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Abstract: In some cases, the oil shale deposited in shallow lakes may be genetically associated
with the coal-bearing successions. Although paleovegetation is an important controlling factor for
the formation of oil shale- and coal-bearing successions, few studies have focused on their joint
characterization. In this study, a total of twenty-one oil shale and coal samples were collected
from the upper member of the Lower Cretaceous Muling Formation (K1ml2) in the Laoheishan
Basin, and investigated for their bulk geochemical, maceral, palynological, and terpenoid biomarker
characteristics, in order to reconstruct the paleovegetation and reveal its influence on the formation
of oil shale and coal. The K1ml2 is subdivided into lower, middle, and upper units. The studied
oil shale samples from the lower and upper units display a high ash yield (Ad), low total organic
carbon (TOC) and sulfur (S) contents, and limited hydrocarbon generation potential. The studied coal
samples from the middle unit are characterized by low Ad, and high TOC and low S values, and show
significant hydrocarbon generation potential. The paleovegetation during the formation of the lower
unit was dominated by mire vegetation, such as shrubs (e.g., Lygodiaceae, Schizaeaceae), tree ferns
(e.g., Dicksoniaceae/Cyatheaceae), and coniferous trees (e.g., Podocarpaceae). In the middle unit
interval, the paleovegetation was represented by highland vegetation (Pinaceae and Araucariaceae)
and peat-forming coniferous plants (e.g., Podocarpaceae, Cupressaceae/Taxodiaceae). Various
vegetation, such as herbs (e.g., Osmundaceae), shrubs (e.g., Schizaeaceae), and coniferous trees (e.g.,
Podocarpaceae) was prosperous during the upper unit interval. Coniferous trees could provide
abundant hydrogen-rich materials (e.g., resins) to the mire/lake, which may elevate the hydrogen
content in peat/lake sediments, and finally result in higher hydrocarbon generation potential in the
coal than in the oil shale. Therefore, the influence of paleovegetation on the formation of oil shale and
coal should be fully considered when studying oil shale- and coal-bearing successions. The results
also provide guidance for further exploration studies on oil shale and coal in northeast China.

Keywords: oil shale; coal; paleovegetation; palynology; terpenoid biomarkers

1. Introduction

Oil shale- and coal-bearing successions have been widely found around the world,
such as the Fushun, Huadian, Meihe, Huangxian, Laoheishan, and Dachanggou basins in
China [1–6], the Mae Tip Basin in Thailand [7], the Delbi-Moye Basin in Ethiopia [8], the
Liard Basin in Canada [9], and the Beypazari and Seyitomer Basins in Turkey [10–12]. Joint
exploration and development of oil shale and coal is a feasible option to raise energy utiliza-
tion efficiency, and reduce costs and environmental pollution [13,14]. Multiple controlling
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factors are responsible for the formation of oil shale- and coal-bearing successions, includ-
ing the paleoclimate, tectonic setting, paleoenvironment, and paleovegetation [5,12,15–22].
Among these, the influence of the paleovegetation on the formation of oil shale and coal has
been rarely investigated because it was believed that oil shale was formed in the aquatic
environment with a certain depth, and the organic matter mainly originated from aquatic
organisms [23,24]. However, the oil shale interbedded with coal is generally deposited in
shallow lakes, and contains a large proportion of terrestrial organic matter derived from
land plants [5,25]. Therefore, revealing the influence of paleovegetation on the formation
of oil shale and coal can not only improve knowledge of their formation mechanisms, but
also provide guidance for their joint exploration and development.

In northeast China, oil shale- and coal-bearing successions are widely distributed
through time and space; for example, the Eocene Yilan Basin and the Lower Cretaceous
Laoheishan Basin [26,27]. Several oil shale and coal layers are developed in the Lower
Cretaceous Muling Formation (K1ml) in the Laoheishan Basin, and the liptinite in both
of these is dominated by resinite, sporinite, and cutinite, with only minor percentages of
alginite (<1 vol. %, on a mineral matter-free basis; [5]). The liptinite composition suggests
that land plants made a major contribution to the organic matter during the formation of oil
shale and coal, making it an excellent example for this study. Moreover, few studies have
been undertaken on this topic in the Laoheishan Basin, although the paleoenvironment,
provenance and tectonic setting, and origin and occurrence of minerals and elements of oil
shale and coal have been investigated in detail [5,27–29]. Therefore, the aims of this study
were to (1) reconstruct the paleovegetation, and (2) reveal the influence of paleovegetation
on the formation of oil shale and coal. To achieve these goals, oil shale and coal samples
were collected from the Well N1 and determined for their ash yield, bulk geochemical
parameters, spore-pollen assemblage, and terpenoid biomarkers.

2. Geological Setting

The Laoheishan Basin is an intermontane basin situated in the Xingkai Block, north-
east China (Figure 1A,B). The basement surrounding the basin comprises Precambrian
metamorphic rocks and Meso-Cenozoic volcanic rocks [30]. The basin covers an area
of approximately 400 km2 and is filled with the Lower Cretaceous Muling Formation,
Dongshan Formation, and Neogene Chuandishan Formation (Figure 1C,D). A thick basalt
layer of the Neogene Chuandishan Formation is extensively developed in the central and
southeastern parts of the basin. As a result, the Lower Cretaceous strata is only exposed in
the northwest (Figure 1C).

The Lower Cretaceous basin fill is dominated by the Muling Formation, with the thick-
ness decreasing southeastwards (Figure 1D). The Muling Formation can be further divided
into two members: the lower member (K1ml1) consists of conglomerate interbedded with
sandstone and mudstone, and the upper member (K1ml2) mainly comprises sandstone,
siltstone, mudstone, coal, and oil shale, with limited conglomerate (Figure 2A). Therefore,
the K1ml2 was selected as the target interval for this study.

