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Abstract: Degradation mechanism of batteries has to be carefully studied when considering their
utilization in electrical power systems. This paper presents the results of an extensive experimental
campaign, through which three different lithium–iron–phosphate (LFP) cells were subjected to
different electrical cycling stresses. The purpose of the campaign was to evaluate the cells’ aging, as
well as to try to find parameters on the cell behavior before its end of life, able to act as state-of-life
(SOL) (or aging) indicators. The considered stress consists of the cyclic repetition of fixed-duration
discharge steps, followed by full charge phases. The three cells under study were subjected to the
very same stress pattern but with three different discharge and charge power levels: low, medium,
and high. The results showed that the end-of-discharge voltage and the cell internal resistance can be
used as good SOL indicators. However, both are significant functions of the cell conditions, such as
the state of charge (SOC) and the cell temperature.

Keywords: aging; experimental; lithium; parameters; testing

1. Introduction

Lithium-based cells and batteries have become a de facto standard for many storage
applications, either stationary or vehicular. Among the several available chemistries,
lithium–iron–phosphate (LFP) cells are appreciated for their very good stability, low cost,
reasonable specific energy, and energy densities, even though these densities are somewhat
lower than other chemistries [1,2]. Lithium cells guarantee rather large number of cycles,
in most cases a few thousands for stationary applications [1], around one thousand for
vehicles [1]. However, it is well known that the cycle life depends on the cell utilization,
typically increasing, in terms of the whole energy delivered throughout the cell’s life,
when the usage involves shallower cycles [3]. The strong dependence of aging on the
usage pattern makes it very difficult to predict it on the basis of a cell’s aging model alone,
although good attempts in this direction have been made [4–6]. This paper takes a different
approach: it tried to find, on the basis of experimental results, indicators of cell aging that
could be used during a cell’s life to evaluate the so-called state of life (SOL), i.e., the nearness
of the cell itself to its end of life. For this, a good opportunity for the authors was the
SUMA project to which the department to which they belong participates. One of the goals
of this project is to evaluate several aspects of electric vehicle charging in multifunctional
structures (called SUMA themselves), which have some renewable generation (e.g., solar
panels), electric vehicle supply equipment (EVSE) units, and electrochemical storage. In
these structures, electrochemical storage has two purposes:

• Compensating the power fluctuation of the renewable source;
• Compensating the peak powers occurring at the first intervals of vehicle charging

operations.

For the first purpose, an energy-oriented storage system is needed; for the second
purpose, a power-oriented storage system is required. Although both purposes can be
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pursued with just one cell design using a well-designed battery, SUMA chose to consider
in the installation of different storage systems, one for energy, the other for power services.
To deliver power services, the chosen cell was an LFP one; this choice led to specific
experimental tests to try to find aging indicators, or indicators of the so-called state-of-life
(SOL), as well as to evaluate the cell’s cycle life under specified conditions, calibrated for
the SUMA project [7]. A first paper on this was presented in [8], in which experimental
tests were limited only to two cells; therefore, the analysis was performed on the basis of
limited data only. This paper presents a more complete and comprehensive analysis. In
particular, a third cell was added in order to increase the data to be analyzed, and to make
a more complete analysis regarding the correlation between internal resistance and aging,
which provided several interpretation issues in [8]. The extended approach and new data
allow the paper to overcome the previous limits, as well as to evaluate which indicators,
among the ones selected, can be used to make more precise cell aging evaluation.

2. The Test Procedure and Experimental Set-Up
2.1. The Reference Discharge Chosen

Inside the SUMA project, the purpose of the tested cells is to provide power services
in order to compensate the peak power during relatively fast charge of vehicles. SUMA
multifunctional structures are to be installed inside urban contexts, where on one hand
space occupation must be limited, and on the other hand customers need only a relatively
small recharge, simply to gain additional range for the remainder of the trip. Therefore,
15 min was chosen for the discharge duration. The actual kW and kWh size of the battery
will depend on the SUMA size, in accordance with the number of cells contained in the
battery pack, while the 15 min requirement was decided to be taken fixed. Moreover,
to be nearer to real usage profiles, instead of using the more common constant-current
charging/discharging profile, we chose constant power.

2.2. The Cycle-life Test Pattern

Since life tests last long period of time, typically months, an industrial device is needed
in order to automate the test process, as well as to allow tests to be performed, without
interruption, for several days or weeks. The considered test is shown in Figure 1a, and,
as discussed earlier, is inspired by the common needs of an electric vehicle when charged
for about 15 min [8]. All the aging tests are performed on single cells; therefore, the final
results will also refer to the aging phenomena at the cell level.

