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Abstract

:

The use of artificial intelligence (AI) is increasing in various sectors of photovoltaic (PV) systems, due to the increasing computational power, tools and data generation. The currently employed methods for various functions of the solar PV industry related to design, forecasting, control, and maintenance have been found to deliver relatively inaccurate results. Further, the use of AI to perform these tasks achieved a higher degree of accuracy and precision and is now a highly interesting topic. In this context, this paper aims to investigate how AI techniques impact the PV value chain. The investigation consists of mapping the currently available AI technologies, identifying possible future uses of AI, and also quantifying their advantages and disadvantages in regard to the conventional mechanisms.
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1. Introduction


Over the last few decades, artificial intelligence (AI) has emerged as one of the most prominent areas of research, due to its capability to automate systems for enhanced efficiency and performance [1]. It enables systems to learn, reason, and make decisions, much like humans, by training them with a set of complex instructions.



The process is extensively used in industries as well as by consumers in their day-to-day activities. Further, the application of AI for the digital transformation of power systems is identified to have massive potential to aid in improving stability, reliability, dynamic response, and other essential advancements for the power system network [2]. Currently, AI is targeted at implementing the design [3], forecasting [4], control [5], optimization [6], maintenance [7], and security aspects of the power system [8] as illustrated in Figure 1. Out of these identified areas of AI application, the characteristics of design, forecasting, control, and maintenance are widely discussed in the literature. The elements of cybersecurity are developing and were considered the future trends for AI applications in PV power systems. The data availability in PV power systems’ operation has advanced the development of AI to assist the system learning process in the design, control, and maintenance aspects for improving efficiency and reducing response time. This approach encouraged research activities in a data-driven perspective to analyze the complex and challenging problems in power systems. A layout identifying the techniques between the function and application of AI in power systems is mapped as shown in Figure 2.



As the application of AI in solar PV is rather extensive, and several papers have reported good results, it must be noted that many of the proposed methods were performed in narrow case studies. These studies indicate that the relative degree of generalization of the models is low and does not produce similar results if applied to a different environment. In the given settings, the AI techniques in Figure 2 were deployed, and most of the results proved to outperform conventional methods in every applicable section. Another important consideration is the preprocessing of data and data preparation. Every technique is involved with collected time-series data, which will suffer from noise, incomplete datasets and anomalies in the datasets, which is why data preprocessing is the most important task in the utilization of AI. In a survey of about 80 data scientists on how they allocate their time, conducted by CrowdFlower, data preparation accounted for almost 80% of the total time spent [9]. Thus, making sure that the model can be supplied with clean and valid data is a highly demanding task and is responsible for the performance of the model. Provided that the dataset used is clean and well organized, the training process should be straightforward.



In light of the above observations, this paper aims to identify the gaps in the literature and propose a viable solution to enhance the implementation of AI for power system design, forecasting, control, and maintenance. To achieve this, a comprehensive review of AI applications in power systems is proposed, focusing on the following aspects:




	
Identify the AI solutions adapted for sizing the PV systems to achieve an optimal power system design and the proper utilization of resources.



	
Review the forecasting techniques developed with AI to estimate the mission profile indices, power generated, and load demand.



	
Establish the literature on control solutions with AI for power electronic converters to enhance the converter operation for maximizing the output power. Further, the application of AI techniques for grid forming, and grid supporting mode, i.e., islanding detection and fault ride through, are also identified.



	
Review the application of AI techniques adapted for condition monitoring and reliability analysis in order to estimate the remaining useful life of different components in the system.



	
Identify the future trends of AI techniques for digital twin and cyber security to control, monitor, avoid false data injection, and protect the power system from unscheduled disconnection.








Further sections of this review are organized as follows: Section 2 discusses the AI framework through functions, techniques, and applications for the grid connected PV systems. In Section 3, the AI techniques for parameter identification and optimal sizing are discussed. The AI techniques for irradiance forecasting and output power forecasting are discussed in Section 4; the AI control aspects of both grid-connected, and standalone operation of PV systems is discussed in Section 5. The maintenance aspects in terms of fault diagnosis, condition monitoring, and reliability for grid-connected PV systems with the AI techniques are discussed in Section 6. The future trends of AI with digital twin applications and cyber-security are provided in Section 7. The findings of the review are concluded in Section 8.




2. AI Framework for Grid Connected Photovoltaic Systems


To analyze the challenges of power systems in the field of design, control, monitoring, forecasting and security, the AI is implemented with different techniques. From the literature, AI for power systems is categorized into five classes: optimization, data exploration, classification, regression, and clustering. Figure 3 identifies the number of publications related to AI in the power system over the past few decades. The data were prepared, using the notable contributions from different journals.



It can be identified that in recent years, most of the researchers have been developing AI techniques for system design optimization and control applications. In [10], intelligent PV plants are designed, using linear programming based optimization for sizing of PV arrays and energy storage systems (ESS), and model predictive control for controlling the system. Further, in [11] optimization-based approaches are used for controlling the power system operation by solving the optimal power flow (OPF) problems. The contribution of optimization-based approaches is also extended to reliability analysis of the power system, due to their improved capability in modeling complex problems at low cost. In [12], the network topology optimization (NTO) technologies along with the dynamic thermal rating (DTR) are used to increase the transmission assets and enhance power system reliability. Subsequently, in [13] the stochastic dual dynamic programming along with Monte Carlo methods are implemented for optimal reliability planning. In [14], a robust optimization model for generation and transmission is developed to identify and mitigate the effects of uncertainties and interferences on the reliability of the system.



Further, with increasing access to the operating data of power system, AI implementation has seen a significant rise along with improved accuracy. Here, the data acquired are used to enable learning approaches with AI for identifying various complications and abnormalities in the system and taking an appropriate action within the stipulated time. In [15], a data-driven approach with a Bayesian ascent algorithm is implemented to achieve the target result by assigning target values for a wind farm operation. Further, the irradiance forecasting with the long short-term memory network is implemented in [16] for estimating the day-ahead mission profile for PV system operation. Theoretically, a mission profile handles the dataset related to environmental factors of a location (irradiance, temperature, humidity, etc.), energy estimation, annual power generation, and other graphical results. This dataset helps the PV system designers in identifying the operating conditions of the PV, and assists in extracting minimum, average, and maximum power outputs. Further, the authors in [17] develop a data-driven approach for power system security, to facilitate the identification of the false data injection in the system control. The research identifies that this process can be performed in online mode with the assistance of reinforcement learning approaches.



As most of the power system operation is reliant on processing large amounts of data in a short time, data management and classification facilitate accurate identification of the different operating stages and parameters. In [18], the real-time characteristics of the power system are monitored to classify different operating stages and identify disturbances in the system. Further, in [19], an expert system analysis is performed in the power system for distinguishing different voltage dips and interruptions. In [20], the PV module condition monitoring is achieved by accumulating different failure conditions of the PV panels to create a database and perform a real-time assessment with the trained database. Further in [21], the normalized peak amplitude and phase at a sampled instant is identified using a Fourier linear combiner, and the data are used for diagnostics with the help for fuzzy systems.



Moreover, to emphasize the full potential of the acquired data, regression approaches were adapted for forecasting, demand side management, and power flow analysis for the power system. In [22], the PV power forecasting is performed, using a genetic algorithm in combination with particle swarm optimization and an artificial neural network. Here, the Gaussian regression is used for determining the influence of input parameters on the output power. Further, to improve the power quality, a gradient descent least squares regression-based neural network approach is developed in [23]. This approach tends to reduce noise, minimize the harmonics, and compensate for the DC offset to achieve power improvement for both normal as well as abnormal grid operations. In addition to the above, the power flow analysis can also be performed using regression approaches [24].



