
energies

Article

The Potential Utilizing of Critical Element from Coal and
Combustion Residues

Yunhu Hu 1,2, Mu You 2,3,4,*, Guijian Liu 2, Zhongbing Dong 5, Facun Jiao 5 and Ying Meng 1

����������
�������

Citation: Hu, Y.; You, M.; Liu, G.;

Dong, Z.; Jiao, F.; Meng, Y. The

Potential Utilizing of Critical Element

from Coal and Combustion Residues.

Energies 2021, 14, 4710. https://

doi.org/10.3390/en14154710

Academic Editor: Andrew Ross

Received: 24 June 2021

Accepted: 30 July 2021

Published: 3 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232001, China;
huyunhu@ustc.edu.cn (Y.H.); mengying@hnnu.edu.cn (Y.M.)

2 School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China;
lgj@ustc.edu.cn

3 National Center for Coal Chemical Products Quality Supervision and Inspection, Huainan 232001, China
4 School of Bioengineering, Huainan Normal University, Huainan 232001, China
5 School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China;

dongzb@huainan.gov.cn (Z.D.); fcjiao@aust.edu.cn (F.J.)
* Correspondence: youmu@ustc.edu.cn; Tel.: +86-551-63603714

Abstract: Strategically critical elements are becoming significant for the rising demand of emerging
energy-efficient technologies and high-tech applications. These critical elements are mostly geolog-
ically dispersed, and mainly recovered from recycled materials. Coal with high concentrations of
critical elements is supposed to stable alternative sources. The abundances of critical elements in coal
varies widely among different deposits and regions. The high concentrations of critical elements are
found in many Chinese and Russian coal ores. The global mining potential ratio (MPR) is applied
and suggests scandium, hafnium, cesium, yttrium, germanium, gallium, thallium, strontium and
rare-earth elements could be potential recovery from coal. A number of benefits are expected with
the extraction of critical elements during coal utilization.
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1. Introduction

Rare metals, known as lithium (Li), gallium (Ga), Germanium (Ge), rare-earth elements
(REE), and platinum group elements (PGE) are regarded as strategic mineral resources,
which are indispensable substances of emerging energy-efficient technologies or high-tech
applications for their unique electrical, magnetic, catalytic, metallurgical, nuclear and lu-
minescent characteristics [1–7]. The production of critical elements increased significantly
in the past few decades. Gallium and lithium production in 2017 was 310 t and 107,322 t,
which rose by 59.8% and 30.1% from 2016 to 2017, respectively [8]. Meanwhile, the prices
of these elements rose remarkably. Due to their extreme significance for economic devel-
opment and national security, these metals are intensively valued (Table 1). China listed
24 minerals as strategic minerals in the National Plan for Mineral Resources (2016–2020) in
2016. The European Union listed 27 substances in the EU Critical Raw Material List of 2017 to
prompt future utilization of these critical raw materials. The Japanese government released
a report, and 31 minerals were presented in 2018. In addition, 35 minerals were identified
as critical materials by the United States in 2018 and published in the Final List of Critical
Minerals 2018. Australia announced Australia’s Critical Minerals Strategy in 2019 and 24 criti-
cal metals were identified. Due to the incremental demand and exhaustive conventional
ores of these critical elements, the necessity to develop alternative resources has become an
irresistible trend [9–13]. Moreover, many critical elements (including Ga, Sc, Ge) are rare
dispersed elements and mainly recovered from recycled materials [14]. Therefore, a stable,
reliable, and sustainable supply of these critical elements is of extremely urgent.
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Table 1. Detailed list of critical elements.

Critical Element USA Australia EU Japan China

Aluminum (Al) X X X
Antimony (Sb) X X X X X

Arsenic (As) X
Beryllium (Be) X X X
Bismuth (Bi) X X X
Cesium (Cs) X

Chromium (Cr) X X X X
Cobalt (Co) X X X X X
Copper (Cu) X X
Gallium (Ga) X X X X

Germanium (Ge) X X X X
Hafnium (Hf) X X X

Nickel (Ni) X X
Indium (In) X X X X

Iron (Fe) X X
Lead (Pb) X

Lithium (Li) X X X X
Magnesium (Mg) X X X X
Manganese (Mn) X X X

Molybdenum (Mo) X X
Niobium (Nb) X X X X
Potassium (K) X X
Rhenium (Re) X X X
Rubidium (Rb) X
Scandium (Sc) X X X X

Silicon (Si) X X
Strontium (Sr) X
Tantalum (Ta) X X X X
Tellurium (Te) X

Tin (Sn) X X X
Titanium (Ti) X X X
Tungsten (W) X X X X X
Uranium (U) X

Vanadium (V) X X X X
Zinc (Zn) X

Zircon X X X X
REE X X X X X
PGE X X X X X

PGE: platinum-group elements; REE: rare-earth elements.