Based on the lithological variation, the K1ml2 is further divided into lower, middle,
and upper units (Figure 2B). The lower unit (from the bottom to 294 m) consists of fine
sandstone and siltstone interbedded with oil shale. The middle unit (294 to 201 m) com-
prises conglomerate, and coarse to medium sandstone, developing several coal and oil
shale layers. The upper unit (201 m to the top) is mainly composed of coarse to medium
sandstone interbedded with siltstone and oil shale. Fossils of ferns are widely found in the
lower and upper units, whereas possible gymnosperms (probably conifer remains) have
been observed in the middle unit (Figure 2C–H).



Energies 2021, 14, 4704 3 of 21
Energies 2021, 14, x FOR PEER REVIEW 3 of 22 
 

 
Figure 1. (A) Schematic map of NE China. (B) Simplified geological map of NE China, illustrating 
the location of the Laoheishan Basin. (C) Geological map of the Laoheishan Basin and the sampling 
well. (D) Cross profiles of the Laoheishan Basin [28]. 

 
Figure 2. (A) Stratigraphic subdivision of the Laoheishan Basin [28], the studied interval is marked 
with grey shading. (B) Lithology and sampling depth in the N1. Two horizontal grey lines show the 
boundaries of three units. Plant fossils observed in the N1: (C,G,H) Ferns. (D,E,F) Gymnosperms 
(probably conifers). Macroscopical photos of the studied oil shale (I,L) and coal (J,K) samples. 

Figure 1. (A) Schematic map of NE China. (B) Simplified geological map of NE China, illustrating
the location of the Laoheishan Basin. (C) Geological map of the Laoheishan Basin and the sampling
well. (D) Cross profiles of the Laoheishan Basin [28].
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Figure 2. (A) Stratigraphic subdivision of the Laoheishan Basin [28], the studied interval is marked
with grey shading. (B) Lithology and sampling depth in the N1. Two horizontal grey lines show
the boundaries of three units. Plant fossils observed in the N1: (C,G,H) Ferns. (D–F) Gymnosperms
(probably conifers). Macroscopical photos of the studied oil shale (I,L) and coal (J,K) samples.
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3. Samples and Methods

Twenty-one samples, comprising 10 oil shales and 11 coals, were collected from
the Well N1, which is located in the central basin (Figure 1C). The core samples were
fresh and the sampling depth is illustrated in Figure 2B. The macroscopical photos of
oil shale and coal are provided in Figure 2I–L. All samples were evaluated by ash yield
(dry basis; Ad), total organic carbon (TOC), total sulfur (S), Rock-Eval pyrolysis, and
maceral biomarker analyses. Two coal samples were selected for vitrinite reflectance
(Ro) measurement. Twelve samples, comprising 7 oil shales and 5 coals, were chosen for
palynological identification and statistics.

Ash yield was determined following the ASTM Standard D3174-12 [31]. Total organic
carbon (TOC) and S contents were analyzed using a Leco CS-230 instrument after pre-
treatment of samples with HCl, in order to remove carbonate. Pyrolysis was determined
using a Rock-Eval 6 instrument. The hydrocarbon generated from kerogen (S2) was normal-
ized to TOC to characterize the hydrogen index (HI = S2/TOC*100), and the temperature of
maximum generation (Tmax) served as a maturity indicator. These parameters were calcu-
lated according to [32]. All of the above analyses were conducted in the Key Laboratory for
Oil Shale and Paragenetic Minerals of Jilin Province (Jilin University, Changchun, China).

For palynological investigation, samples were prepared following a standard proce-
dure using HCl and HF acids [33]. No oxidative reagents or ultra-sonication were used
during the sample preparation. The residues were sieved (10 µm) and mounted on slides
with polyvinyl alcohol and Canada Balsam. The sections were closely observed using an
Olympus BX51 biological microscope with transmitted light. Approximately 200 grains
of spores and pollen were counted in each slide to provide the spore–pollen assemblage.
The palynological investigation was conducted in the Research Center of Paleontology &
Stratigraphy (Jilin University, China).

Samples for maceral analysis were firstly crushed to a maximum size of 1 mm. The
granular samples were then mixed with Canada Balsam and polished for subsequent
microscopic observation. A Leica MPV microscope with white and fluorescent lights,
equipped with a 50× objective, was applied. At least 500 points were counted in each slide.
The maceral contents refer to volume percentages on a mineral matter-free basis (vol. %,
mmf). The Ro of coal samples was determined using a Leica MPV microscope in reflected
white light. At least 50 vitrinite (telovitrinite) grains were counted for each slide. Standard
materials, including sapphire (0.59% reflectance) and gadolinium gallium garnet (1.72%
reflectance) were used for calibration. Both maceral analysis and Ro measurement were
conducted in the Key Laboratory for Oil Shale and Paragenetic Minerals of Jilin Province
(Jilin University, China).