Good information on the cell aging phenomenon is very important to infer; at a later
stage of analysis, information of the aging of whole battery packs can be obtained.

Battery packs are, nearly always, equipped with sensors of all cell voltages and several
temperatures (from which, using thermal models of the packs, individual cell temperatures
can be evaluated). In this way, the results of this paper can be applied, with the obvious
complication of having to run the pack thermal model, rather straightforwardly to packs.
This leads to the issue of inhomogeneity of SOL of cells inside the same pack, as well as
possible countermeasures, which are, however, out of the scope of this paper.

The test is composed of many cycling periods interspersed with cell characterization
phases (CCPs). The cycling pattern, shown in Figure 1b, starts with a constant-power
discharging followed by a constant-power charging, which ends when voltage reaches
the maximum value allowed by the manufacturer of the cell (i.e., 4 V). The third phase is
a pause (zero current). Charging and discharging phases are performed using the same
power. The cell characterization phase (Figure 1c) consists of a 30 A (0.5 C) constant current
discharge (end-of-discharge voltage 2.8 V) and a subsequent constant current-constant
voltage charging performed at same 0.5 C (end-of-charge voltage 4.0 V), followed by a
2 h pause. The aging indicators, monitored and analyzed in terms of the function of the
number of executed cycles, are as follows:

• The cell available capacity Ca,n; measured during the nth CCP;
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• The cell internal resistances evaluated during the cycling periods, at the beginning
and at the end of each discharge;

• The cell case temperature, always measured;
• The end-of-discharge voltage reached VEOD,n measured during the cycling periods at

the end of every discharge.
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The above-described test was applied to three identical cells, called cell250 cell375, and
cell500, which were cycled at constant power equal to 250 W, 375 W, and 500 W, respectively.
The 500 W level implies charge and discharge currents closer to the maximum admitted
value of 180 A (3C)—this was chosen to determine the cell cycle life corresponding to
the maximum realistic power usage pattern. The aging test was continued up to when
the minimum voltage during the discharge phase reached the minimum allowed by the
manufacturer. For the cells here tested, this value was set to 2.5 V (as will be displayed in
Section 2.2, Table 1), but we decided to raise this threshold to 2.65 V for security reasons.
This end-of-discharge condition was chosen because throughout the life test, the battery
is subject to constant-duration discharges, which implies only partial discharges occur,
which in turn implies the voltage will always stay above 2.65 V, except when, because of
the reduced capacity due to aging, this threshold is reached.
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Table 1. LFP lithium cell characteristics.

Manufacturer Winston Battery
Model name WB-LYP060AHA
Chemistry LFP

Nominal capacity (Ah) 60
Nominal voltage (V) 3.2

Operating voltage (V) max 4.0–min 2.8
Deep discharge voltage (V) 2.5 (damage if below)

Optimal discharge current (A) 30
Max discharge current (A) 180

Max peak discharge current (A) 600 (5 s max)
Optimal charge current (A) 30

Max charge current (A) 180
Max operating temperature (◦C) 80

Dimension (mm) 114 × 203 × 61
Weight (kg) 2.3

2.3. Experimental Setup

The test setup was composed of a charging and discharging system driven by a
Digatron® battery cell tester and two thermostatic chambers, wherein the cells under
testing were positioned, whose main characteristics are reported in Table A1 in the
Appendix A [8–10]. A picture of the experimental setup inside the climatic chamber is
found in Figure 2, while a picture of the laboratory is shown in Figure A1. In particular, it
shows that the cells temperature was obtained by a thermocouple in close contact with the
cell’s surface. During all tests, the surface cell temperature was continuously monitored,
as well as the thermostatic chamber temperature, measured very far from the cell by the
built-in chamber sensor.
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2.4. Device under Test

The three LFP lithium cells tested were made by Winston Battery [11]; their datasheet
is summarized in Table 1.

