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Abstract: This paper investigates adaptive thermal comfort during summer in medical residences
that are located in the French city of Troyes and managed by the Association of Parents of Disabled
Children (APEI). Thermal comfort in these buildings is evaluated using subjective measurements
and objective physical parameters. The thermal sensations of respondents were determined by
questionnaires, while thermal comfort was estimated using the predicted mean vote (PMV) model.
Indoor environmental parameters (relative humidity, mean radiant temperature, air temperature,
and air velocity) were measured using a thermal environment sensor during the summer period in
July and August 2018. A good correlation was found between operative temperature, mean radiant
temperature, and PMV. The neutral temperature was determined by linear regression analysis of the
operative temperature and Fanger’s PMV model. The obtained neutral temperature is 23.7 ◦C. Based
on the datasets and questionnaires, the adaptive coefficient α representing patients’ capacity to adapt
to heat was found to be 1.261. A strong correlation was also observed between the sequential thermal
index n(t) and the adaptive temperature. Finally, a new empirical model of adaptive temperature
was developed using the data collected from a longitudinal survey in four residential buildings of
APEI in summer, and the obtained adaptive temperature is 25.0 ◦C with upper and lower limits of
24.7 ◦C and 25.4 ◦C.

Keywords: thermal comfort; healthcare facility; disabled people; adaptive thermal comfort; indoor
environment; air-conditioned building

1. Introduction

Indoor thermal comfort has become an important topic in the context of sustainable
living. Providing an adequate indoor climate, especially in healthcare facilities, is important
because these residential buildings accommodate people with medical conditions who are
significantly affected by lower or higher temperatures [1]. In the case of the healthcare
facilities studied in the French city of Troyes, the challenge of managers is to ensure
adaptive thermal comfort for patients inside the buildings in summer. Thermal comfort
is defined as a state of mind that expresses satisfaction with the thermal environment [2].
The majority of thermal comfort studies are related to healthy groups of occupants, with
few studies exploring the thermal comfort of disabled people due to a lack of knowledge
in this area [3]. Similarly, the ASHRAE Standard 55-2020 [4], as well as ISO/TS 14415 [5],
have limited information on this issue. To establish guidelines for the design and control of
building systems, it is therefore necessary to determine all the environmental parameters of
the healthcare facility and the thermal comfort requirements of its residents. In this paper,
both objective and subjective methods are used to achieve this aim.
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Thermal comfort parameters were investigated during the summer season in res-
idential buildings managed by the Association of Parents of Disabled Children (APEI)
in the French city of Troyes. These medico-social buildings accommodate people with
physical (motor disabilities, multiple disabilities, etc.) and mental disabilities. Constructed
in 1992, they are managed by the “APEI of Aube” located in eastern France (latitude 48.32◦,
longitude 4.04◦). The measurement of thermal comfort in a healthcare environment is
a challenging and even daunting task. The challenge is therefore to meet the thermal com-
fort needs of all occupants, whether patients or staff, in an optimal way [6]. The physical
environment has an impact on the health and wellbeing of occupants [7]. Providing a good
indoor climate is important not only because it makes the occupants more comfortable,
but also because it reduces the building’s energy consumption. The thermal comfort of
patients with physical or mental disabilities can differ from that of healthy people [8]. It
is therefore important to study the various environmental and personal parameters that
affect the patient’s thermal comfort.

Adaptive thermal comfort is a topic that has interested researchers for the last
20 years [9] because people have a natural tendency to adapt to changing conditions
in their environment [10]. The adaptive approach is often used in a naturally ventilated
building because there are more opportunities for adaptation, however, it may still be valid
if there are possibilities for adaptation in air-conditioned buildings. Indeed, Parkinson
et al. [11] has recently shown that adaptive comfort processes could be relevant in buildings
with air conditioning.

