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Abstract: The oxygen transport membrane (OTM) is a high-density ion-conducting ceramic mem-
brane that selectively transfers oxygen ions and electrons through the pressure differential across its
layers. It can operate at more than 800 ◦C and serves as an economical method for gas separation.
However, it is difficult to predict the material properties of the OTM through experiments or analyses
because its structure contains pores and depends on the characteristics of the ceramic composite. In
addition, the transmittance of porous ceramic materials fluctuates strongly owing to their irregu-
lar structure and arbitrary shape, making it difficult to design such materials using conventional
methods. This study analyzes the structural weakness of an OTM using CAE software (ANSYS Inc.,
Pittsburgh, PA, USA). To enhance the structural strength, a structurally optimized design of the OTM
was proposed by identifying the relevant geometric parameters.

Keywords: ceramic composite materials; finite element method; material properties; membrane

1. Introduction
Oxygen Transport Membrane

An oxygen transport membrane (OTM) is an ion-conducting membrane that selec-
tively transports oxygen via the pressure difference between its two sides. The OTM is an
economical component used in gas separation methods [1–8].

Ceramic membranes with mixed conductivity transport both ions and electrons. These
membranes can separate oxygen without requiring external energy or applied voltages, as
the electrons travels in or against the direction of the oxygen ions [9–16].

Oxygen ions migrate through the porous lattice when the lattice vibrates at more than
800 ◦C. OTMs exhibit feeble lattice vibrations at low temperatures. Pure OTMs operate
at high temperatures and pressures; therefore, they necessitate mechanical, thermal, and
structural stability. When a ceramic membrane is exposed to high temperatures and
pressures, it disintegrates. To protect such membranes and maximize their efficiency,
researchers have developed various types of laminated forms and module systems.

In laminated forms, each layer must have a specific functional characteristic. For
example, the membrane layer must have structural stability to endure external pressures
and osmosis; the porous layer must have a microstructure to transport oxygen ions; the
catalyst, chemical stability; and the support layer must have mechanical, thermal, and
chemical stability. Additionally, if the structure shown in Figure 1 acts as the membrane
assembly, then it would require sealing methods to allay external particles, and it must
possess mechanical durability [17].
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Module systems including the plate-, hollow [18], and honeycomb-type membrane 
modules (Figure 2) have been developed [19]. These systems must have a high effective 
cross-sectional area, relative to the membrane-response area, for ease of manufacturing 
and to ensure complete sealing. 

In the late 1980s, the US, Japan, Europe, and other countries acknowledged the im-
portance of high-oxygen separation techniques [20] and invested substantially in related 
studies. The Korea Institute of Energy Research has been conducting research on 
ion-conductive membrane processes. OTM conductors can be fabricated by selectively 
separating high concentrations of oxygen, regardless of the size. Therefore, these con-
ductors are gradually being expanded to steelmaking, automotive, and manufacturing 
industries [21]. 

 
Figure 1. Oxygen-ion conductivity and structure of an OTM module. 

 
Figure 2. Types of OTM modules. 

The research on composite ceramic or porous ceramic OTMs and OTM modules can 
be classified into six subjects as shown in Figure 3: 
1. Membrane material, which covers the characteristics of the membrane along with its 

structure, composition, and production process [1,17–50]. 
2. Composite ceramic characteristics, structures, and mechanical behaviors [4,32,34,51–54]. 

Figure 1. Oxygen-ion conductivity and structure of an OTM module.

Module systems including the plate-, hollow [18], and honeycomb-type membrane
modules (Figure 2) have been developed [19]. These systems must have a high effective
cross-sectional area, relative to the membrane-response area, for ease of manufacturing
and to ensure complete sealing.
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In the late 1980s, the US, Japan, Europe, and other countries acknowledged the
importance of high-oxygen separation techniques [20] and invested substantially in re-
lated studies. The Korea Institute of Energy Research has been conducting research on
ion-conductive membrane processes. OTM conductors can be fabricated by selectively
separating high concentrations of oxygen, regardless of the size. Therefore, these con-
ductors are gradually being expanded to steelmaking, automotive, and manufacturing
industries [21].

The research on composite ceramic or porous ceramic OTMs and OTM modules can
be classified into six subjects as shown in Figure 3:

1. Membrane material, which covers the characteristics of the membrane along with its
structure, composition, and production process [1,17–50].

