistance
(Ω)

Current
(mA)

Internal Resistance
(Ω)

Series 4700 0.129 19,400
Parallel 470 0.452 1200

Parallel-Series 820 0.366 3000
Series-Parallel 820 0.213 4600

Multi-electrode 820 0.252 2100

5.2. TEST 2

Test 2 started after the “quiescent timing” during which the MFCs have been set in
the OCV condition. Results, in terms of polarization curves and volumetric power density,
are illustrated in Figure 11.

Figure 11. Test 2 results: polarization curves (a) and volumetric power density curves (b). The calculated standard
deviations of the maximum power densities are equal to ±301.13, ±490.03, ±158.24, ±612.12, and ±75.34 for the series,
parallel, series/parallel, parallel/series, and multi-electrode configurations, respectively.
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It can be affirmed that the performances improved in terms of volumetric power
density and current operating range in all tested configurations, confirming the positive
effect of the “quiescent timing” procedure that has allowed to bacteria of restoring the
equilibrium between metabolic and replicative activities.

The parallel/series configuration reaches a power density of 2451 mW/m3 (274.6 µW)
at 0.524 mA (the external resistance is 1 kΩ).

The parallel-based configuration increases its current operating range up to 0.602 mA.
Its volumetric power density is 2201 mW/m3 (246.5 µW), by applying an external resistance
of 680 Ω. The maximum volumetric power densities of the series-based and series/parallel-
based configurations are 1799 mW/m3 with an external resistance of 12 kΩ (201.5 µW) and
1379 mW/m3 with an external resistance of 3.3 kΩ (154.5 µW), respectively. Finally, the
multi-electrode MFC configuration increases its performance compared to Test 1 even if its
behavior is the worst (471 mW/m3 and 119.2 µW and 0.345 mA, by applying an external
resistance of 1 kΩ).

The power overshoots occur also during TEST 2 for each configuration. Table 5
summarizes the produced current outputs and the calculated internal resistances at which,
by applying lower external resistance, the power overshoots occur.

Table 5. Power overshoots conditions.

Configuration External Resistance
(Ω)

Current
(mA)

Internal Resistance
(Ω)

Series 2200 0.159 14,900
Parallel 470 0.540 992

Parallel-Series 820 0.488 2800
Series-Parallel 820 0.305 3700

Multi-electrode 680 0.324 1200

5.3. TEST 3

Test 3 has been performed to estimate the ability of all configurations in producing elec-
tric energy (µWh) for supplying small sensors (like temperature or humidity sensors). The
external resistances at which the highest volumetric power densities, for each configuration,
were measured during Test 2 have been applied during this test.

Results in terms of operating time up to the switch-off of all systems, maximum
and minimum powers (measured during the tests), and electric energy production, are
summarized in Table 6.

Table 6. Electric energy production for each configuration.

Configuration Resistance
(kΩ)

Operation Time
(h)

Standard
Deviation (mW)

Electric Energy
(mWh)

Volumetric Energy
Density (Wh/m3)

Series 12.0 144 ±0.71 206.7 1845.2
Parallel 0.68 72 ±0.09 77.8 694.8

Parallel-Series 1.0 120 ±0.39 307.1 2742.0
Series-Parallel 3.3 72 ±0.53 104.7 934.9

Multi-electrode 1.0 120 ±0.10 157.9 624.2

It is worth noticing that the parallel/series configuration assures the highest electric
energy production (307.1 MWh), working for 120 h. The series-based configuration can
operate for more time (144 h) compared to the other configurations, producing electric
energy of 206.7 mWh that is a value close to the parallel/series configuration one. The
parallel-based configuration shows the worst performance (77.8 mWh) with an operating
time of 72 h. Finally, the multi-electrode configuration can generate 157.9 mWh with an
operating time of 120 h.
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6. Discussion

Figure 12 illustrates the comparison among the volumetric power densities measured
during TEST 2 for the analyzed configurations.

Figure 12. Comparison among the maximum volumetric power densities.

The comparison of the measured performances has highlighted that, the parallel/series-
based configuration is the best one; it generates a maximum volumetric power density
about 1.61-fold higher than that recorded from the single MFC.