Coal resources occupy a significant place in the world’s energy consumption and
supply the largest share of global power generation at 38% [15]. Coal production was ap-
proximately8012.8 Mt in 2018 and accounted for 27.2% of global primary energy [15]. With
the growing primary energy consumption, coal is and will continue to be a crucial energy
source in the foreseeable future for its available abundance and cost-effectiveness [16]. Coal
not only supplies calorific value, but also contains high concentrations of potential critical
elements during complex geological evolution [17,18]. The enrichment characteristics of
critical elements (Li, Ga, Ge, U, etc.) have been widely reported [19–22]. Coal with high
concentrations of critical elements (10 times higher than world coal average) is regarded
as metalliferous coal [23]. The concentrations of critical elements in metalliferous coal
may be equal to (or even higher than) conventional ores, particularly enriched in coal
combustion products with the decomposition of organic matter during high-temperature
oxidation [16,17]. Therefore, the critical elements extraction from coal (ash) may be positive
and stable substitutions to these nonrenewable resources. It is worth noting that coal
mining and combustion activities have already resulted in serious environmental impacts,
and the traditional pathways to decrease the negative effects are inefficient [24–26]. There-
fore, recovering critical elements from coal (ash) may not only relieve the environmental
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implications associated with coal mining activities and reduce conventional ore deposits
operation expenses, but also greatly benefit socioeconomic and resource conservation.

The concentrations, associations, enrichment genetic and extraction technologies of
critical elements (Ga, Ge, Li, U, REE, PGE) in metalliferous coals have received fairly inten-
sive study [17,20,21,23,27]. Seredin and Finkelman reviewed the genetic types, geochemical
processes and modes of occurrence of critical elements in coal deposits (2008). Dai and
Finkelman evaluated the potential utilizations of critical elements from coal and discussed
the challenges (2018). However, a systematic global-level analysis related to the potential
utilization of critical elements in coal is limited [28]. Consequently, the quantitatively
investigation of potential significance of coal as an alternative critical element resource
is necessary.

2. Methods

The mining potential ratio (MPR) described by Chen and Graedel (2015) was carried
out to investigate the potential utilization of coal for the global supply of critical element.
The MPR is a dimensionless ratio, defined as the quantity of elemental production from
coal to the conventional production of element. According to Chen and Graedel (2015),
the quantity of elemental production from phosphate rock was obtained by multiplying
the median concentrations of element in global phosphate rock and the global production
of phosphate rock. The ranges of elemental concentrations widely differ among different
regions and geological environments. The national concentrations of elements in coal
and the national coal production are applied in this study to minimize uncertainty. The
modified MPR could be calculated be the following formulas:

MPRi =
MQij

GPi
(1)

MQij = ∑ Pj × Cj (2)

where MPR represents the mining potential ratio of element i; MQij represents the summa-
tion of quantity of element i (Tg) accompanying coal production of country j; GPi is the
global conventional production of element i (Tg); Pj is the coal production of country j (Tg);
Cj is the elemental abundance in coal from country j (ppm).