3. Aging Indicators

This paragraph shows how the four aging indicators are defined and evaluated
through the aging test described in Figure 1 for each cell, as a in function of the number of
cycles performed.
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3.1. Available Capacity

The available capacity is defined as the charge extracted during the constant current
discharging phase of each CCP (see Figure 1). This capacity can be expressed in Ah or as a
ratio to the beginning-of-life capacity:

Cpu =
Ca

CBOL
(1)

This indicator is rather obvious, as it is well known that the clearest aging indicator
is the reduction in the capacity the battery can deliver. However, in real-life applications,
measuring the discharge capacity often requires conducting ad hoc tests, which have the
disadvantage of interrupting the ordinary activity of the cell, and might imply requiring
special hardware to be provided for in order to perform this constant-current discharge.
Because of this, additional indicators are searched, which would in principle allow evalua-
tion of the aging, i.e., the state-of-life (SOL) of the battery, while the battery is performing
its business-as-usual operation.

3.2. Heat Generation

It is a common experience that, a far as cells age, their internal resistance increases,
and because of this, the heat generation also increases. This was also observed during the
tests reported in this paper. If the heat generation is sufficiently high, this can result in
an increased overtemperature of the battery in comparison with its surrounding air. This
could be easily measured real time in real-life applications. Thus, as an indicator of the cell
internal heat generation, in our test, we measured the cell temperature through a measure
of the temperature of its case. During this paper, tests were performed on all the cell cycles
inside climatic chambers, for which thermostatic set-point temperature was always kept to
25 ◦C. This means that the results shown in this paper refer to cell temperatures over 25 ◦C.
It is herein useful to anticipate that the maximum cell measured temperature increase
will be of around 35 ◦C, recorded for cell500, letting the cell reach a temperature around
60 ◦C. Hence, the paper findings will correlate the cell aging indicators to cell temperatures
between 25 ◦C and around 60 ◦C. This range is the typical temperature window at which
lithium batteries typically operate, both in vehicular and stationary applications.

Tests such as the ones of this paper, inside lower temperature chambers, would
produce information on the indicators when the cell is at a lower temperature, which might
be useful in certain circumstances.

Repeating our tests at different room temperatures is therefore an interesting possi-
bility, even though aging tests are very long and costly, and therefore their design and
schedule must be carefully evaluated in terms of cost/benefit ratio.

It is noticeable that paper [12] discusses results similar to this paper’s, but at lower
room temperatures.

3.3. End-of-Discharge Voltage

Another indicator potentially useful to understand the cell degradation effect is the
cell voltage VEOD reached at the end of each discharging step during the cycling periods.
When it goes below the allowed threshold value of 2.65 V, the cell is said to have reached its
end of life. For this reason, in this paper, we use a definition of the state-of-life (SOL) of each
cell based on the level of their end-of-discharge voltage. In this way, we can analytically
define the SOL by the application of Equation (2), where VBOL

EOD is the end-of-discharge
voltage and is the very first VEOD measured (at the beginning of life), and the Vth is the
minimum voltage threshold allowed (i.e., 2.65 V).

SOL =
VEOD − Vth

VBOL
EOD − Vth

(2)
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3.4. Internal Resistance

The internal resistance of lithium cells is one of the parameters that are more commonly
found in the literature as an aging indicator [13–16]. This is because the most known
aging phenomena, the thickening of the solid electrolyte interphase (SEI), can be directly
correlated to rises in the physical ohmic behavior of the cells [17,18]. However, it is
questionable as to what exactly the internal resistance is; the best way is to define it through
a measurement procedure. Generally, the application of a current step is considered, as per
ISO 12405-4:2018 and IEC 62660-1:2010 [19] and the representation in Figure 3.

1 
 

 
Figure 3. Current voltage step test for cell internal resistance identification.

The steps in the current shape are shown here to have vertical fronts; in actual tests,
the fronts are not exactly vertical, but are acceptable as soon as their durations are much
lower than the lowest value considered for ∆t. The cell internal resistance Rint is calculated
as the ratio between the cell voltage variation (∆V) and current variation (∆I):

Rint =
∆V
∆I

(3)

while the definition (3) must be complemented with the indication of the time interval (∆t)
between the two voltage current samples taken.

Depending on how long this interval into the pulse of Equation (3) takes to be cal-
culated, different physical phenomena occur; moving from a small-time interval to a
larger one, three main resistances associated to the cell internal phenomena can be mea-
sured [17,20,21]. The first one is the pure ohmic cell response, often indicated by R0, which
comprises the whole electronic resistance, as well as the bulk electrolyte ionic resistance of
the cell. Ideally, the R0 calculation is the result of the application of Equation (3) with ∆t
tending to zero. Using a larger time interval, say 4–5 s, the very same ratio between ∆V
and ∆I produces the calculation of the charge transfer resistance (RCT), which is attributed
to a charge transfer reaction at the electrode/electrolyte interface. Finally, choosing an
even larger time interval, in the order of 10 s, it is possible to evaluate the polarization cell
resistance (RP), which accounts for ionic diffusion in the solid phase.