Samples for biomarker analysis were firstly extracted by dichloromethane in a Dionex
ASE 200 accelerated solvent extractor for about 1 h to obtain the extractable organic matter
(EOM). The EOM was then separated into asphaltenes, NSO compounds, and saturated
and aromatic hydrocarbon fractions using centrifugation and medium pressure liquid chro-
matography (with a Köhnen-Willsch instrument [34]). The saturated and aromatic hydro-
carbon fractions were analyzed by a gas chromatograph equipped with a 30 m × 0.25 mm
DB-5MS fused silica column (0.25 µm film thickness) and coupled to a ThermoFisher
ISQ quadrupole mass spectrometer (GC-MS). The oven temperature was programmed
from 70 ◦C to 300 ◦C at 4 ◦C/min, followed by an isothermal phase of 15 min. Absolute
concentrations of compounds in the saturated and aromatic hydrocarbon fractions were
calculated in comparison to the peak area of an internal standard (deuterated n-tetracosane
and 1,1′-binaphthyl for saturated and aromatic fractions, respectively). The concentrations
were normalized to the TOC content. The biomarker analysis was completed in the De-
partment of Applied Geosciences and Geophysics (Montanuniversität Leoben, Leoben,
Austria).
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4. Results
4.1. Ash Yield and Bulk Geochemistry

Ash yield (dry basis; Ad) is an important factor for classifying oil shale and coal in the
Laoheishan Basin [27]. In this study, the Ad values of oil shale range from 45.4 to 61.0 wt. %
with an average of 51.8 wt. %, which is higher than those of coal (13.6 to 35.6 wt. %, avg.
25.5 wt. %; Figure 3A). The TOC values of oil shale vary between 5.2 and 21.8 wt. %
(avg. 12.8 wt. %), lower than those of coal (33.1 to 63.7 wt. %, avg. 48.8 wt. %; Figure 3B).
Most oil shale and coal contain S contents less than 0.5 wt. %; only two coals exhibit S
contents around 1.0 wt. % (Figure 3C). The S2 values are characterized by lower values in
oil shale (8.2 to 79.9 mg/g, avg. 34.1 mg/g) and higher values in coal (137.7 to 304.2 mg/g,
avg. 202.9 mg/g; Figure 3D). A positive correlation occurred between S2 values and TOC
contents in both oil shale and coal (r2 = 0.86; Supplementary Figure S1). The HI values
range from 140 to 367 mg/g TOC (avg. 248 mg/g TOC) and 304 to 589 mg/g TOC (avg.
417 mg/g TOC) in oil shale and coal, respectively (Figure 3E), suggesting type II-III kerogen
(Supplementary Figure S2). The Tmax values vary between 421 and 429 °C in oil shale and
coal (Figure 3F). Overall, the oil shale characterized by high Ad, and low values of TOC, S,
S2, and HI, was mainly developed in the lower and upper units, whereas coal with low Ad
and S contents, and high values of TOC, S2, and HI, primarily occurred in the middle unit.
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rescent was observed in vitrinite under the microscope, indicating the absence of perhy-
drous vitrinite. Higher percentages of liptinite were observed in coal (19.7−58.8 vol. %, 
avg. 39.3 vol. %) than in oil shale (7.8−49.0 vol. %, avg. 24.0 vol. %). Liptinite was domi-

Figure 3. Bulk geochemical parameters of oil shale and coal in the N1. (A) Ash yield, dry basis
(Ad). (B) Total organic carbon (TOC). (C) Total sulfur (TS). (D) The hydrocarbons cracked from
kerogen during pyrolysis (S2). (E) Hydrogen index (HI). (F) The temperature of maximum generation
(Tmax). (G) Maceral compositions; others represent other liptinites, including alginite, suberinite, and
liptodetrinite. The red bar represents oil shale and the black bar represents coal. Two horizontal grey
lines shows the boundaries of three units.

4.2. Maceral Composition and Vitrinite Reflectance (Ro)

Vitrinite was the predominant maceral in oil shale and coal, ranging from 50.2 to
92.0 vol. % (mmf) and 35.5 to 83.4 vol. %, respectively (Figure 3G; Supplementary Table S1).
Vitrinite was mainly composed of telovitrinite and collodetrinite (Figure 4A,B). No fluores-
cent was observed in vitrinite under the microscope, indicating the absence of perhydrous
vitrinite. Higher percentages of liptinite were observed in coal (19.7−58.8 vol. %, avg.
39.3 vol. %) than in oil shale (7.8−49.0 vol. %, avg. 24.0 vol. %). Liptinite was dominated
by sporinite, resinite, cutinite, and fluorinite, all of which displayed high fluorescence
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under the microscope (Figure 4C–E). Inertinite contents were low in oil shale and coal, with
percentages of <1.5 vol. %. Fusinite, including pyrofusinite and degradofusinite, was the
commonly observed inertinite, generally revealing high reflectance (Figure 4F). Pyrite was
rarely observed in the oil shale and coal, which is consistent with the low sulfur contents
(<1.2 wt. %; Figure 3C). The measured Ro of coal samples was in the range of 0.43−0.44%
(Supplementary Table S1).
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Figure 4. Representative photomicrographs of oil shale and coal (oil immersion). (A) Telovitrinite
(incident white light). (B) Collodetrinite (incident white light). (C) The same area of Figure 4B,
revealing sporinite and cutinite (blue-light irradiation). (D) Resinite with orange internal reflection
(incident white light). (E) Cutinite with fluorinite in between (blue-light irradiation). (F) Pyrofusinite
(incident white light).