Further, to accomplish an efficient modeling of the system with improved performance and operation, the clustering techniques are adapted with the data acquired from the various operating states of the power system [25]. In [26], the  K -clustering method is implemented to identify the power requirements by scaling the heterogenous virtual power plants. Here, the distributed dynamic clustering algorithm is implemented for heterogeneous distribution of ESS in the power system. In [27], the sizing of ESS for PV generation by considering the uncertainty in the power system is optimized, using a multi cluster algorithm. Similarly, different interconnections in a power grid are analyzed, using a hierarchical spectral clustering methodology [28]. Considering all the above discussed applications, the digital transformation of in grid-connected PV systems with AI is shown in Figure 4. Further, a brief overview of AI solutions and techniques to overcome the drawbacks of conventional systems in different functions of grid-connected PV systems are summarized in Table 1.




3. Application of AI for Power System Design


This section presents the current state of AI implementation within the design and optimization of PV systems in regard to the energy yield, costs and permits. Conventionally, numerical simulations based on the equivalent circuit models for solar panels are discussed to describe the system operational performance [29,30]. The parameters of these models are found, using analytical or numerical approaches. The issue that arises while employing analytical methods are that several assumptions and approximations are made, which causes model errors. Numerical methods, on the other hand, have proven to be a better solution [31,32]. These methods include the Newton–Raphson method, non-linear least squares optimization and pattern search, although these methods are highly computationally demanding. Further, parameter identification was also accomplished, using Markov chains [33]. These methods require data that cover a large timespan; therefore, in the case that these kind of data are not available, these conventional methods cannot be employed.



3.1. Parameter Identification in PV Systems


Parameter identification is highly important when the PV system is modeled and simulated but also in fault diagnosis. There are two types of models that can be used for parameter identification—the single diode model and the double diode model. The error metric employed for optimizing solar cell parameters is the root mean square error (RMSE) for both single and double diode models, compared to empirical I–V curves. In [34], the genetic algorithm approach is used to achieve parameter identification with a double diode solar cell model. The developed approach uses the diode voltages as a function of their temperature to estimate the currents and shunt resistance. The results identify the best individuals from the final generation that closely trace the experimental I–V curve with good convergence. Further, a flexible particle swarm optimization-based parameter identification for single and double diode solar cells is used in [35,36]. The fitness function used is the RMSE, which is dependent on the error function of the single and double diode model, as well as the solar panel. The proposed flexible particle swarm optimization algorithm (FPSO) algorithm produces lower RMSE than the others, and the I–V curves observed from the parameter identification follows the experimental curves under different irradiance and temperature values reasonably well. In [37], an artificial immune system is developed for solar PV panel parameter identification and modeling of the double diode model. The fitness function of the developed approach is based on minimizing the power–voltage curve at the maximum power point (MPP). The results identify that the proposed artificial immune system (AIS) method estimates parameters that are in agreement with the experimental values and compare the outputs with the genetic algorithm and particle swarm optimization. In [38], an artificial bee swarm optimization approach is developed for parameter identification of single and double diode models. The results show that, in terms of RMSE, the developed approach performs the best when compared with other methods developed in the literature. Similarly, in [39], the artificial bee colony is adapted for parameter identification of the single and double diode models of the solar cell. The developed algorithm converges faster and with higher accuracy (lower RMSE) than the other algorithms. Apart from the heuristic search approaches, the neural networks [40,41], and the adaptive neuro fuzzy inference system (ANFIS)-based parameter identification approaches [42] are also widely implemented in the literature. These approaches, when tested on solar panels with unknown parameters, have produced fairly good results. A general overview of implementing parametric identification with the ANFIS approach is shown in Figure 5. Further, a brief overview of various conventional and AI-based parameter identification techniques are compared to identify their accuracy as shown in Table 2.




3.2. Sizing of Solar PV System


Accurate sizing of a solar PV system is of high importance in order to ensure the quality and continuity of a power supply, and for maximizing the economic life-cycle savings. In the literature, the non-AI methods, and the numerical methods applied in the sizing of the system suffer from needing large amounts of data, while the intuitive methods do not produce results with high enough accuracy. Thus, in the case of sizing a PV system at a site at which the required data are missing, research is done for alternative solutions.



In [46], the genetic algorithm approaches are hybridized with the artificial neural network models to achieve the optimization of sizing coefficients for standalone PV systems. The genetic algorithm model optimized the coefficients by minimizing the cost of the system, and the artificial neural network was later trained using these inputs to determine the optimal coefficients in remote areas. Similarly, in [47], the artificial neural network is applied for predicting the optimal sizing parameters for standalone PV systems. The ANN produced results with an RMSE of 0.046 and 0.085 for the PV array size coefficient and the battery storage capacity coefficient, respectively. Further, in [48,49], the Bat algorithm is adapted for size optimization of grid-connected PV systems by maximizing the specific yield. The algorithm is trained from the database of existing PV modules with technical specifications, and the results identified faster optimization with the developed approach when compared to the application of particle swarm optimization. In [50], the generalized regression neural network is used for optimizing the sizing coefficients and estimating the loss of load probability for standalone PV systems. The developed model produced sizing coefficients of   0.6 %   mean absolute percentage error, and the simulation built using the estimated coefficients and simulated hourly solar irradiance data and load demand produced a loss of load probability of   0.5 %  . In [51], the particle swarm optimization is implemented for optimal sizing of grid-connected PV systems. The algorithm database contained the technical and economical characteristics of commercially available system devices along with meteorological data for the proposed sites. Further, in [52], the ANFIS model is developed for optimization of the sizing coefficients of standalone PV systems. The developed database has sizing coefficients corresponding to   200   sites in Algeria based on meteorological data. Further, the optimal sizing parameters for these calculated sites were developed, based on the costs of a solar panel. The proposed adaptive neuro fuzzy inference system model produced the most accurate results of the different network architectures, compared to the known sizing parameters of the site. A brief comparison of the above discussed literature is provided in Table 3.





4. Application of AI for Forecasting in Grids with Photovoltaic Systems


As an increase in grid-connected photovoltaic (PV) systems has been seen over the last few years, having accurate forecasts for the power production fed into the grid has become more of an important issue. The reason for an increase is primarily because of the reduction in investment costs, which decreased   10 – 20 %   from 2019 to 2021, but also, factors such as incentives, regulations on technical requirements for building works, and other directives have played a role. As this increase is expected to continue for years ahead, the grid-connected PV systems will lead to higher changes in the electricity grid and can create instabilities, due to sudden changes in weather [53]. Further, the liberalization of the electricity markets has led to the introduction of spot markets for electricity, which played an important role in the balancing of supply and demand. Therefore, generators, retailers, large end customers and communities have to estimate their output and demand accurately. In order to do so, these market players have been using forecasting methods extensively. An overview on the energy market mechanisms and the resulting requirements for forecasts of electricity production by intermittent renewable energy sources is given in Figure 6.



This overview helps in balancing the electricity production and consumption, and establishes the markets for energy and control reserves [54]. However, the increasing PV has made it more difficult for market players to manage their systems because they typically have difficulties to forecast solar irradiance, and the PV outputs [55,56,57]. Moreover, it is identified from the literature that generators and retailers, who are unable to meet their forecasted output or demand, must turn to the balancing market, where they pay high prices for their imbalances. In light of these issues, efficient forecasting models are considered a major requirement for enhanced market mechanisms.



In the early literature, forecasting outputs were used in several aspects for managing grids with distributed energy resources. However, the majority of the work has focused on load forecasts instead of distributed energy resource outputs [58]. A variety of research has used load forecasts for better system operation. Apart from the research that only utilizes forecast outputs, there are also studies that focus on forecasting techniques and accuracy in power grids in order to increase the forecast reliability [59,60]. This literature has identified that the forecasting has significant dependence on weather, which is a chaotic system. Therefore, it is impossible to forecast what will happen over long time scales, e.g., next season. This motivated the development of intelligent techniques that are dependent on statistical and stochastic models, as they enable long-term planning by providing a broad understanding of how distributed energy resources and loads behave.