3. Coal Production and Consumption across the World

The share of coal in the global primary energy consumption has steadily reduced and
was 27.2% in 2018 [15]. However, coal production and consumption increased gradually
due to the high requirement for it in Asia region, particularly in China and India. According
to the national production and consumption of coal reported by the BP Statistical Review
of World Energy (Figures 1 and 2a), 12 countries (China, India, USA, Indonesia, Australia,
Russia, South Africa, Germany, Poland, Kazakhstan, Colombia, and Turkey) are the main
producers and consumers that contribute approximately 90% of the global production
and 85% of the world coal consumption, respectively [15]. This is attributed to the energy
reserve, consumer structure and socioeconomic aspects of the countries. The coal reserve
of the 12 countries accounts for approximately 90% of the world’s coal reserve (Figure 2b).
Among them, China is the largest coal producer and consumer in the world, and accounts
for 46% of the global coal production and 51.7% of the world coal consumption in 2018,
respectively. In addition, coal plays a significant role in each national primary energy struc-
ture, especially for Asia regions. The share of coal accounts for 58.2%, 55.9%, 33.2%, 30.7%
and 25.9% of the national primary consumption in China, India, Indonesia, Australia, and
Japan, respectively. Therefore, coal is and always will be the major primary energy source.
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Coal is widely employed in power generation, metallurgical, coal chemistry, gasifica-
tion, building industrial and activated carbon extraction. Among them, power generation is
the main use of coal, accounting for 62.7% of global coal production [15]. According to the
China Energy Statistical Yearbook 2017, coal used for power generation accounted for approx-
imately 49.3% of total coal consumption in China. However, the ratio of coal consumption
for power generation in developed countries is mostly higher than 80%, such as 91% and
82.7% for the USA and Organization for Economic Cooperation and Development (OECD),
respectively. The combustion of coal can not only provide calorific value, but also discharge
coal ash. The global production of coal ash is about 750 Mt per year [29]. Although the
global utilization of coal ash increased gradually with the growing application of new
technologies (building materials, road construction, soil amendment, adsorbent), a large
amount is disposed of or landfilled [30]. The improper disposal of coal ash has resulted in
potential environmental problems [30]. Therefore, further multi-component utilization of
coal ash should be prompted.

4. The Abundance of Trace Element in Coal and Coal Ash

Coal is an organic resource formatted by long-term biological and geological processes.
Elements are almost found in coal except for a small amount of extremely rare elements such
as actinium (Ac), astatine (At), francium (Fr), polonium (Po), and protactinium (Pa) [31].
The concentrations of the elements in coal varies among different regions, geological
ages, coal rank and coal seam [32,33]. These variations may be attributed to the different
plant communities, source material, depositional environment, detrital influx, diagenetic
processes, and epigenetic processes [23,34]. The average elemental abundances in coal and
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coal ash (Table S1) reported by Ketris and Yudovich (2009) were modified intothe periodic
table as shown in Figure 3.
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Figure 3. The Clake values of major elements and trace elements in the world coal. The element in different colors mean the
current situation of utilization.

The concentrations of elements range from 10−12 ppm to more than 50 wt%. As
typical hydrocarbons, C, O, H, N and S are the most common elements in coal, which can
totally reach to more than 90 wt%. Si, Al, Fe, Ca, Mg, Na, and K are the most common
components of inorganic minerals in coal, with median abundance higher than 103 ppm.
The base metals (V, Cr, Ni, Cu and Zn), Li, Rb, Zr, and some light REE (La, Ce and Nd)
generally range from 10 to 100 ppm in coal. The other rare, dispersed elements are mostly
less than 10 ppm. The correlation between the median elemental abundances in coal (ash)
and continental crust (Table S1) [35] is presented in Figure 4. It could be found that most
of the critical elements are depleted in coal when compared with continental crust. The
enhanced PGEs (Ag and Au) are found in coal.

Significantly, the natural elemental abundances in coal ash are obviously higher
than that of continental crust, indicating the potential utilization of critical elements from
coal ash.

According to the description of Swaine (2000), 26 trace elements (Table 2) in coal
are supposed to be of environmental concern and could lead to potential environmental
impacts during discharge with effective interventions [36]. It could be found that some
environmentally sensitivity elements (As, B, Cd, Hg, Mo, Se and Sb) are found to be
relatively abundant in coal (Figure 4), which suggests potential environmental impacts
during coal utilization. In addition, the concentrations of all the environmentally-sensitive
elements in coal ash are much higher than that of continental crust. These metal elements
are accumulated and transferred among the ecosystem without degradation. The long-
term and excess discharges of these elements during coal activities undoubtedly lead to
adverse environmental effects. Nevertheless, these environmentally-sensitive elements are
important substances for industrial development. The negative environmental impacts and
the element supply shortages could be relived once these elements recovery from coal and
coal ash. Therefore, for global development and environmental protection, the potential
utilization of elements from coal will be worthy.
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Table 2. Trace elements considered to be of environmental concern in coal (Swaine, 2000).