4.3. Palynology

A total of 53 palynomorph taxa (30 spores and 23 pollen taxa) were identified at a
species or genus level in oil shale and coal. Selective spores and pollen taxa are shown
in Figures 5 and 6, respectively. The preservation of palynomorphs was good, revealing
no signs of post depositional degradation [35]. The quantitative distribution patterns of
selective spores and pollen are illustrated in Figures 7 and 8, respectively. Distinctive spore-
pollen assemblages were present in three units. The lower unit was characterized by high
spore (avg. 74.1%) and low pollen (avg. 25.9%) abundances. The spores were dominated
by Concavissimisporites sp. (avg. 18.8%), Cyathidites sp. (avg. 9.6%), Cardioangulina sp.
(avg. 8.6%), Pilosisporites sp. (avg. 7.3%), and Cicatricosisporites purbeckensis (avg. 4.5%;
Figure 7). The middle unit showed significantly lower spore (avg. 35.7%) and higher
pollen (avg. 64.3%) abundances than the lower unit. Pinuspollenites sp. (avg. 23.4%),
Podocarpidites sp. (avg. 10.7%), Protoconiferus sp. (avg. 7.0%), Cedripites sp. (avg. 4.9%),
and Araucariacutes sp. (avg. 4.7%) were the predominant pollen types (Figure 8). The
upper unit consisted of comparable spore (avg. 57.0%) and pollen (avg. 43.0%) abundances.
The spores mainly comprise Cicatricosisporites sp. (avg. 9.0%), Osmundacidites sp. (avg.
10.7%), and Baculatisporites sp. (avg. 8.0%; Figure 7), whereas the pollen was dominated by
Pinuspollenites sp. (avg. 11.1%) and Podocarpidites sp. (avg. 7.5%; Figure 8).



Energies 2021, 14, 4704 7 of 21
Energies 2021, 14, x FOR PEER REVIEW 7 of 22 
 

 
Figure 5. Photomicrographs of spores in oil shale and coal. (A) Concavissimisporites sp. (B) Os-
mundacidites sp. (C) Cyathidites sp. (D) Cardioangulina sp. (E) Pilosisporites sp. (F) Cicatricosisporites 
purbeckensis. (G) Aequitriradites sp. (H) Laevigatosporites sp. (I) Biretisporites sp. (J) Appendicisporites 
sp. (K) Maculatisporites sp. (L) Brochotriletes degradatus. (M) Triporoletes sp. (N) Verrucosisporites sp. 
The scale bar represents 50 μm. The photomicrographs marked with * are from [29]. 

Figure 5. Photomicrographs of spores in oil shale and coal. (A) Concavissimisporites sp. (B) Os-
mundacidites sp. (C) Cyathidites sp. (D) Cardioangulina sp. (E) Pilosisporites sp. (F) Cicatricosisporites
purbeckensis. (G) Aequitriradites sp. (H) Laevigatosporites sp. (I) Biretisporites sp. (J) Appendicisporites sp.
(K) Maculatisporites sp. (L) Brochotriletes degradatus. (M) Triporoletes sp. (N) Verrucosisporites sp. The
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4.4. Terpenoid Biomarkers

The biomarker results (n-alkanes, isoprenoids, steroids, hopanoids, and terpenoids) of
oil shale and coal from the Laoheishan Basin have been published by Song et al. [5] and
elsewhere [27]. In these studies, the terpenoid biomarkers were investigated in detail, to
provide evidence for paleovegetational reconstruction; nevertheless, in the recent study we
focused on sesquiterpenoids, diterpenoids, and fernanes, which were assigned in the satu-
rated and aromatic fractions in oil shale and coal (Figure 9A,D). Sesquiterpenoids consisted
of cadinenes and drimenes in the saturated hydrocarbon fraction (Figure 9B), whereas
cuparene, curcumene, 5,6,7,8-tetrahydrocadalene, cadalene, and isocadalene were assigned
in the aromatic hydrocarbon fraction (Figure 9E). The saturated diterpenoids comprised
ent-beyerane, 16b(H)-kaurane, and 16a(H)-phyllocladane (Figure 9C), whereas simonel-
lite, tetrahydroretene, 19-norabieta-3,8,11,13-tetraene, and retene were the predominant
aromatic diterpenoids (Figure 9F). The aromatic compounds with fernane skeleton were
assigned, including des-A-ferna-triene, des-A-ferna-tetraene, dinor-ferna-triene, dinor-
ferna-tetraene, and nor-ferna-triene (Figure 9G,H).
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High concentrations of sesquiterpenoids were observed in the analyzed oil shale and
coal, and varied between 62.3 and 272.6 µg/g TOC (avg. 156.9 µg/g TOC; Figure 10),
followed by diterpenoids (33.3 to 113.9 µg/g TOC, avg. 74.6 µg/g TOC; Figure 11), and
fernanes (5.0 to 51.4 µg/g TOC; avg. 24.4 µg/g TOC; Figure 12). Cadalene was the predomi-
nant sesquiterpenoid (avg. 116.4 µg/g TOC), followed by isocadalene (avg. 16.4 µg/g TOC)
and tetrahydrocadalene (avg. 10.7 µg/g TOC), whereas others revealed low concentrations
(average concentrations < 5.0 µg/g TOC; Figure 10). Diterpenoids were dominated by
simonellite (avg. 36.0 µg/g TOC) and retene (avg. 11.4 µg/g TOC), whereas others had
average concentrations less than 10 µg/g TOC (Figure 11). Comparable concentrations
were observed in five types of fernanes, with average concentrations ranging from 3.8 µg/g
TOC (dinor-ferna-tetraene) to 6.5 µg/g TOC (dinor-ferna-triene; Figure 12). In general,
the lower and upper units were characterized by low concentrations of sesquiterpenoids
and diterpenoids, and high concentrations of fernanes. In contrast, high concentrations
of sesquiterpenoids and diterpenoids, together with low concentrations of fernanes, were
present in the middle unit. These observations are generally in good agreement with the
identified palynoflora from the studied samples.
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Figure 9. Gas chromatograms and mass chromatograms of a coal sample (L9). (A) Gas chromatogram
of saturated hydrocarbon fraction. (B) Mass chromatogram of sesquiterpenoids (saturated hydro-
carbon fraction; m/z 123 + 191). (C) Mass chromatogram of diterpenoids (saturated hydrocarbon
fraction; m/z 123). (D) Gas chromatogram of aromatic hydrocarbon fraction. (E) Mass chromatogram
of sesquiterpenoids (aromatic hydrocarbon fraction; m/z 198 + 202). (F) Mass chromatogram of
diterpenoids (aromatic hydrocarbon fraction; m/z 234 + 238). (G) Mass chromatogram of fernanes
(aromatic hydrocarbon fraction; m/z 292 + 310). (H) Mass chromatogram of fernanes (aromatic
hydrocarbon fraction; m/z 376 + 378). Std., standard.
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Figure 11. Diterpenoids in saturated and aromatic hydrocarbon fractions of oil shale and coal.
(A) ent-Beyerane. (B) b-Kaurane. (C) a-Phyllocladane. (D) Simonellite. (E) Tetrahydro-retene.
(F) Abieta-tetraene. (G) Retene. (H) Total diterpenoid concentration. The red bar represents oil
shale, and the black bar represents coal. The two horizontal grey lines show the boundaries of the
three units.
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5. Discussion
5.1. Maturity and Hydrocarbon Generation Potential