4.1. AI for Solar Irradiance Forecasting


A review of solar irradiance forecasting using four different machine learning techniques (artificial neural network (ANN), support vector machine (SVM), k-nearest neighbor (k-NN), and deep learning (DL)) are presented in [61]. The comparison between the different techniques identified that ANN algorithm provided the best fitting for the data, followed by the DL, SVM, and k-NN techniques. A summary of the relation between different solar irradiance forecasting models, forecasting horizons, and the related activities with the grid operators are shown in Figure 7 [62,63]. Further, the DL techniques, and gradient boosted trees are used in [64] to forecast the solar irradiance directly from an extracted sub-image surrounding the sun. A detailed overview of different DL models for solar irradiance forecasting are discussed in [65,66,67,68,69]. In [66,68,69], a long short-term memory (LSTM) neural network technique is used to develop a multi-time scale model for solar irradiance forecasting. The developed approach achieved efficient resource sharing between multiple tasks with highly consistent performance, and improved metric results. Further, in [70], the wavelet decomposition-based convolution LSTM networks are used for developing the solar irradiance forecasting approach. The wavelet decomposition improves the operation of the network model by decomposing the raw solar irradiance into several subsequences. This enhances the forecasting ability and accuracy when compared to the conventional DL-based forecasting approaches. Similarly, in [67], the DL methodologies are adapted to develop time series models for solar irradiance forecasting in different areas. The developed models consider both single location and multilocation univariate data to achieve improved accuracy, performance, and reliability for both forecasting and the system operation. In [71,72], the ANN model is developed by customizing it based on the particular season of the year to provide an accurate forecasting approach. The developed approach is assisted with the Pearson correlation approach to provide the most suitable set of inputs for the ANN model. This improves the computational capacity of the model to furnish accurate predictions, even under strong irregularities and rapidly changing scenarios. Further, in [73,74], the solar irradiance forecasting is achieved by evaluating the potential of Gaussian process regression. This research opens a new avenue for the development of probabilistic renewable energy management systems to support energy trading platforms and help the smart grid operators with critical decision making during the inherent uncertainty of stochastic power systems. Apart from the deep learning and neural network approaches, the use of machine-learning classifiers, such as the multi-layer perceptron neural network [75], Naïve Bayes approach [76], and k-nearest neighbor neural network [77], and evolutionary algorithms, such as multigene genetic programming [75], are also widely adapted for solar irradiance forecasting. A brief comparison of the discussed literature on solar irradiance forecasting is provided in Table 4.




4.2. Literature Review of Solar Power Forecasting


For grid operators to be able to handle sudden changes in power in the grid, accurate predictions of the output power from PV systems can contribute to reveal important information to regulate the electricity grid more efficiently. Variation in solar irradiance due to weather fluctuations causes variations in the power production from PV systems, and, as the use of large-scale grid-connected PV systems is increasing, it is important to strengthen the prediction of the PV system output power. Further, with the advantage of AI techniques to overcome the limitations of traditional methods and to solve complex problems that are difficult to model and analyze, they are viewed as a convenient method to forecast the solar radiation intensity and power output of PV systems [78]. The requirements for developing generation forecasting models with AI techniques are shown in Figure 8.



A review of photovoltaic power forecasting in [79,80] assesses different techniques and approaches to improve the accuracy and reduce uncertainty in prediction models. The review concludes that ANNs are the most used machine-learning techniques among solar power forecasting, as they have proven useful in a wide variety of situations and with many input variables. The next most used techniques are the support vector machines that use supervised modeling methods. They are strong when it comes to their generalization capacity and have a great ability to deal with non-linear problems. Further, the research in [81,82] used ANN and ensemble approaches to predict power output with input variables global horizontal irradiance, wind speed, air temperature, pressure, humidity cloud cover, and time of year and day. The results from this study showed that averaging the output forecasts from an ensemble of similar configuration networks are likely to perform better, regarding day-ahead forecasting, than a single network of the same configurations. Kudo et al. [83] suggest the use of normalized solar radiation when training an ANN for solar power based on weather parameters. The weather varies for different seasons, and the use of only one season for a model would require a large amount of data; therefore, it is suggested that the normalized radiation could give the model better performance. The normalized radiation is obtained by dividing the solar radiation with the extraterrestrial radiation. The study by Liu et al. [84] aimed to see the correlation between the output power from a PV system with solar irradiance and air temperature. The output power indicates a linear correlation with the solar irradiance intensity, while the air temperature gives neither a positive nor negative linear correlation, meaning that the power output has a non-linear correlation with the air temperature. Similarly, the detailed review on forecasting photovoltaic power generation in [85,86] defines three different models to train a feedforward neural network, involving different input variables. A detailed overview of different photovoltaic power generation forecasting models available in the literature is discussed in Table 5.





5. Application of AI for Power Electronics Converter Control


The control of power electronic converters can be further classified as (a) grid-connected control and (b) standalone control, based on the mode of operation [92]. A conventional controller comprises a dual cascade loop in which the outer loop controls the power and the voltage of the inverter, whereas the inner loop is responsible for regulating the current and maintaining the power quality [93]. The detailed explanations are as follows.



5.1. Grid-Connected Inverter Control


The aim of the inverter controller is to regulate the power and frequency at the AC side of the inverter and reduce the harmonics in the system. The switches present in the inverter are controlled by implementing an inverter control algorithm. Conventional controllers are based on PI- and PR-based algorithms, but with the AI, the accuracy of the controller along with the response time of the inverter controller to transient errors is improved significantly. In [94], fuzzy-based inverter control is discussed, whereas in [95], fuzzy is used for tuning the PID controller for improving the accuracy and performing as a robust controller. Further, in [96], an artificial neural network based controller is simulated, whereas in [97], the ANFIS-based inverter controller is discussed. All the AI-based inverter controllers result in low THD output. The overview of the grid-connected inverter control is presented in Figure 9 when operating at point 2.



Anti-Islanding Protection: The aim of the protection scheme is to identify the abnormality in the system and disconnect the utilities from the DGs. There is much research on attaining fast detection times with a smaller non-detection zone [98]. Based on the method implemented to identify abnormality, the anti-islanding protection scheme is categorized into active [99], passive [100] and hybrid [101] islanding detection. In active islanding detection, an external perturbation is added into the system, and variation in the signal is observed to identify any abnormality. However, the active method presents challenges while operating in a multi-inverter system and causes concern related to power quality. In the case of the passive islanding detection technique, the operating parameters (voltage, current, frequency, etc.) of the system are closely monitored, and if they surpass the threshold limit, then the abnormality is identified. The threshold identification makes false classification a concern for this type of islanding protection method. Based on the drawbacks of both techniques, a new approach was proposed in which the threshold identifies the abnormality and then perturbation is added in the system to verify whether the abnormality exists in the system or not. This method is known as hybrid islanding detection. However, the process is slow in abnormality identification, as both the methods are combined in its operation.



Based on the identified limitation, a faster and accurate abnormality identification approach is presented by artificial intelligence, as it analyzes the incoming signal, which is used to create a database of all the possible abnormalities and train the classifier to identify the operating condition by assessing the real-time signals [102]. For improving the abnormality identification accuracy, the signals are pre-processed, and features are extracted, which enhances the data matrix and improves identification capability. A brief account of the islanding detection algorithm is presented in Table 6.



Low Voltage Ride Through (LVRT): Once the abnormality in the grid is identified, it is not recommended to disconnect DGs instantaneously, as it may affect the grid stability [113]. Hence, it is recommended by the grid codes to impose fault ride through or low voltage ride through, which involve the PV system remaining connected with the grid and injecting a reactive current into the grid to maintain power stability and assist in voltage recovery [114,115].