Grade Elements

Extremely high concern As, Cd, Cr, Hg, Pb, Se
High concern B, Cl, F, Mn, Mo, Ni, Be, Cu, P, Th, U, V, Zn

Moderate concern Ba, Co, I, Ra, Sb, Sn, Tl

5. The Potential Utilization of Critical Element from Coal

Twelve countries (China, India, USA, Indonesia, Australia, Russia, South Africa,
Germany, Poland, Kazakhstan, Colombia, and Turkey) contributed90% of the global coal
production. Therefore, the MQ was obtained by the summation of the 12 countries to
ensure feasibility. The elemental concentrations in coal (Table S2) and coal production
(Table S3) of the 12 countries could be found in the Supplementary Material.

The MPRs of the critical elements are calculated and presented in Figure 5 and Table S4.
Meanwhile, the enhanced MPRs are listed in Table 3. The MPRs of scandium (Sc),hafnium
(Hf),cesium (Cs),yttrium (Y),germanium (Ge),gallium (Ga), Thallium(Tl), strontium (Sr),
REE, selenium (Se),vanadium (V),lithium (Li)and beryllium (Be) are higher than 2, suggest-
ing potential utilization.



Energies 2021, 14, 4710 7 of 13

Energies 2021, 14, x FOR PEER REVIEW 7 of 13 
 

 

High concern B, Cl, F, Mn, Mo, Ni, Be, Cu, P, Th, U, V, Zn 
Moderate concern Ba, Co, I, Ra, Sb, Sn, Tl 

5. The Potential Utilization of Critical Element from Coal 
Twelve countries (China, India, USA, Indonesia, Australia, Russia, South Africa, Ger-

many, Poland, Kazakhstan, Colombia, and Turkey) contributed90% of the global coal pro-
duction. Therefore, the MQ was obtained by the summation of the 12 countries to ensure 
feasibility. The elemental concentrations in coal(Table S2) and coal production (Table S3) 
of the 12 countries could be found in the Supplementary Material. 

The MPRs of the critical elements are calculated and presented in Figure 5 and Table 
S4. Meanwhile, the enhanced MPRs are listed in Table 3. The MPRs of scandium (Sc),haf-
nium (Hf),cesium (Cs),yttrium (Y),germanium (Ge),gallium (Ga), Thallium(Tl), strontium 
(Sr), REE, selenium (Se),vanadium (V),lithium (Li)and beryllium (Be) are higher than 2, 
suggesting potential utilization. 

Table 3. The MPRs of some trace elements in coal. 

Element Sc Hf Cs Y Ge Ga Tl 
MPR 0.6 370.6 351.9 280.6 234.3 152.7 93.9 

Element Sr REE Se V Li Be  

MPR 6.31 5.06 4.11 3.06 2.48 2.33  

 
Figure 5. Mining potential ratios for critical elements in coal. The actual values are listed in Supplementary Information. 

Sc is the element with highest MPR. The potentially recoverable Sc amount from coal 
is approximately 29.5 Gg, which is much more than the traditional productions (500 kg) 
[8]. Sc is generally recovered from the by-products of W, Ti, U and other metals, with the 
concentration of 80–100 ppm [23]. The low production of Sc is attributed to the low de-
mand and the unfixed sources. The occurrence of Sc in the conventional sources varies 
widely and is difficult to extract for the existence of thorium [37]. Although the natural 
abundances of Sc in coal (2.9 ppm) and coal ash (23 ppm) are lower than the suggested 
cut-off grade (100 ppm) [21,38], the high concentration of Sc (Table S5) is mainly found in 
Russian and Chinese coal deposits such as Yakhlinsk, Nizhen-Bikinsk, Rettikhovsk, Mi-
nusa, and Xinde [23,39–42]. The highest concentration of Sc was found in the low-ash coal 
of the Yakhlinsk deposit with 1320 ppm in the ash [41]. Meanwhile, the high concentration 