2. Composite ceramic characteristics, structures, and mechanical behaviors [4,32,34,51–54].
3. OTM systems, which include the lifetime and fatigue failure predictions at high

temperatures and pressures [55,56].



Energies 2021, 14, 4992 3 of 25

4. Pure material experiments [5,57], which theoretically and experimentally investi-
gate the material properties at high temperatures and pressures, structure of mixed
materials, and mixed compositions [51,58].

5. Computer simulation, which is used to analyze the weak points in the membrane, pre-
dict the stresses in the OTM module system, and optimize or verify
production [53,57,59–76]. Although a few researchers have studied hollow and tubu-
lar modules, limited research has been devoted toward plate-type modules.

6. The latest research trends and applications of composite ceramics and OTM sys-
tems [77–84].
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Figure 3. Research on OTMs and modules (the numbers in the figure represent the approximate
number of available articles related to the present research).

2. Structural Analysis of OTM Modules
2.1. Model Description

OTMs should possess mechanical, thermal, and structural stability because the OTM
modules must selectively permeate oxygen via ion conduction, which is only possible at
high temperatures (more than 800 ◦C) and pressures (more than 10 bar). The membrane is
only 10–100 µm thick, and therefore it is vulnerable to external conditions.

However, enhancing the membrane’s structural stability by simply increasing the
membrane thickness would make the penetration ratio impractically low. Therefore,
researchers are experimenting with various module shapes that can compensate for the
thickness, to ensure that the membrane is protected without losing its features. The addition
of porous ceramics that permeate oxygen around the membrane to stabilize the structure
opens the possibility of a variety of module systems. As mentioned earlier, the OTM must
be impermeable, thermally and structurally stable, and easy to produce, while possessing
a high cross-sectional area of effective penetration relative to the response volume.

The plate-type module used in previous studies [45,47] was modified and used as the
basis for the OTM module shape in this study (Figure 4).
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Figure 4. Fully sealed OTM module.

The components of the module were organized into a single sealed form, which
consists of a membrane layer (OTM), a porous layer (permeability support layer), a gas-
channel layer (pure oxygen gas passing layer), and a dance support layer (impermeable
support layer).

The area and diffusion rate of the ceramic membrane cannot be disclosed as it is a
proprietary technology of the Korea Institute of Energy Research. However, the thickness
of the layer and the stacking order have been disclosed.

In collaboration with the institution, the membrane was designed with a high penetra-
tion ratio and structural stability. Table 1 provides information on the material composition
and the thickness of each layer. Figures 5 and 6 illustrates the components of the OTM
module. As seen in the figure, each unit is a vertically symmetrical layered structure.

Table 1. Material and thickness of the OTM module components.

ID Name Material Thickness (µm)

1 Membrane G8L2 (Dense) 120
2 Porous support layer G5L5 (Porous) 30
3 Gas-channel layer G8L2 (Dense) 200
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2.2. Simulation Suite

The structure of the OTM module was analyzed using commercial finite element
analysis software and modeled on Catia V5.0 (ANSYS Workbench Design Modeler, ANSYS
Inc., Pittsburgh, PA, USA) after defining the composition of each layer as a set, based on
the specifications mentioned earlier. This module was prepared as a set concept through
the sintering process after each layer was prepared, and all the layers were laminated.

Each layer in ANSYS Workbench consisted of a solid, and the above models were
assembled to form parts. The symmetry condition was used to reduce the computational
time, which allowed expressing only half of the OTM module set in ANSYS. The material
properties of each layer were obtained using the data from the material experiments, as
detailed in Table 1 of [85].

The boundary conditions of the model were as follows:

• An internal pressure of 10 kPa was applied because the 1 MPa gas-channel layer of the
external pressure can extract oxygen via the pressure difference between the internal
and external surfaces.

• Each layer was laminated to constitute a unit. Thus, symmetric conditions were
applied to the top face of the membrane layer and the bottom face of the gas-channel
layer via the entire structure of all the laminated units.

• In view of the half model, the surroundings of the side with the hole were assigned
the left-symmetry right-symmetry condition.

Part of the high-stress concentration appears between the porous and gas-channel
layers, which represents the pressure differential across the OTM module.
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It was essential to choose the element formation because the thickness of the generated
element is in the micrometer range, owing to the thin membrane of the OTM and the
difference in the stress values in accordance with the formation of the membrane and the
size of the lattice for the element generating.