This configuration is also better than the series/parallel-based one. The difference in
performance could depend on the internal resistance of each cell that, in the series/parallel
connection mode, causes a decrease in the output voltage with respect to the attended theo-
retical value. Thus, this last stacked configuration is mainly limited in power production
by the ohmic losses. The series and parallel-based configurations have shown maximum
volumetric power densities about 1.18-fold and 1.45-fold higher when compared to the
single MFC, respectively.

The worst performance has been obtained by the multi-electrode configuration so that
it is possible to conclude that the scaling up realized with a bigger reactor does not allow
increasing the volumetric power density (471 mW/m3) compared to the single cell one.

Results presented in this study have been compared to some data obtained in other
studies available in the technical literature. Table 7 compares these results. It is important
to underline that the mentioned papers do not deal with stacked MFCs based on the same
geometric architecture, the same substrate, or the same type of biofilm, because each study
developed original reactors. Thus, the comparison is presented to point out how our results
are ranked with respect to the state of the art and how they concern all possible electrical
connections. It can be noticed that few studies deal with parallel/series configuration,
which, as illustrated in this study, represents the best solution to be implemented for
increasing the power output.
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Table 7. Comparison of the performances with literature results.

Configurations Multi-Electrode Series Parallel Series/Parallel Parallel/Series

Units W/m3 W/m2 W/m3 W/m2 W/m3 W/m2 W/m3 W/m2 W/m3 W/m2

This work 0.471 0.043 1.799 0.072 2.201 0.088 1.379 0.055 2.451 0.098
[7] - 0.975 - - - - - - - -
[6] 14 - - - - - - - - -

[10] - - - 0.079 - - - - - -
[11] - - - 0.040 - 0.08 - - - -
[12] - - - 0.109 - 0.128 - - - -
[13] - - - 0.488 - 0.450 - - - -
[14] - - 0.450 0.810 0.560 - - .
[16] - - - 0.813 - 1.546 - 2.418 - -
[15] - - 0.03 - 0.27 - 0.33 - - -
[17] - - 16 - 27.3 - 18.3 - 22.5 -

7. Conclusions

In this study, a multi-electrode MFC and four stacked MFCs configurations, based on
different electrical connection modes, have been designed, developed, realized, and tested.
The multi-electrode MFC consists of 4 anodes and 4 cathodes connected in parallel mode
and the stacked MFCs configurations consist of 4 MFCs connected in series, in parallel,
series/parallel, and parallel/series modes.

The performance analysis has highlighted that, for all configurations, the highest
volumetric power densities have been achieved after a “quiescent timing” that allowed
to bacteria of restoring the equilibrium between metabolic and replicative activities. The
parallel/series-based configuration showed the highest value of the measured volumetric
power density while the multi-electrode MFC had the worst behavior.

Thus, the scaling-up realized by increasing the reactor’s volume with multiple anodes
and cathodes does not represent the optimal solution for improving the MFC power output;
as a matter of fact, the negative influence of the greatest geometric parameters that involve
higher ohmic losses, (i.e., the ratio between anodic and cathodic surfaces, the spacing of
the electrodes, etc.), causes lower performances.

In conclusion, the stacked MFC system in parallel/series configuration represents the
best solution for generating electrical power output at more practical currents and voltages,
as required for supplying sensors or other devices.

Thus, even if the idea of the electrical connections for increasing the power out-
put is not novel, as confirmed by the literature review above presented, the analyzed
parallel/series connection, that resulted to be the optimal configuration, introduces an
interesting novelty that can help to develop MFC power systems optimized from energy
and economic points of view; as a matter of fact, considering the results obtained in this
research, it is possible to affirm that, to reach the same electric power produced by the
stacked MFC system in parallel/series configuration, it would be needed a higher number
of reactors by using the series configuration (the most used in the scale-up of MFCs), with
consequently more costs and greater overall dimensions.

Results of this study will be used for developing stacked MFCs systems based on the
parallel/series configuration that will supply sensors for monitoring temperatures and
humidity in real environments (from laboratory level stage to real applications).
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