1

H
2

He
3

Li
4

Be
5

B
6

C
7

N
8

O
9

F
10

Ne
11

Na
12

Mg
13

Al
14

Si
15

P
16

S
17

Cl
18

Ar
19

K
20

Ca
21

Sc
22

Ti
23

V
24

Cr
25

Mn
26

Fe
27

Co
28

Ni
29

Cu
30

Zn
31

Ga
32

Ge
33

As
34

Se
35

Br
36

Kr
37

Rb
38

Sr
39

Y
40

Zr
41

Nb
42

Mo
43

Tc
44

Ru
45

Rh
46

Pd
47

Ag
48

Cd
49

In
50

Sn
51

Sb
52

Te
53

I
54

Xe
55

Cs
56

Ba
57-71

REE
72

Hf
73

Ta
74

W
75

Re
76

Os
77

Ir
78

Pt
79

Au
80

Hg
81

Tl
82

Pb
83

Bi
84

Po
85

At
86

Rn
87

Fr
88

Ra
89

Ac
104

Rf
105

Db
106

Sg
107

Bh
108

Hs
109

Mt
110

Ds
111

Rg
112

Cn
113

Uut
114

Uuq
115

Uup
116

Uuh
117

Uus
118

Uuo

58

Ce
59

Pr
60

Nd
61

Pm
62

Sm
63

Eu
64

Gd
65

Tb
66

Dy
67

Ho
68

Er
69

Tm
70

Yb
71

Lu
90

Th
91

Pa
92

U
93

Np
94

Pu
95

Am
96

Cm
97

Bk
98

Cf
99

Es
100

Fm
101

Md
102

No
103

Lr

nd
1 10310 1020

Mining potential ratio (MPR)

Figure 5. Mining potential ratios for critical elements in coal. The actual values are listed in Supplementary Information.

Table 3. The MPRs of some trace elements in coal.

Element Sc Hf Cs Y Ge Ga Tl

MPR 0.6 370.6 351.9 280.6 234.3 152.7 93.9
Element Sr REE Se V Li Be

MPR 6.31 5.06 4.11 3.06 2.48 2.33

Sc is the element with highest MPR. The potentially recoverable Sc amount from coal
is approximately 29.5 Gg, which is much more than the traditional productions (500 kg) [8].
Sc is generally recovered from the by-products of W, Ti, U and other metals, with the
concentration of 80–100 ppm [23]. The low production of Sc is attributed to the low
demand and the unfixed sources. The occurrence of Sc in the conventional sources varies
widely and is difficult to extract for the existence of thorium [37]. Although the natural
abundances of Sc in coal (2.9 ppm) and coal ash (23 ppm) are lower than the suggested
cut-off grade (100 ppm) [21,38], the high concentration of Sc (Table S5) is mainly found in
Russian and Chinese coal deposits such as Yakhlinsk, Nizhen-Bikinsk, Rettikhovsk, Minusa,
and Xinde [23,39–42]. The highest concentration of Sc was found in the low-ash coal of
the Yakhlinsk deposit with 1320 ppm in the ash [41]. Meanwhile, the high concentration
of Sc (560 ppm in the ash) was also found in the Amos coal bed in Western Kentucky [43].
Consequently, Sc recovered from coal ash deserves further investigation.

Hf is used in electronics, nuclear industry, chemistry, and alloy material for its excellent
performance. Hf is naturally paragenesis with Zr, and mainly recovered from the waste
of Zr extraction with the production of 0.05 Gg in 2017 [8]. The MPR and potential
extraction of Hf from coal are 370.6 and 18.5 Gg, respectively. The average concentrations
of Hf are 1.2 ppm and 8.3 ppm in coal and coal ash, respectively [38]. Nevertheless,
the natural abundance of Hfis 11.6 ppm and 9.54 ppm in Chinese coal [27] and Indian
coal [44], respectively. Meanwhile, the high concentration of Hf (Table S5) is explored in
Chinese coal mines including Adaohai [45], Datanhao [46], Huayingshan [47], Xinde [42],
Fushui [48] and Hailiushu [49]. The extraction of Hf from coal ash is regarded as feasible
in Asia regions.