The ride through operation can be performed by using external devices (i.e., a flexible alternating current transmission system (FACT) device) or by modification of the controller of the inverter. The controller modification is an easy and much more economical method to achieve LVRT. In [116], a dual current controller is implemented, which controls the negative and positive sequence of the inverter under fault condition and injects reactive power into the grid as per the grid code regulation. In [117], a droop-based LVRT technique is discussed in which the variation in the DC link voltage is monitored and in the case of a drop, maximum power point tracking (MPPT) is switched to the ride through mode of the controller. Further, in [118], a coordinated reactive power injection control is proposed that utilizes the FACT device along with the inverter control for reactive power injection based on the priority assigned and injection requirement.



Further, to enhance the LVRT capability of the inverter controller, AI-based techniques, such as fuzzy logic control (FLC) [119], and computation-based techniques, such as particle swarm optimization (PSO) [120], are also implemented. The PSO tends to improve the LVRT capability for the nonlinear system, whereas FLC-based control utilizes a vector control plot for the DC- link voltage and performs LVRT safely. A brief overview of achieving LVRT with intelligent approaches is shown in Figure 10, and different LVRT techniques are compared in Table 7.



MPPT Control: At the DC/DC conversion stage of the inverter, it is necessary to attain maximum power from the PV array. In the perturb and observation method, a PV curve is monitored, and a hill climbing algorithm is implemented to find the peak. However, the step size increment does not make the system very accurate. With AI, the optimization and regulation with variation in mission profile is performed faster.



The MPPT is performed, using a fuzzy logic controller to track the maximum operating point considering the mission profile [122], whereas in [123], a genetic algorithm is used to optimize the neural network controller for tracking the maximum point of operation. A brief analysis of different algorithms is presented in Table 8. The comparison distinguishes between the output response, feasibility of implementation, power loss and transients in the output power, and learning capabilities of different algorithms used for MPPT. The output response indicates the time taken by the algorithm to perform the MPP operation, and the feasibility identifies its ease of implementation in any given system. Further, the power consumption discusses the output power loss incurred with the use of a specific algorithm for MPP operation, and the transients indicates the harmonics and disturbances in the tracked power output. From the analysis, it is identified that the P&O and incremental conductance MPPT techniques are simple to implement but have slow response rates and high power loss, and the transients in the output can be commonly observed, whereas the other algorithms have a complex implementation process but are efficient in other processes.



Seamless Transition: Once the fault is identified and the LVRT is unable to recover the system, then the grid is disconnected from the DGs. It is necessary to control the disconnection and reconnection action of the DGs from the grid so that the transient voltage is minimized, and frequency runaway does not take place. Further, to achieve seamless transition, in [126], a static control switch is used to change the controller when the transition takes place, whereas in [127], a single control structure is used for controlling both the modes of operation by utilizing the outer loop as a reference generator for the current loop in the case of a standalone mode of operation. In these techniques, there is a substantial response delay along with the presence of transients in the case of a static switch base control.



With the implementation of AI in transition techniques, the switching between the modes has become transition free. In [128,129], a fuzzy logic (FL)-based transition is proposed, which tends to generate a reference trajectory and enable smooth transition. Further, in [130], a model predictive control based transition controller is proposed, which has stable output and is much easier to implement with a small modification to the pre-existing control algorithm.




5.2. Stand Alone Inverter Control


After the grid is disconnected from the DGs, the DG needs to operate and satisfy the local load. In this mode of operation, the DGs must be able to address the balance between load and supply, while regulating the voltage and frequency simultaneously. Conventionally, the stand alone mode of inverter was operated using space vector pulse width modulation (PWM) [131], carrier based PWM [132] and repetitive control techniques [133]. Even dual loop control strategy was implemented with a hybrid frame of reference to attain better accuracy. However, all the conventional controls failed to optimize the operation and reduce the THD for the output post transition. Hence, to achieve faster recovery and reliable control, AI-based standalone techniques have been proposed. In [134], a fuzzy based inverter control strategy is proposed to overcome the drawback. However, the rule-based approach reduces the adaptive nature of the controller. Hence, to overcome the issue, fuzzy is implemented with a neural network and multiple heuristic algorithms [135,136]. The operation is represented in Figure 9 when operating in switch position 1.





6. Application of AI for Monitoring


6.1. Condition Monitoring of Grid Connected PV System


Grid-connected PV systems typically operate in rigorous and complex working conditions. They may suffer from various fault events, both at the component level or system level. The safety and reliability of grid-connected PV systems are of the utmost importance to ensure efficient operation of the system. Maintenance activities, including preventive maintenance, incorporating condition monitoring, fault diagnosis, remaining useful life (RUL) prediction, etc., are employed to improve reliability. Proper health monitoring at the component level and at the system level is required to ensure intended operation of the grid-connected PV system. It consists of firstly establishing the knowledge regarding the system behavior and dynamics based on the available information. Then, based on anomaly detection and parameter identification for the offline model dynamics, the knowledge gathered can be applied to real-time health monitoring or online monitoring (OLM) [137]. Detailed identification of various faults in the grid-connected PV systems are discussed in Figure 11 and Table 9.



6.1.1. AI Monitoring for PV Array Faults


In order to enhance the power conversion efficiency, status monitoring of PV modules is imperative. PV panels may be affected by faults, such as delamination, discoloration, cell crack, short circuit due to bypass diode, snail trail, glass crack, etc. In [138], the supervised learning-based random forest (RF) methods are used for fault diagnosis in PV panels. The array voltage and string current are observed in the simulation for different solar irradiance and temperature conditions, and it is pre-processed to make it suitable for training. The prediction accuracy is quantified by the decision tree’s majority voting, and it is found that, along with a very high accuracy, it is capable of dealing with overfitting issues. A multi-layer perceptron neural network (MLPNN)-based condition monitoring and fault diagnostic tool for PV faults is developed [20]. The signal processing technique based on discrete wavelet transform (DWT) is applied to extract the features of the IV characteristics. The extracted features are provided to MLPNN for training, and it is able to achieve 100% accuracy for the given fault data. Further, a fault diagnosis approach for PV panels is developed in [139] based on the probabilistic neural network (PNN), and radial basis networks. This fault diagnostic tool is observed to be less affected by the outliers and provides good generalization accuracy. In [140], a novel approach focused on kernel-based extreme learning machines for PV array health monitoring is proposed. The developed approach arbitrarily constitutes the input biases and weights of the corresponding hidden layer, and consequently determines the output weights through the Moore–Penrose generalized technique. Further, a swarm intelligence-based artificial bee colony (ABC) method is utilized for fault diagnosis in PV panels in [141]. This technique is a semi-supervised extreme learning-based method that utilizes mostly unlabeled fault data acquired after various fault simulations. In [142], a deep learning-based fault classification approach for PV arrays utilizing the convolutional neural network (CNN) is presented. This supervised learning-based classification technique consists of collecting IV characteristic data, converting the acquired data into two-dimensional time-frequency representations or scalograms, and providing them as inputs to the finely tuned AlexNet for the classification task.