The Tmax values of oil shale and coal varied between 421 and 429 °C, revealing an
immature character. This interpretation is further supported by the range of measured Ro
(0.43−0.44 %; Supplementary Table S1) and the yellow to orange color of the palynomorphs
(thermal alteration index 1 to 2; after [36]). According to the modified HI-Tmax diagram
in [37], the studied oil shale sample plots into the area which classified as mixed gas- and
oil-prone to gas-prone, whereas the coal samples were classified as oil-prone (Figure 13).
This result was further supported by the higher oil yield (determined by Fischer Assay
Procedure) in coal (8.2 wt. % to 14.1 wt. %) than in oil shale (3.6 wt. % to 7.2 wt. %)
from the Laoheishan Basin [27]. Considering the rank-related increase in HI of low-rank
coals, the studied coal samples exceed the minimum HI of 300 mg/g TOC required for oil
generation [38] when their thermal maturity reaches the onset of oil expulsion (“effective
HI” in [37]). In addition, because pyrite was rarely observed in the studied oil shale and
coal [29], the influence of pyrite on S2 during pyrolysis could be excluded.
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5.2. Paleovegetational Reconstruction

The palynofloral assemblage of coal-bearing sequences in variable geological ages
is an important parameter for paleovegetational reconstruction [35,40–49]. Nevertheless,
the sole usage of palynological data could be problematic due to short- and long-distance
transportation by surface water and wind, respectively, or positions of the sampled coal
seam in the precursor paleomires and/or the quantity of sporomorphs that was produced
by mother plants. Therefore, the palynological data should be supported by maceral and
biomarker compositions of the studied samples. The palynofloras of the K1ml2 interval
in the Laoheishan Basin comprise palynoflora originating from various plant groups (e.g.,
ferns and conifers). Information on the botanical affinity, vegetation, and humidity-aridity
types of the spores and pollen are provided in Table 1. Six principal groups were recognized
based on the compilation, namely, ferns, sphenopsids, bryophytes, lycopods, conifers, and
seed ferns. The parent plants can be classified into four vegetation types, i.e., herbs,
shrubs, tree ferns, and coniferous trees. In addition, most of the parent plants belong to the
humidity-aridity types of phreatophyte and mesophyte, suggesting a humid to semi-humid
paleoclimate prevailed during the K1ml2 interval.

Five typical palynofloral provinces have been classified in China during the early Cre-
taceous, namely, the Disacciatrileti–Cicatricosisporites Province in the north, the Classopollis–
Schizaeoisporites Province in the southeast, the Dicheiropollis Province in the Tibet-Tarim
region, the Araucariacites–Callialasporites Province in the southern Tibet, and a wide transi-
tional zone [50]. The northern Disacciatrileti–Cicatricosisporites Province generally contains
abundant and diverse bisaccate conifer pollen grains (e.g., Pinaceae and Podocarpaceae)
and ferns (especially Cicatricosisporites), whereas Classopollis and Schizaeoisporites are rare [51].
This region has been considered as having a warm-humid paleoclimate during the early
Cretaceous [50]. The palynoflora of the K1ml2 interval in the study area was dominated by
highland-related bisaccate coniferous pollen (e.g., Pinuspollenites, Podocarpidites, and Proto-
coniferus) and fern spores (e.g., Concavissimisporites, Cicatricosisporites, and Osmundacidites),
which is similar to the palynoflora of the northern Disacciatrileti–Cicatricosisporites province.



Energies 2021, 14, 4704 14 of 21

Table 1. Botanical affinities, vegetation, and humidity-aridity types of principle Early Cretaceous spores and pollen. Representative and comprehensive references include [51–56].