Element generation or meshing is an important step in the finite element method.
Omitting this step or using the auto-mesh function can produce critical errors in the analysis.
To enhance the accuracy, the type, number, and distribution of finite elements must be
meticulously selected according to the analysis model and type. The area and space of the
detailed structure and the region of stress concentration and gradient fluctuations require
detailed grid separation and additional mesh convergence tests after the analysis.

The number of grid layers according to each layer and the element size of the total
OTM model were used as the parameters for the mesh convergence test (Figures 7 and 8).
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Figure 7. Mesh convergence test (number of mesh layers vs. maximum von Mises stress).

For the grids, using the eight-node hexahedral element would have led to a local
stress concentration and the accuracy of the stress values with the form of the gas-channel
layer. As the number of stacked elements per OTM module layer increases, the computa-
tional time and the number of elements increase. To precisely express the stress gradient
section due to the material difference of each layer and to increase the accuracy of the
analysis of the thin-membrane OTM module, we chose the three-dimensional 20-node
hexahedral element.
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The OTM unit model had an element size of 100 µm. The mesh layer with five
layers toward the thickness of each layer forms the grid model. There were approximately
500,000 elements and 2,000,000 nodes.

2.3. Result

Two vulnerable regions were identified on the OTM module: the neighborhood of
the support structures between the porous layer and the gas-channel layer with large
membrane stress and pressure differences; and a processing hole. Figures 9–11 illustrate
the results of the structural analysis for each layer. The membrane layer had a stress
distribution less than the breaking strength (58.5 MPa). The maximum stress (35 MPa)
around the processing hole was also less than the breaking strength. In the porous layer,
the stress (95 MPa) was significantly higher than the breaking strength (44.6 MPa). This
region of high stress was in contact with the gas-channel support layer with a significant
pressure difference.
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Therefore, the peripheral region of the porous layer must be designed as a support
structure to account for the high stress around the region adjacent to the high-stress region
on the porous layer of the gas-channel layer.

A detailed model must be constructed instead of a half model to perform a complete
structural analysis and observe the weak points in the structure. Therefore, we defined a
section model (Figure 12) by slicing a few sections from the half model.

The section model was assigned the same boundary conditions and grid compositions
as the half model. In the analysis, a symmetric boundary condition was applied to the
top and bottom of the model because a few sections were extracted as shown in Figure 12.
The results of the structural analysis of each layer in the section model are presented
in Figures 13–15 and Tables 2–4.

Table 2. Structural analysis results for each layer of the half model.

Layer Maximum von Mises Stress [MPa]

Membrane layer 35
Porous layer 95

Gas-channel layer 46
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Figure 14. Structural analysis results for porous layer of the section model.

Table 3. Structural analysis results for each layer of the section model.

Layer Maximum von Mises Stress [MPa]

Membrane layer 28
Porous layer 95

Gas-channel layer 58

Table 4. Comparison of maximum stress values between half model and unit model.

Layer Maximum von Mises Stress
[Half Model]

Maximum von Mises Stress
[Section Model]

Membrane layer 35 MPa 28 MPa
Porous layer 95 MPa 95 MPa

Gas-channel layer 46 MPa 58 MPa
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The detailed structural analysis revealed that the membrane layer of the section model
had a lower maximum stress than the half model. The stress contour was reconstructed,
considering that the machining hole was removed. Subsequently, the region except the
machining hole was confirmed as having the same stress distribution as the half model.
The same stresses as in the half model were observed in the porous layer sections. The
region of high stress was adjacent to a supporting layer of the gas-channel layer with the
pressure difference, which was the same as in the half model. Additionally, the stress of the
gas-channel layer was higher in the peripheral region supporting the porous layer in the
section model, as compared to that in the half model.

To summarize, the design of the applied area must be modified to account for the
high stress observed in the area with the pressure gradient, i.e., the point where the porous
layer and gas-channel layer come in contact, and to prevent failure. This stress exceeded
the breaking strength. However, the membrane layer, which had a stress lower than the
breaking strength (58.5 MPa), did not require a design change because the structure would
not fail and was safer than the other layers.
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The structural analyses of the half model and the section model revealed the fragile and
high-stress regions in the membrane, respectively. The boundary between the porous and
the gas-channel layers, where the pressure gradient was significant, was the fragile region.

A more detailed observation of the section model confirmed that the weak point was
the area connecting the gas-channel support and the porous layer.