6.1.2. AI Monitoring for Power Electronic Converter Faults


In recent years, AI-based data-driven intelligent fault classification techniques have proved to be highly accurate and effective for converter fault diagnosis in grid-connected PV systems. Artificial neural network (ANN)-based power switch fault identification and classification for multilevel H-bridge inverters is implemented [143]. Inverter output voltage information is collected, and DWT is applied to obtain features, such as signal power, energy, etc. After that, ANN, having one hidden layer along with input and output layers, is implemented for training. A radial basis function network (RBFN)-based fault classifier is developed for grid-connected PV system faults [7]. Inverter output data at different time instants are acquired and pre-processed, using wavelet transform for extracting relevant features. These features are utilized as input to the RBFN, which further makes use of the Gaussian kernel. Supervised learning based PNN is proposed for fault diagnosis in diode clamped multilevel inverters [144]. DWT is adopted for feature mining through the Daubechies order 4 (db4) mother wavelet. Then, multi-layered feedforward PNN is utilized without requiring any iteration for weight adjustment. An intelligent condition monitoring method based on MLPNN for grid-connected PV systems is proposed [145]. Inverter voltage and current information for various switch faults is gathered, and DWT is applied for calculating different features. Further, principal component analysis (PCA) is applied for dimensionality reduction so that only relevant features are obtained. A fault prognostic technique for a grid-connected PV inverter based on fast clustering and Gaussian mixture model is implemented [146]. The technique is based on acquiring real-time system information, including inverter output power, current, voltage, IGBT temperature, etc. Further, the fast-clustering approach is utilized for containing similar data clusters together, and the Gaussian mixture model is applied for fault prognosis. A modified CNN- GAP (global average pooling) method is proposed for inverter switch fault diagnosis [147]. The inverter 1D time-series raw data are directly provided as input to the CNN-GAP model. In the input layer, 2D feature maps are constituted through several convolution and pooling layers. The GAP layer is responsible for compressing the output image and finally, the diagnostic result is obtained in the output softmax layer.




6.1.3. AI Monitoring for Faults in Filter


In grid-connected PV systems, filters are usually required for harmonic attenuation of the inverter output. An L filter may be sufficient, but it would require a bulky inductor and may produce a high voltage drop. Therefore, the LCL filter is preferred, due to the advantage of utilizing small-sized components [148]. It is found in research that capacitors are one of the most vulnerable components, and they are greatly influenced by their operational conditions, such as temperature, current, etc. The status monitoring for electrolytic capacitors can be achieved through analyzing equivalent series resistance (ESR), which manifests itself as a measure of the electrolytic capacitor health. AI-based monitoring techniques are utilized for capacitors health estimation. An ANN-based regression technique is incorporated for RUL detection of electrolytic capacitors [149]. Decision regarding health prognostics is determined through a fuzzy-based system. Another electrolytic capacitor health monitoring technique utilizing the neo-fuzzy neuron (NFN) model approach is proposed [150]. It is based on combining fuzzy and ANN-based techniques for successful condition monitoring of capacitors. A comparison between the recursive least square (RLS) method and support vector regression (SVR) method for capacitor health estimation is made [151]. The SVR method is based on firstly identifying the model through offline training. The health status monitoring for electrolytic capacitors, using supervised learning-based ANN, is investigated thoroughly [152]. However, there is more potential that can be explored, utilizing AI-based techniques in the field of electrolytic capacitors health monitoring.




6.1.4. AI Monitoring for Battery Faults and Degradation


In grid-connected PV systems, batteries play a significant role, and it is required that they deliver the desired performance. Various diagnostics and prognostics for battery health monitoring have been explored, such as state of charge (SOC), state of function (SOF), state of health (SOH), etc. AI-based diagnostic techniques have been surveyed for battery faults. A Bayesian regression for RUL estimation in batteries is developed in [153]. An electrochemical process-based model is merged with a statistical model to assess the RUL for batteries. In addition, the relevance vector machine (RVM) approach is explored for analyzing battery health. A battery health monitoring system based on an adaptive Gaussian mixture model (AGMM) is proposed [153]. It is an online battery degradation diagnostic tool that utilizes component recursive parameters updates with a learning rate schedule. The Gaussian components keep updating online, and to further improve the efficiency, the highest probability component selection is made. A Takagi–Sugeno fuzzy method for battery monitoring is implemented [154]. It is able to deal with battery nonlinear dynamics involving the complicated electrochemical equations in a satisfactory manner. Temporal convolutional network (TCN)-based SOH prediction and RUL estimation for battery monitoring is proposed [155]. It is a recent, data-driven deep learning-based approach that delivers high-precision health estimation of the given component. The battery fault diagnosis based on combined long-short term memory (LSTM) and the recurrent neural network (RNN) is presented [156]. Real-world battery related data with a large volume are attained to realize the robustness of the combined approach. It also combines the advantages of a modified adaptive boosting (MAB) coupling module and approach optimization method (AOM) for deriving the hyperparameters.



The generalized schematic for implementing the above discussed applications of AI for fault detection and condition monitoring in grid-connected PV systems is shown in Figure 12.





6.2. Application of AI for Reliability


The reliability is defined as the ability of a particular device to perform a particular function under certain operating conditions [157]. The probability of survival and failure are the parameters on which the reliability is measured [158]. The aim of this reliability analysis is to estimate the lifetime of operation and, in the case of a failure, recalibrate the lifetime and provide the remaining useful life. To perform the reliability analysis for design modification, the power electronic device is operated in a controlled environment, and the power loss of the inverter is used for thermal modeling of the device. Once the thermal profile is obtained, then Rainflow counting is used for cycle counting and many of the lifetime calculation models, i.e., coffin mason [159], CIPS2008 [160], and LESIT [161], can be used for the lifetime calculation. Conventionally, for the lifetime estimation, Monte Carlo or Markov analyses are used as represented in Figure 13. However, the analytical analysis methods may present many gaps in the analysis, such as rapid convergence. Hence, to overcome such issues, the AI-based lifetime estimation can incorporate the sudden fault in the analysis or sudden change in the stress of the components, due to the ride through operation [162] and further lead to enhancing the lifetime prediction capability. In [163], the lifetime estimation is performed, using ANN to analyze the different operating conditions, whereas in [164], a function-based relationship is established between reliability and design parameter. The analysis is carried out by training ANN and implementing it on surrogate models. Further, in Table 10, a brief analysis of conventional lifetime estimation techniques is presented.





7. Future Trends and Outlook


7.1. Digital Twin


The application of AI techniques with the different functions of grid-connected PV systems has identified that the process of digitization has a universal acceptance. Further, this led to the development of various new approaches, which increased the integration of modern energy systems with the grid. In a major shift of research trends, the development of digital twin (DT) has effortlessly increased the connectivity between the physical environment, their data, and virtual machines. This technique created an approach for synchronization, monitoring, and other services of the energy systems in real time through a computerized and virtual world modeling [168,169]. This approach is supported with a visualization software [170], and uses intelligent analytics along with the real-time data [169,171] to gather the information about the system operating state [172]. Further, from the point of a grid-connected PV system, the DT framework can be derived with different modeling methodologies that integrate energy forecasting, demand side management, control, monitoring, and data visualization. The research in [169] focuses on the application of DTs to develop control algorithms for a power system. In [173], the analytical evaluation of residual error is realized with a DT approach to achieve fault diagnosis of a real-time PV system. This approach is developed by leveraging the sensing properties, and actuation capabilities of the voltage source inverter to enhance the system performance. Further, the work in [174] discusses the application of DT for energy benchmarking to achieve optimal energy decision making with energy retrofitting and real-time energy management systems. Similarly, in [175,176], the DT-based multilayered approach is adopted for developing an energy model to achieve efficient energy consumption in a power system network. From all the literature discussed above, the major aspects of DTs in the modeling, control, and monitoring of the grid-connected PV system components is identified with reference to AI techniques as shown in Figure 14.



To achieve a significant improvement in the operation of the grid-connected PV systems by using the DT framework, it is important to identify the key parameters and technologies [171,177] supporting it. A DT framework of a physical system with the PV system is shown in Figure 15. In general, the output obtained from the insight stage, and data-gathering process at the PV system are provided as an input to the DT framework. Further, the key technologies associated with the DT framework for smooth running of the system include energy forecasting, internet of things (IoT) platform, energy internet [178,179], and advanced data analytics.