Separating all these phenomena is not an easy task, especially because the borders
between the three aspects are not easily detected as they change as a function of the type
of lithium cell, the cell size, state of charge, and temperature. For these reasons, in this
study, we applied the very same approach of Equation (3) by evaluating the cell internal
resistance as a function of the number of cycles performed, by adopting three different
time intervals for each cell. The purpose is to find out if any of the time intervals chosen
can outline a cell internal resistance that can be easily correlated to the cell aging level.
Under this light, it will be also possible to discuss which kind of the three resistance cell
phenomena can be associated to the cell degradation.
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Our study was performed in correspondence with either a discharging or charging
step, as well as at different states of charge. Inside the cycling period profile adopted,
we used two current steps: one where the current moves from zero to a rather constant
discharge value corresponding to the considered constant power (called start-of-discharge),
and another where the current moves from the end-of-discharge value to the start-of-charge
one (called end-of-discharge). The first step provides an indication of the internal resistance
for nearly full cells, the second one of the internal resistance at the end-of-discharge, even
though when using the larger powers, we discharged less than that of the lower.

4. Results

Table 2 shows some global parameters resulting from our cycle tests. The depth of
discharge (DOD) was calculated according to (4), where t0 and t1 are the initial and the
final times of the cycle discharge, respectively (Figure 1), and Cn is the nominal cell capacity.
Average discharge currents were calculated at the beginning (cycle #10) and the end (cycle
#4950, #1060, #430) of the cell life.

Table 2. Some global parameters of the cycle-life tests.

Cell under Test Test Power (W) DOD (%) Average Discharge Current (A)

Cell250 250 33
Cycle #10 Cycle #4950

78.0 84.9

Cell375 375 50
Cycle #10 Cycle #1060

118.1 124.9

Cell500 500 70
Cycle #10 Cycle #430

161.0 167.0

The three cells were tested according to powers that follow a linear progression. This
reflected in a similar progression of the cell current, because of the very flat voltage trend
of LFP cells. The shown average value of the discharging current indicated a very modest
increase due to the reduction of the average discharge voltage as soon as the cell became
old. Because the cycle patterns were unchanged between the cells and the duration of the
cycling discharging steps was always the same, the different DODs also showed a nearly
linear decrease with the charge/discharge power.

DOD =
∫ t1

t0

i(t)
Cn

dt (4)

4.1. Aging Indicators
4.1.1. Available Capacity

Figure 4 shows the available capacity measured during the cell characterization phases,
as a function of the number of cycles performed, for each cell under study. The capacity of
each cell was normalized to the beginning of life value by the application of Equation (1).
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Considering that each cycle implies the delivery of a known amount of energy, we
have summarized the following data in Table 3.

Table 3. Lifetime delivered energies.

Test Power (W) Number of Cycles Performed Lifetime Energy (kWh)

500 430 53.8
375 1060 100.3
250 4950 309.4

As expected, the lifetime delivered energy increased dramatically as the power low-
ered. The data in the table suggest that power levels below 300 W may be considered for
a real-life application in a recharging station. As discussed in Section 3.1, the available
capacity is a rather obvious aging indicator, although very unpractical since it requires
performing ad hoc discharges to get its value. However, the plots in Figure 4 are useful to
obtain information of the shape of these curves over the cycle numbers, showing that the
behavior was approximately linear up to roughly 80% of the cell total cycle life.