To compensate for the weak point, the stress must be reduced by modifying the
geometric design of the honeycomb base support of the gas-channel layer and the width
of the gas channel. A design supplement must be recommended through additional
structural analyses by setting the parameters with these causes. The parametric and
structural optimization studies are explained in Section 3.

According to previous research, the most optimal method of reducing stress for
structural stability is to increase each layer’s thickness. However, as mentioned earlier, this
approach would reduce the penetration ratio.

Therefore, to retain the original penetration ratio of the OTM module, we omit thick-
ness as a parameter in the parametric and optimization studies. Further details of this
tradeoff are provided in the Limitations section of Section 3.

3. Structure Optimization of OTM Module
3.1. Model Description

The structural analysis results of the OTM module suggest using the shape of the
gas-channel layer support (the length and apex round of the honeycomb structure) and the
gas-flow channel as alternative parameters for the design supplement of the OTM module.

However, using the applied variables in the model and analyzing the structure of
every geometric shape in each case is computationally taxing.

Therefore, we conducted the parametric study by reducing the computational time as
a design supplement and using the ANSYS Workbench optimization program to suggest
the optimal specifications of the OTM module.

For the structural optimization, the response surface of each parameter was established
and the design variables and objective function were set. To expedite the process, a unit
model was chosen by compressing the models. The length (L) and apex round of the
honeycomb (R) and the width of the flow channel (W) were chosen as the input design
variables. The equivalent stresses of the membrane, porous layers, and entire module were
selected as the objective functions.

The response-surface method (or the response-surface analytical method) was used
for the optimization. This method is used to optimize the level of a variable by helping
to expect the result values of the unselective level of the total area of interest, and thus
achieve the desired value.

This makes the changing estimation by a variable appear in a two- or three-dimensional
space, which is a dot on a flat or curved surface. It must be performed to determine and
optimize the maximum and minimum on the surface. The line or surface on which the
optimal conditions pass is defined as the response surface. Theoretically, higher the number
of parameter cases, greater is the analytical load in the response-surface method. However,
the computational load is limited by the computer hardware. This will subsequently re-
duce the accuracy of the response curve surfaces or lines. Therefore, the response-surface
method, which is an experimental method for the selection of parametric variables, was
used for the analysis of the minimum.

3.2. Simulaton Setup

We used the following variables in the ANSYS Workbench Design Modeler: Honey-
comb structure length = L, Honeycomb vertex round = R, and Gas channel width = W.

The design variable was set as an input variable, which is expressed as a unit model in
Figure 16. The material data from Table 1 of ref [85] were input as the material properties.
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Figure 16. Schematic of the input design variables.

Each layer was formed by five grids in the thickness direction based on the mesh con-
vergence test results using a 20-node hexagonal three-dimensional element. The overall ele-
ment size was 50 µm, and detailed element information is provided below. The number of
elements was approximately 200,000 and the number of nodes was approximately 700,000.

We established the symmetric conditions as the boundary conditions in all directions
of the unit model (Figure 17).

Energies 2021, 14, 4992 15 of 26 
 

 

 
Figure 17. Grid system of unit model (mesh, element). 

 
Figure 18. Symmetry conditions of unit model. 

The maximum equivalent stress of the membrane layer, which governs the function 
of an OTM module; the porous layer designated as a vulnerable area based on the 
structural analysis; and the maximum equivalent stress of the entire module, including 
the region where a stress change was expected along with a shape change, according to 
the geometric design safety parameters, were selected as the objective functions. 

Additionally, induction variables (variables generated using the input variables or 
design variables and numerical combinations of the objective variables) were adopted. 

The effective area through which oxygen ions permeate is defined as the active area. 
The total area of the OTM module is defined as the total area. The ratio of the effective area 
to the total module area is called the effective area ratio. These are the induction variables. 

The conditions for increasing the cross-sectional area of effective permeability per 
reaction volume of the membrane module were selected by introducing the concept of 
the final objective-function variable being the equivalent stress/effective area ratio of the 
membrane layer (Figures 19 and 20). 

 
Figure 19. Boundary conditions of unit model. 

Figure 17. Grid system of unit model (mesh, element).

The pressure conditions involved an external pressure of 1 MPa and an internal
pressure of 10 kPa (Figure 18).

The maximum equivalent stress of the membrane layer, which governs the function of
an OTM module; the porous layer designated as a vulnerable area based on the structural
analysis; and the maximum equivalent stress of the entire module, including the region
where a stress change was expected along with a shape change, according to the geometric
design safety parameters, were selected as the objective functions.