To pave a way for a new era of data-driven product design, manufacturing, and service with the DT framework, IoT technology is coupled with the services of smart devices, and supported by the data mining ability of AI [180,181]. The IoT platforms also combines the data generated from the physical system with the historic dataset obtained from previous operations of the grid-connected PV systems for the development of the DT framework [182]. Similarly, the advancements in IoT technologies, such as smart and industrial internet of things [183,184], and energy internet, also provide intelligent sensing and data acquisition capabilities, along with a secure transition network. This improves the data handling capabilities with AI for achieving an efficient and consumer-oriented DT framework. Further, the data in their raw form have high stochasticity, making them difficult to use with most of the functions of the PV system. Therefore, it is important to adopt data preprocessing with the DT framework for extracting important features of the datasets [172,185]. These features must consider the factors influencing the dynamics of the PV system operation and should not hamper the originality of the measured information. The details of the literature corresponding to DT and its application to power system operation are discussed in Table 11.




7.2. Cybersecurity


Cybersecurity has been a growing concern with the proliferation of information and communication technologies (ICT) and digitalization incentives across all sectors. In a power electronics dominated grid, the grid-tied converters are remotely controlled by a plant controller and a SCADA via power line communication (PLC), optical fiber or wireless communications, such as Zigbee, cellular (3G), and LTE (4G) [188]. As outlined in the previous subsection, data centric measures have facilitated various operations, such as predictive maintenance, fault diagnostics, condition monitoring, and adaptive control via digital twins. However, they augment vulnerabilities to cyber-attacks at the same time. These attacks include, but are not limited to, data integrity attack (DIA) [189] and denial of service (DoS) [190].



The development of new standards for distributed energy resource (DER) cybersecurity will have a big impact on PV systems. California Rule 21 mandates that new DER must be ready to communicate with the host utility, using the IEEE 2030.5-2018 standard, which includes the requirement of transport layer security (TLS) and strong encryption. Currently, the new IEEE 1547.3 standard (Guide and Recommendations for Cybersecurity for DER) is under development to fill the cybersecurity gap in IEEE 1547-2018, which includes necessary and optional recommendations based on IEC 62351 and other standards and is expected to be effective in 2022. To provide security against these cyber intrusions, many solutions were provided in the past for power electronics systems. To summarize them, a perspective is provided in Figure 16, where data-driven [191,192,193] and physics-informed solutions [194,195,196,197,198] are compared on the basis of accuracy, selectivity, and speed.



As shown in Figure 16, in Approach 1, although the historic data of grid-tied PV systems may provide significant knowledge about their intrinsic characteristics to design faster and accurate cybersecurity technologies, they can be prone to failure simply at the data storage platform (cloud storage in Figure 16), where the adversary may malign historic data strategically. Considering real-time sensing from the physical network as the biggest vulnerability, the possibility of having cyber-attack elements in historic data is often ignored. Consequently, it may result in many false alarms for anomaly detection. In this way, the accuracy and selectivity of data-driven cybersecurity technology can be easily compromised. However, in approach 2, the possibility to affect the decision-making process of the physics-guided tools can only be manipulated from the real-time sensing stage, which is already accounted for. As a result, the degree of confidence of the decision-making process for approach 2 exceeds that of approach 1. This mandates future research in this direction to accommodate the black-box nature of AI tools for the efficient design of data-driven cybersecurity technologies.





8. Conclusions


The conclusions that can be drawn from the review conducted in this paper are that there exist numerous published research articles using different AI techniques for different purposes at the system level in the value chain of solar PV. ANNs and its sub-architectures are the most widely used AI techniques, but this depends on the use case. In the case of optimization, evolutionary algorithms, such as PSO and GA, are widely used, while in the case of time-series data, as in irradiance prediction or power forecasting, ANNs are used with great success. Further, the wide use of inference models, data-driven algorithms, and learning approaches for control and maintenance are identified to be more specific to a condition, problem, or dataset and lack universal applicability for the same aspects. However, even if the majority of the papers report great success, it must be noted that the success is based on tweaking a specific model while maintaining the other models with default parameters. Additionally, several of the proposed models, based on the input data, are probably not generalized. In the near future, advances in the currently available AI techniques are very likely to be seen. Currently, there seems to be a data discrepancy in the industry but with the emergence of internet of things solutions, deployment of a large number of sensors, video streams provided by drones in maintenance purpose as well as natural language processing techniques, the issue of a lack of data is likely to disappear.
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Acronyms




	AI
	Artificial Intelligence
	ABC
	Artificial Bee Colony



	PV
	Photovoltaic
	CNN
	Convolutional Neural Network



	ESS
	Energy Storage System
	RBFN
	Radial Basis Function Network



	OPF
	Optimal Power Flow
	db4
	Daubechies Order 4



	NTO
	Network Topology Optimization
	PCA
	Principal Component Analysis



	DTR
	Dynamic Thermal Rating
	GAP
	Global Average Pooling



	RMSE
	Root Mean Square Error
	ESR
	Equivalent Series Resistance



	I-V
	Current Voltage
	NFN
	Neo-Fuzzy Neuron



	THD
	Total Harmonic Distortion
	RUL
	Remaining Useful Life



	PID
	Proportional, Integral, Derivative
	RLS
	Recursive Least Square



	PI
	Proportional-Integral
	SVR
	Support Vector Regression



	PR
	Proportional-Resonant
	SOC
	State Of Charge



	LSTM
	Long Short-Term Memory
	SOF
	State Of Function



	DL
	Deep Learning
	SOH
	State Of Health



	k-NN
	K-Nearest Neighbor
	TCN
	Temporal Convolutional Network



	ANN
	Artificial Neural Network
	RVM
	Relevance Vector Machine



	SVM
	Support Vector Machine
	LSTM
	Long Short-Term Memory



	ANFIS
	Adaptive Neuro Fuzzy Inference System
	AGMM
	Adaptive Gaussian Mixture Model



	FPSO
	Flexible particle swarm optimization algorithm
	TLS
	Transport Layer Security



	MPP
	Maximum Power Point
	DoS
	Denial Of Service



	AIS
	Artificial Immune System
	DIA
	Data Integrity Attack



	LVRT
	Low Voltage Ride Through
	PLC
	Power Line Communication



	FACT
	Flexible Alternating Current Transmission System
	ICT
	Information And Communication Technologies



	FLC
	Fuzzy Logic Control
	IoT
	Internet of Things



	PSO
	Particle Swarm Optimization
	DT
	Digital Twin



	DGs
	Distributed Generation
	AOM
	Approach Optimization Method



	PWM
	Pulse Width Modulation
	RNN
	Recurrent Neural Network



	OLM
	On-Line Monitoring
	MAB
	Modified Adaptive Boosting



	RF
	Random Forest
	SCADA
	Supervisory Control and Data Acquisition



	MLPNN
	Multi-Layer Perceptron Neural Network
	DER
	Distributed Energy Resource



	DWT
	Discrete Wavelet Transform
	PSO
	Particle Swarm Optimization



	PNN
	Probabilistic Neural Network
	GA
	Genetic Algorithm
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Figure 1. Application of artificial intelligence for power system. 
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Figure 2. Generalization of different AI applications for the design, control, forecasting and maintenance of grid-tied PV systems. 
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Figure 3. AI framework for different functions, and techniques in application with grid-connected PV systems. 






Figure 3. AI framework for different functions, and techniques in application with grid-connected PV systems.