Cs is the softest element with the average concentration of 3.4 ppm in the continental
crust [35]. Cs is mostly used in the extractive oil industry as drilling fluids. Meanwhile,
commercial uses of Cs including application in electricity, electronics, chemistry, and
nuclear applications. Cs is mainly associated with and refined from the pollucite ore
with the annual production of 20 t [8]. The MPR and potential recovery amount of Cs
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from coal are 351.9 and 7 Gg.The elevated concentration of Cs (Table S5) is found in the
Spetsugli, Lincang and Fushui coal [48,50,51]. The average Cs concentration in Spetsugli
coal is 30.3 ppm with maximal content of 50.7 ppm [50]. The accumulation of Cs is
related to the circulation of volcanogenic thermal solutions [23]. It is noteworthy that Cs is
mainly enriched in Ge-bearing coals in the form of host sedimentary rocks and underlying
granites [23]. Therefore, the recovery of Cs with Ge from coal can reduce the mining
expense effectively.

Y is usually grouped with REE for similar physicochemical properties and tends to
be paragenetic in geological processes [52]. REE and Y are widely incorporated in various
emerging power and energy-efficient technologies including catalysts, fuel cells, super-
power permanent magnets applied in energy conversion, hybrid and electrical vehicles,
and superconducting electrics [22,23]. The natural continental crust and annual production
are 168.3 ppm [35] and 167.1 Gg [8], respectively. The REE and Y are mainly recovered from
carbonatites (bastnaesite and monazite) and weathered crust elution-deposited ores, both
of which are predominantly produced in China (>80%) [52]. With the long-term and excess
exploitation, the resources of conventional ores are being exhausted and cannot provide
growing demand in the foreseeable future. The natural median abundances of REE+Y in
coal and coal ash are 68.5 ppm and 404 ppm, respectively [38], which are lower than the
suggested cut-off grade (1000 ppm) [21]. Nevertheless, the coal deposits with high REE+Y
have received fairly intensive study [21,47,53–58]. TheREE oxides concentration in coal
deposits including Guanbanwusu [59], Daqingshan [45], Huayingshan [47], Moxinpo [58],
Guxu [57], Eastern Kentucky [53], Vanchinsk [21] are more than 0.1% (Table S5), suggesting
recovery potential. In addition, potential recovery amount of REE and Y from coal is
843.2 Gg and 112.2 Gg, respectively, which are greatly higher than the annual production
of 166.7 Gg and 0.4 Gg [8]. Therefore, the recovery of REE and Y from coal may be an
alternative with the traditional ores exhausted and growing demand of emerging cleaning
energy technologies.

Ge is regarded as a technology-critical element for its wide application in electronics,
polymerization catalyst, and organometallic chemistry. The annual production of Ge
was 98 t in 2017 [8], of which more than 50% was recovered from coal [22]. However,
the average concentration of Ge in world coal and coal ash are 2.2 ppm and 15 ppm,
respectively [38]. The high concentration of Ge (Table S5) is found in many Chinese and
Russian coal ores (including Lincang, Wulangtuga, Spetzugli and Novikovsk coals) with
the total reserves more than 10 Gg [23]. It has been reported that the designed capacities
for Ge production inLincang, Wulangtuga and Spetzugli coal ores are 150–170 t/a [60],
which can satisfy industrial requirements completely. Therefore, the recovery of Ge from
coal is and continues to be the main source.

Semiconductor applications (integrated circuits, optoelectronics, and satellites) ac-
count for 98% of the commercial production of Ga. Meanwhile, the application of Ga in
hydrogen storage is growing gradually with the development of emerging power tech-
nologies. The annual production of Ga was 310 t, which was rose 496.2% since 2000 [8].
It is foreseeable that the production of Ga will continuously increase with the growing
requirement. More than 90% of Ga is extracted from the bauxite processing, and 10% of
Ga is recovered from the residues of Zn-ores. The concentration of Ga in the residues of
bauxite and Zn ores ranged from 30 to 80 ppm with the median value of approximately
50 ppm [23]. The natural abundances of Ga in world coal and coal ash are 5.8 ppm and
33 ppm, respectively [38], which meets the suggested cut-off grade (30 ppm). In addi-
tion, elevated Ga concentration (Table S5) and large reserves are detected in many coal
deposits [45,54,56,58,59]. The concentration and reserve of Ga are 92 ppm in coal ash and
49 Gg in Jungar Coalfield, respectively. The utilization potential is proven by the MPR of
Ga (152.71) [20]. Therefore, coal could be considered as new deposits for Ga.