For this purpose, ISO 14415 [12] was designed for application along with ISO 7730 for
determining the thermal comfort of people with disabilities. Adaptive thermal comfort in
healthcare facilities is necessary due to the diverse comfort and health needs of patients and
medical staff. People with physical disabilities may have different thermal requirements
compared to healthy people. This is mainly due to thermoregulatory dysfunctions as well
as technological devices such as wheelchairs [13] used by some patients in the long term.
After comparing the association between actual mean vote (AMV) and predicted mean
vote (PMV) values on the one hand and age and gender on the other, Del Ferraro et al. [14]
highlighted that gender and age are important factors when evaluating thermal comfort in
hospital settings. Thermal requirements should be considered on an individual level for
people with physical disabilities [15].

Hill et al. [1] showed that the most common request among patients with physical
disabilities was to be warmer, whereas staff tended to want to be cooler. The study
of Hashiguchi et al. [16] compared the thermal comfort of patients and medical staff,
concluding that most patients were comfortable, while medical staff were uncomfortable,
although this study did not compare subjective responses and objective measurements
with PMV predictions. Khodakarami et al. [17] reported that the user groups in a hospital
setting had different thermal comfort requirements that were difficult to accommodate in
one single space. Therefore, ensuring adaptive comfort for each group is necessary.

To accommodate the different thermal comfort requirements of healthcare occupants,
Sattayakorn et al. [18] determined the acceptable temperature ranges for patients, visitors,
and medical staff to be 21.8–27.9 ◦C, 22.0–27.1 ◦C, and 24.1–25.6 ◦C, respectively. Nuria
et al. [19] investigated the thermal comfort of aging people in nursing homes in the Mediter-
ranean summer, showing that the thermal comfort temperature for elderly residents is
around 24.4 ◦C compared to 23.5 ◦C for non-elderly persons. Kim et al. [20] indicated that
indoor hygrothermal conditions should be carefully managed in healthcare facilities to
improve staff comfort and satisfaction with their working environment. This indirectly
brings positive health outcomes for patients.

Verheyen et al. [8] investigated the thermal comfort of patients in a Belgian healthcare
facility using objective and subjective methods for different patient groups. They concluded
that PMV may adequately predict mean thermal sensation for patients. According to Sat-
tayakorn et al. [17], the PMV model is unsuitable for determining the thermal comfort of
healthcare occupants in tropical climates, with this result being confirmed by Yau et al. [21]
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who reported that the PMV model might not be suitable for tropical hospitals. Alotaibi
et al. [22] studied the thermal comfort of hospital patients in air-conditioned environments
in hot climates. Their main objective was to determine to what extent the thermal envi-
ronment of hospitals, often designed on standard office comfort, is suitable for hospital
patients. They confirmed that the thermal sensation votes (TSV) strongly overestimated
the PMV index of all patients, meaning that a warmer indoor environment was desired.
Zaniboni et al. [23] investigated the thermal comfort of patients in physiotherapy centers
by comparing objective parameters and subjective measurements of thermal comfort for
different groups of patients and therapists. They confirmed that the PMV was unsuitable
for accurately predicting the thermal sensation of therapists and patients. Thus, the ap-
plication of the PMV index for this type of population is questionable, and its efficiency
is limited.

Carlucci et al. [24], investigated the five regulatory documents that have incorporated
an adaptive thermal comfort model (ANSI/ASHRAE 55, EN 15251, prEN 16798-1, ISSO
74 and GB/T 50784), results indicated that several sources of uncertainty affecting the
application of the standards in practice. Pereira et al. [25], conducted a literature review of
papers published between 1968 and August 2020 on thermal comfort in hospitals, health
centers, and elderly centers. The main findings of this research are as follows: (i) only
12 papers where there was a comparison TSV with PMV; (ii) an adequate thermal en-
vironment for professionals and patients is necessary; (iii) little explored study topics,
such as staff productivity or consideration of patient health status in the assessment of
thermal comfort.

To overcome this issue, this paper presents the adaptive thermal comfort model based
on the “Black Box” theory in the residential buildings of APEI. This model is known as
the adaptive predicted mean vote (PMVa) model in the adaptive comfort literature and
takes into account factors such as climate, culture, as well as psychological and behavioral
adaptations. It is necessary to estimate the environmental parameters of the healthcare
facility and the thermal comfort requirements of its residents to establish guidelines for
the design and control of building systems. This paper proposes an adaptive model of
temperature to create a more sustainable environment in which disabled patients are
more comfortable.