[image: Energies 14 04690 g003]







[image: Energies 14 04690 g004 550] 





Figure 4. Digital transformation of grid-connected PV systems with AI. 
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Figure 5. Parameter identification with adaptive neuro fuzzy inference system [43]. 
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Figure 6. Overview of forecasting requirements for process energy marketing. 
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Figure 7. Temporal and spatial resolution for irradiance forecasting. 
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Figure 8. Requirements for solar power forecasting with AI techniques. 
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Figure 9. Overview of grid-connected inverter control. 
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Figure 10. AI approach for low voltage ride through in grid-connected PV systems. 
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Figure 11. Fault layout for grid-connected PV system. 
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Figure 12. Schematic for implementing AI techniques for fault detection in grid-connected PV systems. 
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Figure 13. Reliability analysis of a power electronics device. 
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Figure 14. Application of digital twin for different functions with PV system. 
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Figure 15. Digital twin framework of a physical system. 
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Figure 16. A perspective of cybersecurity approaches for PV systems: comparative evaluation between AI and physics-informed approaches. 
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Table 1. Drawbacks of conventional algorithms for different applications and their solution with AI.
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	Conventional Algorithms
	Application
	Advantages
	Drawback of Conventional Algorithms
	Solution with AI
	AI Techniques





	Predictive and stochastic methods
	Monitoring and Maintenance
	Simple implementation, Better Interpretability
	Sensitive to outliers
	Replace Outliers with a suitable value using Quantile Methods
	
	
Machine Learning



	
Deep learning








	Data Minimization Approaches
	Maintenance
	Flexible framework
	Can only be used with clustering and intelligent approaches
	Replace data minimization approaches with filtering and normalization approaches
	
	
Memory based and model based collaborative filtering



	
Machine learning








	Kernel based approaches
	Control and Maintenance
	Uncertainty Quantification,

Better approximation capability,

Computational Efficiency
	Probabilistic output, long training time
	Probabilistic outcomes are overcome with predictability, which uses statistics to analyze the frequency of past successful and unsuccessful events, and solves training sets locally to minimize the training time.
	
	
Regression algorithms



	
Neural networks and their hybrid approaches



	
Machine learning



	
Expert systems








	Randomized Probabilistic approaches
	Maintenance
	Better Interpretability
	Complex computations, and Probabilistic output with random variables
	Uses symbolic reasoning to solve complex computations.
	
	
Logical neural networks



	
Decision trees








	Population based methods
	Design control and maintenance
	Parallel Capability, Achieved global convergence
	Complex implementation approach, less convergence speed
	Achieves pre-training with a pretty small learning rates to achieve fast convergence
	
	
Machine learning



	
Heuristic search



	
Expert systems








	Trajectory based methods
	Control
	Simple implementation, Fast convergence
	Has local optima, and no parallel capability
	Work on uncertain jump positions and are less susceptible to premature convergence and less likely to be stuck in local optima.
	
	
Heuristic search



	
Expert systems



	
Decision making algorithms
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Table 2. Parameter identification using conventional and intelligent methods.
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	Algorithm
	Diode Model
	Accuracy





	Genetic Algorithm [34]
	Double Diode Model
	Moderate RMSE



	Particle Swarm Optimization [35,36]
	Single and Double Diode Model
	High RMSE



	Artificial Immune System [37]
	Double Diode Model
	High RMSE



	Artificial Bee Colony [38], [39]
	Single and Double Diode Model
	High RMSE



	Pattern search [44,45]
	Single and Double Diode Model
	Low RMSE



	Neural network [40,41]
	Single Diode Model
	Moderate RMSE
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Table 3. Methods for optimum sizing of PV systems.
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	Algorithm
	Advantages
	Disadvantages





	Genetic Algorithm with ANN [46]
	
	
Efficiently identifies the global optimal in the input data



	
Applicable to both discrete, continuous, complex, and not well-defined datasets



	
Intermediate failures do not affect the end solution





	
	
Repeated fitness function evaluation effects the processing time of the approach



	
If trapped in local optima, this approach will provide incorrect results








	Artificial Neural Network [47]
	
	
Easy to implement high precision factor, computational time efficiency





	
	
Lacks robustness, only can consider single objective and single distributed renewable generation at a time








	Bat algorithm [48,49]
	
	
Needs few input parameters



	
Has a simple structure



	
Robust performance





	
	
Slow convergence speed



	
Low optimization precision








	Generalized Regression Neural Network [50]
	
	
Easily maps the complex relation between independent and dependent variables



	
Efficiently handles the noise in the dataset





	
	
Becomes trapped in local minima, resulting in over-fitting



	
High processing time for large structures of the neural networks








	Particle Swarm Optimization [51]
	
	
Easy implementation with few parameters for adjustment



	
Robust enough to handle parallel computation



	
Efficiently identifies the global optima and achieves fast convergence





	
	
Not suitable for scattered parameters



	
Premature convergence resulting in local minimum



	
Difficult to identify initial design parameters








	Adaptive-Neuro Fuzzy Inference Systems [52]
	
	
Efficient performance for finding the global optimum, capable of handling complex optimization problems





	
	
Relatively complex implementation process
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Table 4. Conventional and intelligent methods for solar irradiance forecasting.
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	Algorithm
	Objective
	Advantages
	Disadvantages





	LSTM neural network technique [66,68,69]
	Develop a multi-time scale model
	
	
Efficiently handles nonlinear data



	
Memorizes long temporal relationships in the data





	
	
Longer training times



	
Easy to overfit



	
Sensitive to random weight initializations








	Wavelet decomposition [70]
	Decompose the raw solar irradiance data into subsequence
	
	
Efficiently models nonstationary environmental parameters without losing information



	
Effectively handles short time-scale solar irradiance





	
	
Choice of decomposition level



	
Redundant representation of data








	ANN [71,72]
	Accurate forecasting under strong irregularities and rapidly changing scenarios
	
	
Modeling abilities with the different elements of the input data to form a relation in the network structure





	
	
Sensitive to the dimensionality of data



	
Identifying preliminary settings and functions according to the input data








	Gaussian process regression [73,74]
	Develop probabilistic renewable energy management systems
	
	
Directly captures the uncertainties in data



	
Probabilistic prediction for computing empirical confidence intervals





	
	
Require large datasets for prediction



	
Less efficient in high dimension spaces
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Table 5. Comparison of intelligent techniques for output power forecasting.
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	Algorithm
	Advantages
	Disadvantages





	Wavelet and ANN [87,88]
	
	
Does not require multi-channel signals



	
Automatic and online forecasting can be achieved





	
	
Removing a large amount of useful information from the original signal



	
Time consuming








	Fuzzy Logic [89]
	
	
Intuitive design, and quick response



	
Fuzzy rules demonstrate the flexibility in forecasting action



	
Does not demand the exact model of the system





	
	
Cannot predict varying process with time delays



	
Multiple tuning parameters affect the stability of the approach








	Artificial Neural Network [79,80,83]
	
	
Intuitive design, and quick response



	
The forecasting action is demonstrated just by the definition of weights along the layers





	
	
Adjustment of abundant parameters affects the stability of the approach



	
Choice of network size and structure affects the prediction accuracy



	
Shape of accepted input functions needs to be checked for accurate results








	Back Propagation Neural Network [90,91]
	
	
No additional parameters for tuning.