Additionally, induction variables (variables generated using the input variables or
design variables and numerical combinations of the objective variables) were adopted.
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The effective area through which oxygen ions permeate is defined as the active area.
The total area of the OTM module is defined as the total area. The ratio of the effective area
to the total module area is called the effective area ratio. These are the induction variables.

The conditions for increasing the cross-sectional area of effective permeability per
reaction volume of the membrane module were selected by introducing the concept of
the final objective-function variable being the equivalent stress/effective area ratio of the
membrane layer (Figures 19 and 20).
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The structure was optimized based on these conditions. In general, the parametric
study is performed based on a method chosen to determine the total number of parameter
cases in the experimental design stage.

In this parametric study, we chose 100 cases by introducing an additional sampling
technique because the central synthesis method used three design variables and only
15 cases among the selected experimental design methods.

Despite the increased computational time, the method offers several advantages. For
example, it allows for the generation of a reaction surface with a more accurate slope
as it has a greater number of parameter design points, and the relationship between the
response variables becomes narrower. Moreover, it reduces both the errors in the solution
of the optimized variables and the result of the actual structural analysis. The structure
was optimized to analyze the impact of each parameter, create a response surface, and
propose an optimal OTM module design that satisfies the objective function.

The final objectives are:

• Minimization of the maximum equivalent stress of the membrane layer/effective area ratio
• Minimization of the maximum equivalent stress of the membrane layer
• Maximization of the effective area ratio
• Minimization of the maximum equivalent stress of the porous layer
• Minimization of the maximum von Mises stress in the entire OTM module.

3.3. Result

This simulation result can be compared to the width of the flow path, which had the
most significant effect on the stress in the OTM module. However, when the width was
reduced to lessen the stress, it reduced the effective area of oxygen permeation. Therefore,
these objective functions are not conducive to the optimization.

Figures 21–25 illustrate the influences of the parameters and the response surface
curvatures for the 100 cases with the chosen experimental design method and the additional
sampling technique. The minimum points of the honeycomb width and apex round were
observed. However, as the width of the channel decreased, the stress also decreased, and
vice versa. To set the width of the flow path as the optimal design variable, the final
objective function was optimized by applying 1.5 times the weight to the maximization of
the effective area ratio.
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Figure 23 depicts the local sensitivity of each parameter. The design parameter with
the greatest effect on the maximum stress of the OTM module is the width of the flow
path. The effective permeable area is determined by the widths of the honeycomb and the
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flow path. However, considering the membrane’s maximum stress/effective permeability
area ratio as the final objective function of this optimization, L was identified as the most
sensitive variable.

The structural analysis enabled the selection of the minimum values on the reaction
surface curves per parameter. The membrane stress (21 MPa) was less than the allowable
stress (58.5 MPa); however, the stress (78.3 MPa) at the porous support–gas layer interface
was confirmed to be higher than the minimum allowable stress (32 MPa).

Therefore, the optimization analysis was repeated by adding the fracture stress of
each layer to the objective function, as follows:

• Minimization of the maximum equivalent stress of the membrane layer to less than
58.5 MPa.

• Minimization of the maximum equivalent stress of the porous layer to less than
32 MPa.

• Minimization of the maximum equivalent stress/effective area ratio of the membrane
layer.

• Maximization of the effective area ratio.
• Minimization of the maximum von Mises stress in the entire OTM module.

Figures 26 and 27 illustrates the results of the second optimization analysis based on
the reset objective function. The results show that the brittle stress of the porous support
layer mentioned in Section 2 was 30 MPa, which was less than the breaking stress (32 MPa).
The brittle stress of the membrane layer was 16.2 MPa, which was less than the minimum
breaking stress of 58.5 MPa.
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Based on these results, we proposed a design method to stabilize the structure of the
plate-type OTM module. The porous layer was confirmed to be the weakest part of the
OTM module, which agrees with the observations of a previous study [67]. To structurally
stabilize the OTM module, the geometry of the gas-channel layer and the width of the gas
channel were changed without increasing the thickness of each layer of the OTM module.
This could reduce the stress of the porous layer. Based on the structural stability, this study
proposed a design method to achieve an effective permeable cross-sectional area ratio of
the OTM module.