4.1.2. End-of-Discharge (EOD) Voltage and Heat Generation

The EOD voltage could in principle be much more practical in evaluating the cell’s
SOL, since the discharge profile is programmed to be very much the same in nearly all the
discharges. Moreover, the EOD voltage can be measured at the end of each 15 min power
delivery, without the need of resorting to ad hoc tests to evaluate the SOL. Figure 5 shows
the end-of-discharge voltages of all the cycles performed with the three cells.
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Each dot in the plots is also characterized by the cell’s temperature since it was shown
to have a substantial effect on this indicator. In fact, some of the discharges (namely, the
first ones occurring after a CCP) happened to be performed at a lower temperature because
every cycling period starts with the cells at room temperature, and it needs to take a few
cycles before the thermal regime is reached. This causes the corresponding values to be
out of the general curve trend (blue dots in the figure). It was also recommended that if
we wanted to use the end-of-discharge voltage as an aging indicator, we must correlate it
with the cell’s temperature: the lower the temperature, the lower the voltage. Even though
this was not searched during the experimental tests, it is a nice result: not only the plots in
Figure 5 show the VEOD trend when the cell was not in its regime temperature, but also its
value at the lower temperature. We also note that at the end of life, the cell heat generation
grew significantly. In fact, since the cell was still held in a thermostatic chamber, its higher
temperature near the end-of-life indicated a larger heat generation. This fact agrees with
the meaningful increase of the internal resistance of the cells in correspondence of the
end-of-discharge experimentally measured (cf. Section 4.1.3). The results on VEOD showed
additional interesting information obtained from zooming in on some of the curves in
Figure 5. Consider, for instance, Figure 6.
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Figure 6. A zoom on one of the end-of-discharge voltages shown in Figure 5.

By observing this figure, it is possible to extract the end-of-dicharge voltage infor-
mation at different temperature ranges. This is a consequence of the fact that the very
first cycle after a CCP finds the cell much cooler (by 7–8 ◦C), and the second one slightly
cooler than the others. In this figure, a CCP occurs at each 100 cycles for the first 800 cycles,
and each 200 cycles after, until reaching the end-of-discharge threshold of 2.65 V. Another
interesting observation regarding this figure is that the rest time (a few hours) that occurred
systematically between a CCP and the start of the subsquent cycling period had some effect
on the cell’s ability to deliver power. In fact, at the beginning of each cycling period, we
observed a larger end-of-discharge voltage, which cannot be explained on the bases of the
temperatures we measured. We can only hypothesize that the rest allowed charge diffusion
inside the cell, which favours subsequent discharges. This is consistent with what we know
about electrochemical cells, which, after rests, show an increased ability to deliver charge.
Nevertheless, the most important observation we can have on the figures in this section
regards the ability of VEOD to perform as a SOL indicator. In this respect, we note that:
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• Throughout the entire cell cycle life, the end-of-discharge voltage is a good indicator
of the cell’s SOL, and for a given temperature, a linear interpolation may be used;

• At low SOLs (large cycle numbers), a significant temperature rise is a good indicator,
in conjunction with a steep fall of VEOD of the imminent cell end-of-life.

In all cases, we note that the thermal chamber temperature was constantly held at
25 ◦C.

4.1.3. Internal Resistance and Heat Generation

The cell internal resistance we intended to measure was discussed in Section 3.4.
By the application of Equation (3), we showed that the internal resistance value that we
measure depends on the interval ∆t, at which voltage and current samples are taken. It
also depends on the battery SOC. Therefore, we herein analyze the internal resistance
trend at the two SOC levels available for each cell under study: start-of-discharge and
end-of-discharge, by using different values for ∆t. It is here important to underline that
the first SOC value is the same for every cell under study: i.e., SOC = 100%, because the
beginning of every discharge phase starts with the cells fully charged. Hence, the second
value depends on each cell, since the corresponding DODs are different (see Table 2, i.e.,
SOC = 67% for cell250, SOC = 50% for cell375, and SOC = 30% for cell500). Regarding
∆t, we chose to evaluate Equation (3) using three different time intervals: short, medium,
and large. Figure 7 shows the internal resistance evaluation of cell375, in the case of
evaluation at SOC = 100% (star-of-discharge). Since our cell tester did not allow for direct
determination of ∆t, we filtered out the intervals we obtained from measurement. The
actual intervals used for computations were 0.01 s ≤ ∆t ≤ 0.1 s for the upper plot in
Figure 7, 0.9 s ≤ ∆t ≤ 1.1 s for the middle plot, and 9 s ≤ ∆t ≤ 11 s for the bottom plot.
From Figure 7, we can infer some points:

• The resistance evaluation must be paired with the cell case temperature. Because these
values are taken immediately after a CCP, where, as already mentioned, the cell’s
temperature is lower, the corresponding resistances are significantly larger.

• There are some resistance changes after the cell has been rested without cycling.
Indeed, during our tests, cell375 was left inactive for a few months after cycle number
700 and a few days after the 1000th cycle. Correspondingly, we saw a deviation from
the previous trends, apparently due to internal battery state changes, not captured
by temperature alone. It is reasonable to assume that the inactive periods between
cycling phases impact the cell behavior by increasing the availability to deliver power.