	
Continuous learning to identify the relevancy and difference in the input data



	
No prior knowledge is required for learning makes the approach flexible





	
	
Performance is solely dependent on the input data



	
Sensitive to outliers and noise in the data
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Table 6. Comparison of islanding detection technique.
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Islanding Method

	
Principle Methods

	
Detection

	
Advantage

	
Disadvantage






	
Active

	
Goertzel algorithm [103]

	
   0.4   s   

	

	
Accuracy



	
Relatively simple






	

	
Power quality detriment



	
Stability hazard in case of multi generation system









	
Virtual resistor method [104]

	
   39   ms   




	
Voltage positive feedback [105]

	
   250   ms   




	
Passive

	
Switching frequency [106]

	
   20   ms   

	

	
Simplicity



	
Can be used for multi system operation






	

	
Error in detection under unbalanced power condition



	
Threshold setting needs to be performed carefully









	
Grid voltage sensor-less [107]

	
   45   ms   




	
Hybrid

	
Wavelet and S-transform [108]

	
Less than   20   ms  

	

	
Has a small non-detection zone



	
Perturbation is only introducing once islanding is suspected






	

	
Detection time is slow



	
Perturbation often leads to power quality degradation









	
Combination of voltage amplitude and frequency [109]

	
   150   ms   




	
Voltage unbalance and THD [110]

	
Within   2   s  




	
Artificial Intelligence based approach

	
Fuzzy with S-transform [111]

	
Less than   20   ms  

	

	
Good accuracy with the ability to handle multi-inverter-based grid-connected DG



	
Easy to categorize the different states of operation and can be used with multiple distributed generation systems






	

	
The result is abstract and is based on a set of predefined rulesets



	
The requirement of a large database for training makes it difficult to implement and compute









	
Wavelet with neural network [102]

	
Less than   0.2   s  




	
Adaptive neuro-fuzzy inference system (ANFIS) [112]

	
Less than   0.4   s  
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Table 7. Comparison of low voltage ride through techniques.
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	Algorithm
	Computation Burden
	Reactive Current Injection
	Advantage
	Disadvantage





	Dynamic voltage restorer [121]
	High
	Sufficient
	
	
Reactive current injection



	
Weak grid voltage stability





	
	
Voltage-dependent reactive control



	
Instability








	Static synchronous compensator [118]
	High
	Good
	
	
Efficient control of reactive power



	
Drop in voltage negative sequence





	
	
Low capacity in supplying active power



	
Coupling transformers introduce many switches








	PSO [120]
	Low
	Sufficient
	Fast response

Hight efficiency
	Presence of oscillation and overshooting



	FLC [119]
	Low
	Sufficient
	Simple and flexible

No overlapping
	Presence of oscillation and overshooting
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Table 8. Analysis of maximum power point tracking techniques in the literature.
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	Algorithm
	Output Response
	Feasibility
	Power Consumption
	Learning
	Transients





	P&O, Incremental Conductance [124]
	Slow
	Simple
	Loss
	No
	Common



	Particle Swarm Optimization [125]
	Slow
	Complex
	Efficient
	No
	Common



	Hopfield Neural Network
	Fast
	Complex
	Efficient
	Yes
	No



	Neural Network
	Fast
	Complex
	Efficient
	Yes
	No



	Ant Colony Optimization
	Fast
	Simple
	Efficient
	Yes
	Common



	Genetic Algorithm [123]
	Fast
	Complex
	Efficient
	Yes
	Common



	Fuzzy Logic Control [122]
	Fast
	Complex
	Efficient
	No
	No



	Genetic Algorithm-Neural Network
	Fast
	Very Complex
	Efficient
	Yes
	No



	Adaptive Neuro Fuzzy Inference System
	Fast
	Very Complex
	Efficient
	Yes
	No



	Reinforcement Learning
	Fast
	Very Complex
	Efficient
	Yes
	No



	Adaptive Neuro Fuzzy Inference System-Genetic Algorithm
	Fast
	Very Complex
	Efficient
	Yes
	No
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Table 9. Faults in grid-connected PV system.
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Fault Location

	
Fault

	
Cause

	
Impact

	
Detection Technique






	
PV Panel Fault

	
Delamination

	
Over exposed to direct sunlight

	
All the faults in the panel will result in reduction of solar panel output and increase the burden on the DC–DC converter.

	

	
Visual inspection



	
Thermography based detection



	
Image processing-based fault identification



	
Signal processing-based detection









	
Cell Crack

	
Physical damage




	
Shorting of Diode

	
Overheating




	
Discoloration

	
Over exposed to direct sunlight




	
Snail Trial

	
Moisture in atmosphere




	
Glass Crack

	
Physical Damage




	
Combination Box Fault

	
Oxidation

	
Environmental impact

	
Reduce the power flow

	
Visual inspection and signal-based monitoring




	
Corrosion

	
Environmental impact




	
Power Converter Fault

	
Bond wire melting

	
Overheating of thermal joints

	
Cause stress on the inverter operation, wear out in the inverter components, and reduces the operating lifetime of inverter

	

	
Temperature sensitive electrical parameters



	
Operating characteristics-based monitoring, using signal, and learning approaches



	
Thermal model, and physics-based modeling approaches









	
Bond wire lift-off

	
Overheating




	
Crack in bond wire

	
Stress on the bond wire




	
Aluminum corrosion

	
Environmental impact




	
Substrate crack

	
Thermal Stress on substrate




	
Delamination of Die

	
Overheating of Power electronic switch




	
Filter Fault

	
Thermal over stress

	
Overheating

	

	
Increase in the harmonics at the AC end of the inverter



	
Poor power quality.



	
May cause a false trip signal






	

	
Monitor output signals and use learning-based approaches.



	
Implementation of thermal image-based learning approaches









	
Crack in dielectric

	
Sudden change in temperature




	
Leakage in electrolyte

	
Expose to thermal stress during storage




	
Evaporate in electrolyte

	
Expose to thermal stress during storage




	
Relay Fault

	
Iron core failure

	
Leakage current

	

	
Humming due to the failure of electromagnetic



	
Abnormal noise during operation and no contact continuity



	
Complete cut-off of applied voltage






	

	
Signal processing and machine learning approaches through the measurement of contact resistance, coil resistance, and operating voltages









	
Coil failure

	
Short-circuit of counter electromotive voltage absorbing diode




	
Residue voltage

	
Semiconductor control circuit with residual voltage




	
Excessive current

	
Allowable inrush current exceeded




	
High contact resistance

	
Contact carbonization




	
Battery Fault

	
Ageing

	
Stress factors (Temperature, depth of discharge, C-rate)

	

	
Loss of active anode/cathode material



	
Capacity fade



	
Power fade



	
Thermal run-away



	
Longer charging time






	

	
Data driven models for state of health estimation



	
Thermal inspection



	
Incremental capacity analysis



	
Remaining useful life prediction measures characteristics and capacity estimation









	
Loss of cooling

	
Lithium plating/dendrite formulation




	
Cell failure

	
Electrolyte decomposition,




	
Battery management system failure

	
Failure of converter control circuit
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Table 10. Comparison of convention algorithm for lifetime estimation.
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	Conventional Algorithms
	Application to Power Electronics
	Advantages
	Drawback of Conventional Algorithms





	Reliability Block Diagram
	Analysis of component fault by representing them as a block
	Simple for implementation
	External cases, such as human interference and priority-based events, are not considered



	Fault Tree Analysis [165]
	Identification of probability of each fault.
	External factors accounted for and also assisted in designing
	Interdependence is not analyzed adequately



	Monte Carlo [166]
	Generates random events in a computer model to count the instance of occurring for a specific condition.
	High precision, less work in calculation and rapid convergence
	Canonical problems are identified while estimating the functional exception of a lifetime model for repairable and non-repairable components



	Markov Analysis [167]
	Identification of transition rate based on failure and repair rate
	Easy to implement for a system where repair is possible
	The modeling is large due to state base modeling with a constant repair and failure rate
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Table 11. Related work grid-connected system with digital twins.
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	Methodology
	Function
	Advantages
	Drawbacks





	Dynamic digital mirror [169]
	Power management
	Operates faster than the supervisory control and data acquisition
	Difficult to provide a comprehensive model of the power system



	Ontological modeling

language [175]
	Hybrid operation of distributed generation units
	Acts a medium for DT application in the energy sector
	Data synchronization cannot be automated



	Regression [174]
	Power flow management
	Energy benchmarking by analyzing the temporal dimensions
	Less efficiency



	Deep neural network [186]
	Application with smart grid functions
	Improved performance with volatile electricity load forecasting to achieve balance and stability
	Stochasticity and uncertainty in the data



	Predictive analytics model [187]
	Virtual power plants
	Offers efficient coefficient estimation
	Regulatory and institutional policies act as barrier to deployment
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