4. Discussion
4.1. General Discussion

The application of porous composite ceramics has been expanded to various fields.
The material properties of these ceramics must be obtained and their characteristics must
be predicted because their mechanical properties change with the pore size, porosity,
and microstructure.
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In addition, the material properties of specimens are significantly different from the
stiffness and strength distributions of other materials. This implies that there exists a
significant difference between the material properties of each specimen. Several studies
have proven that this is due to differences in the pore microstructures [85].

We confirmed that the point in the OTM module at which the maximum stress is
generated lies on the porous layer, i.e., this layer is the weakest point in the module. Studies
have suggested increasing the thickness of the porous layer to compensate for its structural
weakness. This approach could overcome the structural weakness, but it eventually returns
to its vulnerable state because of the relatively low oxygen permeability in thick layers,
which warrants the application of higher external pressures.

Therefore, we selected the geometric shape parameters of the support structure of the
gas-channel layer (and not the porous layer) and the width of the gas channel as the design
variables and optimized it without increasing the thickness of the porous layer.

The objective function of a typical optimization procedure is to minimize the maximum
stress value among the fragile structural parts or in the overall model. However, if the
design variables and input variables for the optimization are proportional to the objective
function, or if the input variables are also selected via objective function minimization, the
results may not converge or the process may yield incorrect results. Therefore, the correct
objective function must be selected by observing the influence of the design variables and
the response curves before performing the optimization.

In this study, increasing the effective permeable cross-section relative to the reaction
area of the membrane module, which was the priority of the OTM module design, was
selected as the final objective function. Moreover, the proposed approach eliminated the
need for further parametric studies proportional to the input and objective function. The
results demonstrated an effective oxygen permeable area ratio and paved the way for an
optimal, structurally stable OTM module design.

4.2. Limitations

The structural analysis results presented in Section 3 do not include the effect of
flow analysis results. Simulation studies on OTM membranes reveal the porous layer or
porous support as the vulnerable component of the membrane. The studies suggested
increasing the thickness of the porous layer to enhance the structural strength and stabilize
the structure. However, this reduces the oxygen transmission rate. Further verification of
oxygen permeability is required to solve this problem. Studies have attempted to replace
the verification with flow analysis. In this study, the structural strength was enhanced
through structural analysis, without increasing the thickness and affecting the oxygen
permeability. Additionally, the optimal structural design of an OTM membrane module
was determined by selecting the parameters that influence the geometrical shape of the
weak region to stabilize the structure.

The current structural optimization design technique determines the optimal values
of design variables that satisfy the objective functions and design constraints defined for a
given physical condition, using a structural analysis program based on mathematical the-
ory. Recent studies have designed optimal structures by treating not only the dimensions
and geometric shapes but also the topology and material compositions as design variables.
Several studies have developed optimization programs that couple multiphysics. These
programs require a significant amount of time to analyze each physical system and imple-
ment the results in a complex system, in addition to verifications. Therefore, to propose an
optimal design for the OTM module, we replaced the flow effect with structural optimiza-
tion analysis through the constraint function, which maintains oxygen permeability.

However, the reliability of the OTM module can be further improved. Recent mul-
tiphysics optimization programs that effectively interpret multiphysics systems are now
bundled with commercial software. Structural optimization analyses that consider the flow–
structure interaction could identify problems not covered in this study. The results could
help modify and supplement the proposed design, albeit at a longer computational time.
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5. Conclusions

We analyzed the structure of a modified plate-type OTM module composed of a
composite ceramic material with a porous layer. A whole model, a half model, and a
section model were analyzed to obtain a comprehensive profile. The results confirmed the
porous layer to be the most vulnerable part of the module because of the external–internal
pressure gradient and the difference of material properties between the porous layer and
the gas-channel layer. To retain the oxygen permeability and oxygen permeation area ratio
of the OTM module, the porous layer thickness and the oxygen permeation area of the
gas-channel layer were not changed. To enhance the structural stability, the structures were
optimized by introducing a design parameter that changed the geometrical shape around
the region with the maximum stress. Based on the results, the final design of the OTM
module was proposed.

The results of this study can be used to supplement the design of the region around
the porous layer and promote structural stability.

Future studies must consider the effect of flow to confirm the inverse relationship
between the thickness and transmittance of the porous layer, which has the most consid-
erable influence on the actual transmittance. Therefore, the permeability and structural
stability of the porous layer must be enhanced through an optimization program that
couples a multiphysics system with the flow simulation of the OTM module. The final
design recommended in this study must be experimentally validated.
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