Spore-Pollen Taxa or Category Botanical Affinity Vegetation Type Humidity-Aridity Type

Spores
Leiotriletes sp. Ferns Herb Phreatophyte
Concavissimisporites sp. Sphenopsids (Lygodiaceae) Shrub Phreatophyte
Cicatricosisporites sp. Ferns (Schizaeaceae) Shrub Phreatophyte
Osmundacidites sp. Ferns (Osmundaceae) Herb Helophyte
Cardioangulina sp. Sphenopsids (Lygodiaceae) Shrub Phreatophyte
Cyathidites sp. Ferns (Dicksoniaceae/Cyatheaceae) Tree fern Phreatophyte
Baculatisporites sp. Ferns (Osmundaceae) Herb Helophyte
Pilosisporites sp. Ferns Shrub Phreatophyte
Biretisporites sp. Ferns (Hymenophyllaceae) Herb Helophyte
Aequitriradites sp. Bryophytes Herb Phreatophyte
Appendicisporites sp. Ferns (Schizaeaceae) Shrub Phreatophyte
Toroisporis sp. Ferns (Marttiaceae) Herb Phreatophyte
Acanthotriletes sp. Ferns (Marttiaceae) Herb
Laevigatosporites sp. Ferns (Polypodiaceae) Herb Helophyte
Maculatisporites sp.
Verrucosisporites sp. Ferns (Cyatheaceae/Dipteridaceae)
Neoraistrickia sp. Lycopods (Pleuromeiaceae/Selaginellaceae) Herb Phreatophyte
Klukisporites sp. Ferns (Schizaeaceae) Shrub Phreatophyte
Triporoletes cf. asper Bryophytes
Lycopodiumsporites sp. Lycopods Herb Mesophyte
Microreticulatisporites pingyangensis Ferns
Converrucosisporites sp. Ferns (Cyatheaceae/Dipteridaceae) Herb Phreatophyte
Foveotriletes sp. Ferns (Cyatheaceae) Herb Mesophyte
Brochotriletes degradatus
Cooksonites erenensis Bryophytes
Densoisporites sp. Lycopods (Pleuromeiaceae/Selaginellaceae) Herb Phreatophyte
Pollen
Pinuspollenites sp. Conifers (Pinaceae) Conifer tree Mesophyte
Podocarpidites sp. Conifers (Podocarpaceae) Conifer tree Phreatophyte
Alisporites sp. Seed ferns (Corystospermales) Conifer tree
Protoconiferus sp. Conifers (Cupressaceae/Taxodiaceae) Conifer tree Phreatophyte
Abietineaepollenites sp. Conifers (Pinaceae) Conifer tree Mesophyte
Cedripites sp. Conifers (Pinaceae) Conifer tree Mesophyte
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Table 1. Cont.

Spore-Pollen Taxa or Category Botanical Affinity Vegetation Type Humidity-Aridity Type

Piceaepollenites sp. Conifers (Pinaceae) Conifer tree Mesophyte
Piceites sp. Conifers (Pinaceae) Conifer tree Phreatophyte
Psophosphaera sp. Conifers (Pinaceae) Conifer tree Mesophyte
Pseudopiceae sp. Conifers Conifer tree Phreatophyte
Quadraeculina sp. Conifers Conifer tree
Pristinuspollenites sp. Seed ferns
Protopinus sp. Conifers Conifer tree Phreatophyte
Erlianpollis sp. Conifers Conifer tree Phreatophyte
Keteleeria sp. Conifers (Pinaceae) Conifer tree Mesophyte
Araucariacutes sp. Conifers (Araucariaceae) Conifer tree Mesophyte
Chasmatosporites sp. Cycadophytes/Ginkgophytes Shrub Phreatophyte
Concentrisporites fragilis Conifers (Taxodiaceae) Conifer tree
Jiaohepollis sp. Conifers (Araucariaceae) Conifer tree Mesophyte
Cerebropollenites sp. Conifers Conifer tree
Klausipollenites sp.
Callialasporites sp. Conifers (Araucariaceae) Conifer tree Mesophyte
Classopollis sp. Conifers (Cheirolepidiaceae) Conifer tree Xerophyte
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Based on the identified palynomorph assemblage (Figures 7 and 8), three types of
palynofloras were classified into the studied interval, corresponding to three units. In the
lower unit interval, the paleovegetation was dominated by shrubs, including Lygodiaceae
(Concavissimisporites and Cardioangulina) and Schizaeaceae (Cicatricosisporites), accompanied
by tree ferns and coniferous trees, which were represented by Dicksoniaceae/Cyatheaceae
(Cyathidites) and Podocarpaceae (Podocarpidites), respectively. The paleovegetation dur-
ing the middle unit interval was characterized by highland vegetation and peat-forming
coniferous plants, including Pinaceae (Pinuspollenites, Cedripites), Araucariaceae (Araucaria-
cutes), Podocarpaceae (Podocarpidites), and Cupressaceae/Taxodiaceae (Protoconiferus). In
addition, shrubs also occurred during the middle unit, mainly consisting of Lygodiaceae
(Concavissimisporites) and Schizaeaceae (Cicatricosisporites). Different vegetation types, in-
cluding herbs, shrubs, and coniferous trees, flourished during the upper unit interval. The
herbs and shrubs were represented by Osmundaceae (Osmundacidites and Baculatisporites)
and Schizaeaceae (Cicatricosisporites), respectively. In addition, the coniferous trees mainly
comprised highland vegetation and peat-forming coniferous trees, such as Pinaceae (Pinus-
pollenites) and Podocarpaceae (Podocarpidites).