The traditional production of Tl is mainly recovered from the by-products of Cu,
Pb and Zn processing with annual amounts of 30 t [8]. More than 60% of Tl is used in
the electronics industry, and the remainder is utilized in the pharmaceutical industry
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and glass manufacturing. The high MPR and potential recovery amount suggest that
the mining potential of Tl from coal may increase the production of Tl effectively. Sr
is an alkaline earth metal that is highly chemically reactive. The consumption of Sr is
decreasing with the substitution of cathode ray tubes in color televisions. Nevertheless, the
large annual production of Sr (137 Gg) suggests the mining potential from coal [8]. The
MPRs of Se, V, Li and Be range from 2 to 5, thus, the utilization potential should not be
ignored. According to Table S5, the elevated concentrations of Se, V, Li and Be are found
in many coal ores [20,21,23,40,56,58,61]. Among then, the recovery of Se from coal was
commercialization [20]. The recovery cost and efficiency of these elements from coal may
be equal to or even lower than conventional productions.

6. Future Prospects

Most of the aforementioned critical elements are produced from the by-products of
base metals (Cu, Pb, Ni and Zn) without steady production capacity. The recovery of these
critical elements from coal with high concentrations may be expected for the many mineral
resources, and economic and environmental benefits (Figure 6).
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Nevertheless, the commercial extraction of critical elements from coal and coal ash
suffers from different theoretical, technological, economic and environmental difficulties.

(1) Many theoretical issues need to be studied. The high-efficiency and cost effective
recovery of critical elements from coal is greatly determined by their concentrations and
associations in coal. The concentration and reserve of critical elements in coal is of extreme
significance for the mining potential. The modes of occurrence of critical elements in coal
can provide important information for the design of recovery methods. The enrichment
mechanisms and modes of occurrence of critical elements should be solved.

(2) Various technological difficulties including exploration, joint-mining, and co-
extraction methods should be developed. The concentrations of critical elements varied
among different coal-forming period, coal rank, coal seam and even in the different location
of the same coal seam. In addition, many critical elements are enriched in the coal seam.
For example, V, Se, Mo, REE, Y and Ga are usually co-enriched in the high-Ga coal ores.
To minimize mining costs and maximize extracting multiple elements, high precision
exploration methods, joint mining and extraction technologies should be developed.

(3) The recovery cost and market price of critical elements should be considered.
The recovery cost is a very important factor in critical element recovery. Much effort has
been expanded in studying the recovery of critical elements from coal. Solvent extraction
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is regarded as a promising method for the extraction of critical elements. However, the
extraction costs of solvent recovery are unfavorable economics for the high prices of regents.
Meanwhile, the market prices of the critical elements also influence the commercial mining
potential of critical elements.

(4) Emerging environmental issues should also be of concern. Some toxic elements
(As, Hg, Cd) may be co-enriched with critical elements in coal ores during the complex
geological processes. These toxic elements may be released and enter intothe environment
during recovery of critical elements, resulting in potential environmental and health risks.
Therefore, the countermeasures for control of toxic elements during recovery should
be adopted.

7. Conclusions

Coal contains high concentrations of potential critical elements during complex ge-
ological evolution. The abundances of critical elements in coal varied widely among
different deposits and regions. The high concentrations of critical elements are found in
many Chinese and Russian coal ores. The potential utilization of elements from coal will
be worthy for global development and environmental protection. The concentrations of
critical elements in the global coal ash are higher than that of continental crust. According
to the mining potential analysis and enrichment characterizations of critical elements,
the coal hosted ore deposits are regarded as highly alternative sources for Sc, Hf, Cs, Y,
Ge, Ga Tl, Sr and REE. The industrial extraction of critical elements from coal can obtain
both economic and environmental benefits. Nevertheless, the commercial recovery of
critical elements from coal still suffers from many theoretical, technical, environmental,
and economical difficulties.
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coal (mg/kg), Table S3: The coal productions of the selected countries (million tons). Table S4: The
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2017. Table S5: Distribution of high concentrations of critical resources in coal (ppm).
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