2. Materials and Methods

The purpose of this field study is to assess thermal comfort and determine the rate
of change of thermal sensation (subjective and objective measurements were collected
simultaneously) to better adapt the thermal approaches implemented for the disabled
people living in the APEI residential buildings (Figure 1).

2.1. Survey Description

The longitudinal thermal comfort survey was conducted in the four APEI residential
buildings (which are air-conditioned spaces), from 2 July to 31 August 2018 (Figures 2 and 3).
During this period, the buildings were occupied permanently (10 am–6 pm). Each building
group consists of 12 private rooms along with a shared living space and is managed by five
caregivers. The four studied buildings are similar in terms of their architecture and medical
services. Table 1 below gives the sex distribution of subjects living in the different building
groups and Table 2 lists the physical parameters. The reduced number of respondents is
a limitation of this survey although some studies have been conducted with small groups
on hospitals: for example, Del Ferraro et al. with 58 subjects [14] and Skoog et al. with only
35 subjects [26].
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Table 1. Population sex distribution.

Women Men Total

Building 1 5 6 11
Building 2 5 4 9
Building 3 5 3 8
Building 4 6 3 9

Total 21 16 37

Table 2. Summary of patients’ physiological parameters.

Age (Years) Weight (kg) Height (m) BMR (Kcal)

Maximum 72.00 95.00 1.88 1880.49
Minimum 21.00 28.10 1.37 887.75
Average 47.95 59.69 1.57 1338.56

SD 13.59 16.78 0.12 250.72

Table 2 summarizes the physiological parameters of participants in which we find
strong discrepancies in age, weight, and height. The patients engage in light physical
activities around once per week. They were interviewed in their bedrooms where they
spend most of their time, as they only leave their rooms for meals, showers, and activities.
To improve the discipline of patients and psychologically prepare them for this investi-
gation, we conducted a 7-day trial study to explain our methodology. In total, 320 valid
questionnaires were collected during the study period. All questionnaires were conducted
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in summer, corresponding to July and August in Troyes. We focused our study on the
summer season to overcome the issue of a lack of data mentioned in the literature for this
population. Furthermore, APEI buildings are heated permanently during winter.

2.2. Objective Parameters

Physical parameters (Table 3) were continuously measured by the station placed at
a height of 1.1 m from the ground according to ASHRAE Standard 55 for seated persons [4].
Indoor environmental parameters including relative humidity, mean radiant temperature,
air temperature, and air velocity were measured using a thermal microclimate station
(HD32.3 instrument by Delta Ohm) (Figure 4); The station is placed at 0.8–1 m from the
respondents, and the metabolic rate was estimated in accordance with ISO 7730 and set
at 1.2, which corresponds to sedentary activities. Being the metabolic rate of the investigated
sample close to sedentary activity conditions, the relative air velocity has been assumed equal
to air velocity as proposed by researchers at DTU [27]. The mean radiant temperature Tr is
calculated by the microclimate thermal station in the case of forced convection (see Appendix B).
Tables 3 and 4 show respectively the indoor parameters and instrument accuracy.

Table 3. Statistical summary of environmental parameters and clothing insulation values.

Parameter Taout (◦C) Tain (◦C) Tr (◦C) RH (%) Vair (m/s) Icl (clo)

Min 19.10 24.15 24.00 25.10 00.00 00.41
Max 41.20 29.55 29.86 68.60 00.19 00.77

Average 29.30 26.35 26.29 45.09 00.01 00.53
SD 04.89 01.23 01.27 07.47 00.02 00.07
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Table 4. Physical measurements and accuracy of the thermal microclimate station.