The biological precursors of some terpenoids (e.g., cadalene, simonellite, fernanes)
are common constituents of tissues from higher plants; therefore, these terpenoids have
been widely used to reconstruct the paleovegetation [57–60]. The cadalene-type com-
pounds (cadalene, isocadalene, tetrahydrocadalene) account for more than 90% of sesquiter-
penoids (Figure 10). The cadalene-type sesquiterpenoids have been found in fossil resins
of the Pinaceae, Taxodiaceae, Podocarpaceae, Cupressaceae, and Araucariaceae [61], in
addition to dammar resins produced by the Dipterocarpaceae (a tropical hardwood, an-
giosperm [62]). Because angiosperm pollen was not found in the samples, a coniferous
trees precursor for the cadalene-type sesquiterpenoids is indicated. Diterpenoids were
dominated by the abietane-type compounds (i.e., simonellite and retent; Figure 11; [63]).
Abietane-type diterpenoids are proposed as markers for Pinaceae, because of the occur-
rence of abietic acid in Pinaceae species [57,61]. Nevertheless, these compounds may also
be sourced from Pinaceae coniferal detritus or detrital resinite, which could be transported
by surface water or wind-blown for short and long distances, respectively [19,64]. How-
ever, other abietane products, such as phenolic abietane ferruginol, are also widespread in
modern species of Podocarpaceae, Cupressaceae, and Taxodiaceae [65,66].

The formation of fernanes is considered to be associated with fernenol, which is
widespread in vascular plants, especially ferns [67,68]. However, some of the fernane type
compounds may also have originated from bacteria, as indicated by the co-occurrence of
fern-7-ene and methanogenic biomarkers in modern sediments from an anoxic environ-
ment in Antarctica [69,70]. In the present case, there is no doubt that the precursors of
fernanes were ferns, because abundant spores were found through the studied interval
(Figure 6). As illustrated in Figures 10–12, low concentrations of sesquiterpenoids and
diterpenoids, and a high concentration of fernanes, are present in the lower and upper
units, probably indicating a paleovegetation dominated by ferns. In contrast, high concen-
trations of sesquiterpenoids and diterpenoids, together with low concentrations of fernanes,
were observed in the middle unit, probably suggesting a paleovegetation characterized
by coniferous trees, such as Pinaceae, Podocarpaceae, Cupressaceae, Taxodiaceae, and
Araucariaceae. The conclusions are in good agreement with the palynological results.

5.3. Paleovegetation Influences the Formation of Oil Shale and Coal

The paleoenvironment and paleovegetation during the formation of oil shale and coal
in the Laoheishan Basin are illustrated in Figure 14. Oil shale was deposited in shallow
lakes with freshwater, as indicated by low sulfur contents (avg. 0.12 wt. %; Figure 3C).
Based on the results of palynology and terpenoid biomarkers, the paleovegetation during
the formation of oil shale mainly comprised ferns (e.g., Cicatricosisporites, Osmundacidites,
and Cyathidites) and sphenopsids (e.g., Concavissimisporites) on the lake shore, and the high-
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lands in the adjacent regions of the study area hosted coniferous forest (mainly Pinaceae;
Figure 14A). Ferns and sphenopsids living on the lake shore may have allowed a large
number of spores to enter the lake (transported by surface water and/or wind-blown),
and therefore be preserved in the oil shale [52]. In contrast, coal was formed in freshwater
low-lying mire, as suggested by high ash yields (avg. 25.5 wt. %) and low sulfur contents
(avg. 0.41 wt. %) [71]. The paleovegetation during the formation of coal was composed of
highland vegetation and peat-forming coniferous plants, such as Pinaceae, Araucariaceae,
Podocarpaceae, Cupressaceae, and Taxodiaceae, accompanied by sphenopsids (e.g., Con-
cavissimisporites) and ferns (e.g., Cicatricosisporites; Figure 14B). Although pollen could be
carried a long distance by wind, surface water, and/or insects, a large amount of pollen
can still be “in situ” buried due to the flourishing of coniferous trees in the mire (e.g.,
Podocarpaceae, Cupressaceae, and Taxodiaceae) [72]. In addition, some kinds of conif-
erous trees, such as Podocarpaceae and Cupressaceae, could produce a large number of
resins [73–76]. These resins would be transported into the lake or mire by surface water
and/or wind, thus contributing to the formation of hydrogen-rich material (e.g., resinite) in
oil shale and coal, and finally resulting in relatively high hydrocarbon generation potential.
Because coniferous trees (including highland and peat-forming conifers) flourished in
greater numbers in/near the mire than the lake shore (Figure 12), higher hydrocarbon
generation potential was commonly present in the coal than in the oil shale. The results
reveal the significance of terrestrial organic matter in the formation of excellent (coaly-)
source rocks, which has been previously proven by the oil-source correlation results from
Southeast Asia, Australia, and Northwest China [77,78].
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6. Conclusions

Paleovegetational reconstruction and its implications for the formation of oil shale
and coal in the Lower Cretaceous Laoheishan Basin were investigated in detail for the
first time. Based on the lithological variation, three units were outlined in the studied
interval (K1ml2, the upper member of the Lower Cretaceous Muling Formation). Oil shale
was mainly developed in the lower and upper units, which were characterized by high
Ad (avg. 51.8 wt. %), and low values of TOC (avg. 12.8 wt. %), S (avg. 0.12 wt. %), S2
(avg. 34.1 mg/g), and HI (avg. 248 mg/g TOC). In contrast, coal primarily occurred in
the middle unit, exhibiting low Ad (avg. 25.5 wt. %) and S (avg. 0.41 wt. %), and high
values of TOC (avg. 48.8 wt. %), S2 (avg. 202.9 mg/g), and HI (avg. 417 mg/g TOC).
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Both oil shale and coal revealed an immature character, as evidenced by the Tmax values
(421–429 °C), Ro (0.43−0.44 %), and yellow to orange color of the palynomorphs (thermal
alteration index 1 to 2). The palynofloral assemblage and terpenoid biomarker concentra-
tions (sesquiterpenoids, diterpenoids, and fernanes) reflect the existence of various forms
of paleovegetation during deposition of the three units. In the lower unit interval, the
paleovegetation was represented by shrubs (Lygodiaceae and Schizaeaceae), accompanied
by tree ferns (Dicksoniaceae/Cyatheaceae) and coniferous trees (Podocarpaceae). During
the formation of the middle unit, the paleovegetation was dominated by highland vegeta-
tion and peat-forming coniferous trees, including Pinaceae, Araucariaceae, Podocarpaceae,
and Cupressaceae/Taxodiaceae. The paleovegetation in the upper unit interval mainly
comprised herbs (Osmundaceae) and shrubs (Schizaeaceae), followed by coniferous trees
(Pinaceae and Podocarpaceae). The hydrogen-rich materials (e.g., resin) produced by
coniferous trees may be responsible for higher hydrocarbon generation potential in the
coal than the oil shale. Overall, our results support the suggestion that the paleovegetation
has an influence on the formation of oil shale and coal. In addition, this study provides
crucial information for further exploration studies on oil shale and coal in northeast China.
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Ash yield, bulk geochemistry, maceral composition, and vitrinite reflectance (Ro) of the studied oil
shale and coal.