• If we do not consider the extra points mentioned in the first bullet, the measured
resistance over time had a rather constant behavior. Its trend over the entire cycle life
displayed meaningful variation only if ∆t = 10 s was used. However, the usage of this
value was tricky, since some battery rests offsets the larger life-related Ri change, as
discussed in the previous bullet point.

Incredibly different internal resistance experimental trends were displayed by the
very same Ri evaluation but performed at every end of discharge, in correspondence of
intermediate SOC levels and not for fully charged cells. The corresponding DODs are
shown in Table 2, and SOC = 1 − DOD. For this case, the internal resistances computed as
Ri = ∆V/∆i with evaluation of deltas at different time intervals are shown in Figure 8,
again for the case of cell375. The considered time intervals have exactly the same meaning
as in Figure 7.
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Now we can make the following comments:

• The case with ∆t = 0.1 s is rather useless. We had a cloud with resistances above
0.8 mΩ, which was probably due to some weakness of our data storing mechanism;
moreover, we had some cool samples (blue dots) that were out of the bulk of the points.
Even though we found an algorithm to take all these values out, the general trend of
most of the points, the low curve, showed that the variation in resistance was not very
large; moreover, rests in the battery operation (as we said the battery was at rest a few
months at cycle number 700) caused significant changes in ∆t = 0.1 s resistances.

• The cases with ∆t = 1 s and ∆t = 10 s instead showed useful results. As with all the
previous cases, we must combine the Ri measure with temperature, since the trend
with resistance values measured immediately after CCP, where the cell was cooler,
showed much larger resistances values (blue dots) than the others. Once we were able
to select data that were thermally homogeneous (blue points discarded), we saw a
significant variation of the internal resistance in function of the cell number of cycles,
which was by far larger than the variation occurring due to cell resting, (e.g., after the
cell rest at cycle number 700. Between the first and the last internal resistance values,
the increase was 43% for the case ∆t = 1 s and 79% for the ∆t = 10 s. Therefore, the
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end-of-discharge resistance was a good indicator of the battery aging, especially when
SOL was at least 60%.
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Unfortunately, the situation was not as good for the other two cells, wherein the
∆t = 0.1 s was useless (again, probably due to limitation of our measuring hardware). In
Figure 9, we also report the internal resistance trends for the cell250 and cell500, in the case
of ∆t equal to 1 s and 10 s. The following observations were made:

• The cell250 value showed a significant change only starting from 88% SOL.
• The cell500 had less regular behavior and showed significant increase, for the best

case with ∆t = 10 s, starting from around 80% SOL.
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5. Conclusions

In this paper, specific aging tests were performed on three identical LFP cells located
in the same ambient conditions, with the aim of evaluating their cycle-life and trying to
find aging indicators, which could help predictive maintenance. The stress to which the
cells were subjected was defined as a function of the application of these batteries, and it
consisted in 15 min constant-power discharge and subsequent constant-power charge.

The results showed that the use of 500 W constant power was very stressful for the
cells, and implied only 430 cycles, with a lifetime delivered energy of roughly 54 kWh. The
375 W and 250 W constant powers were more adequate and implied 100 kWh and 310 kWh
lifetime delivered energy, respectively.

The tests showed that, in addition to the obvious deliverable charge when subject to
constant-current discharge, useful aging indicators are the end-of-discharge voltage and
the internal resistance, even though their evaluation must be carefully coupled with cell
temperature measurements.

The paper has also shown some details on how to measure the internal resistance in
order to let it be a reasonably useful SOL indicator. In particular, in order to better correlate
the cell internal resistance evaluation to the cell actual aging level, intermediate SOC levels
are to be preferred to a 100% SOC.
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Figure A1. Battery laboratory of University of Pisa, DESTEC Department.

Table A1. Laboratory instrument specifics.

Battery Cycler

Manufacturer Digatron

Voltage range (V) 0 ÷ 6
Max current (A) 250

Voltage accuracy (% of full scale) 0.05
Current accuracy (% of full scale) 0.1

Min acquisition timestep (ms) 10

Thermocouples

Type “K”
Expanded uncertainty (◦C) 0.3 (95%)

Climatic Chamber 2

Manufacturer Binder
Temperature range (◦C) −40 ÷ +180

Internal volume (L) 53
Max set-point temperature oscillation (◦C) ± 0.3

Climatic Chamber 1

Manufacturer FDM
Temperature range (◦C) 0 ÷ +70

Internal volume (L) 370
Max set-point temperature oscillation (◦C) ±0.5
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