Author Contributions: Conceptualization, Y.S.; Funding acquisition, Y.S. and Y.X.; Investigation, P.S.,
K.Z. and X.Y.; Methodology, K.Z.; Project administration, Q.M. and Z.L.; Resources, Y.X.; Supervision,
Z.L.; Writing—original draft, Y.S. and K.Z.; Writing—review & editing, Z.L. All authors have read
and agreed to the published version of the manuscript.

Funding: We appreciate the thoughtful comments from two anonymous reviewers, and editors Reza
Rezaee and Blanca Wang, which significantly improved the quality of the manuscript. We thank
Shuqin Zhang (Research Center of Paleontology & Stratigraphy, Jilin University, China), Eugenia V.
Bugdaeva and Valentina S. Markevich (Institute of Biology and Soil Science, Far East Branch, Russian
Academy of Sciences, Russia) for their help during the palynological identification. Special thanks to
Achim Bechtel for his help during the biomarker analysis in Austria. This study was supported by
National Science Foundation of China (Grant No. 41902139).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Strobl, S.A.I.; Sachsenhofer, R.F.; Bechtel, A.; Meng, Q.; Sun, P. Deposition of coal and oil shale in NE China: The Eocene Huadian

Basin compared to the coeval Fushun Basin. Mar. Pet. Geol. 2015, 64, 347–362. [CrossRef]
2. Sun, P.; Sachsenhofer, R.F.; Liu, Z.; Strobl, S.A.I.; Meng, Q.; Liu, R.; Zhen, Z. Organic matter accumulation in the oil shale- and

coal-bearing Huadian Basin (Eocene; NE China). Int. J. Coal Geol. 2013, 105, 1–15. [CrossRef]
3. Bai, Y.; Liu, Z.; Sun, P.; Liu, R.; Hu, X.; Zhou, R.; Xu, Y.; Zhao, H.; Wang, J. Diverse sedimentary conditions during deposition of

coal and oil shale from the Meihe Basin (Eocene, NE China). J. Sediment. Res. 2017, 87, 1100–1120. [CrossRef]
4. Lv, D.; Wang, D.; Li, Z.; Liu, H.; Li, Y. Depositional environment, sequence stratigraphy and sedimentary mineralization

mechanism in the coal bed- and oil shale-bearing succession: A case from the Paleogene Huangxian Basin of China. J. Pet. Sci.
Eng. 2017, 148, 32–51. [CrossRef]

5. Song, Y.; Liu, Z.; Bechtel, A.; Sachsenhofer, R.F.; Groß, D.; Meng, Q. Paleoenvironmental reconstruction of the coal- and oil
shale-bearing interval in the lower Cretaceous Muling Formation, Laoheishan Basin, northeast China. Int. J. Coal Geol. 2017, 172,
1–18. [CrossRef]

6. Wang, J.; Sun, P.; Liu, Z.; Li, Y. Characteristics and genesis of lacustrine laminar coal and oil shale: A case study in the Dachanggou
Basin, Xinjiang, Northwest China. Mar. Pet. Geol. 2021, 126, 104924. [CrossRef]

7. Gibling, M.R.; Ukakimaphan, Y.; Srisuk, S. Oil Shale and Coal in Intermontane Basins of Thailand. AAPG Bull. 1985, 69, 760–766.
8. Wolela, A. Fossil fuel energy resources of Ethiopia: Oil shale deposits. J. Afr. Earth Sci. 2006, 46, 263–280. [CrossRef]
9. Cameron, A.R.; Goodarzi, F.; Potter, J. Coal and oil shale of Early Carboniferous age in northern Canada: Significance for

paleoenvironmental and paleoclimatic interpretations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1994, 106, 135–155. [CrossRef]

https://www.mdpi.com/article/10.3390/en14154704/s1
https://www.mdpi.com/article/10.3390/en14154704/s1
http://doi.org/10.1016/j.marpetgeo.2015.03.014
http://doi.org/10.1016/j.coal.2012.11.009
http://doi.org/10.2110/jsr.2017.60
http://doi.org/10.1016/j.petrol.2016.09.028
http://doi.org/10.1016/j.coal.2017.01.010
http://doi.org/10.1016/j.marpetgeo.2021.104924
http://doi.org/10.1016/j.jafrearsci.2006.06.005
http://doi.org/10.1016/0031-0182(94)90007-8


Energies 2021, 14, 4704 19 of 21
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