Parameter Accuracy Valid Range

Air Velocity (m/s) ±0.2 0–1
±0.3 1–5

Relative Humidity (%) ±1.5 0–90
±2.0 90–100

Temperature (◦C) Class 1/3 DIN −40–+100
Globe Temperature (◦C) Class 1/3 DIN −10–+100

2.3. Subjective Measurement

Thermal sensation was evaluated using a subjective ruler with pictorial representations
developed in collaboration with the medical service of APEI. As shown in Figure 5, the ruler
is a subjective measuring tool based on the standard seven-point thermal sensation scale.
This vertical ruler has the shape of a large thermometer with the pictorial representation of
a man. Each man corresponds to a value to describe the thermal sensations of occupants
using different types of clothing and colors.
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3. Results and Discussion
3.1. Thermal Comfort Survey

During the field study period (July-August), the outdoor temperature oscillated
between 19.1 ◦C and 41.2 ◦C, with mean temperatures around 29.3 ◦C. The corresponding
indoor temperature during the surveys varied from 24.15 ◦C to 29.55 ◦C.

Figure 6 shows the results obtained for the thermal sensations of occupants. In general,
the positive values (slightly warm, warm, hot) obtained during the measurement campaign
indicate a warm thermal sensation from the patient’s point of view in the APEI residential
buildings. The initial conclusions from this survey show that most of the respondents
were thermally uncomfortable in all the investigated locations: 26.9% of respondents rated
their thermal sensations within an acceptable range (−1;+1), whereas 73.1% considered
their thermal environment to be “unacceptable.” This difference is essentially due to the
possibility of adapting to the conditions of the thermal environment, which differs from
one patient to another, and indeed, some patients simultaneously suffer from multiple
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illnesses (Table 5). This could also be explained by the drugs taken by patients, which may
increase the risk of dehydration and heat-related diseases by the following mechanisms:
thermoregulation, diuresis, and electrolyte imbalance, sedation and cognitive impairment,
hypotension, and reduced cardiac output [28]. Age-related diseases are the most critical
issues affecting the thermal comfort requirements of patients. The literature indicates
that certain thermophysiological parameters significantly change with aging such as basal
metabolic rate (metabolic disorders), cardiac output, blood flow, fat distribution, and
body weight [29,30]. Neurological disorders can also play an important role in thermal
discomfort. Indeed, heat is produced by the brain when it consumes oxygen that is removed
by the blood flow [31].
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Table 5. List of diseases among the APEI patients.

Type of Disease Number of Patients

Multiple disabilities 27
Intellectual disability 16

Autism 11
Physical disorders 10

Age-related diseases 9
Motor disabilities 5
Visual impairment 5

Metabolic disorders 4
Hearing impairment 3

Progressive neurological disorders 2

In order to ensure that patients are not in a febrile state [32], which could skew the
results of the survey, body temperature measurements were taken beforehand. Figure 7
shows forehead temperature variations measured by a noncontact infrared thermometer
(Accuracy: ±0.2 ◦C) along with the corresponding indoor temperature during the surveys.
In our study, the overall temperature measurements do not indicate a febrile state with
a mean forehead temperature of 36.6 ◦C.
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Figure 7. Forehead temperature and indoor air temperature measurements.

3.2. Predicted Mean Vote and Actual Mean Vote

Subjective and objective measurements were conducted simultaneously. Fanger’s
equation was used to calculate the PMV index (see Appendix A). Figure 8 shows the
regression relationship between PMV and AMV. The p-value was 0.00, indicating that the
result was significant (analysis of variance in combination with Fisher’s statistical test
was used to test the significance of the model [33]). The comparison of AMV and PMV
values revealed that Fanger’s PMV model generally underpredicts the thermal sensation
reported by occupants; PMV can thus only partially predict thermal sensation in the studied
healthcare buildings. Figure 9 compares PMV and AMV values in relation to indoor air
temperatures ranging from 24.15 ◦C to 29.55 ◦C, revealing that the fitted regression line for
subjects PMV is below the AMV linear curve, with the regression coefficients showing that
the fitted model was statistically significant: PMV (p < 0.05, R2 = 0.68). Therefore, patients
experienced the indoor environment as warmer than the measurement results according
to Fanger’s model. This discrepancy can be explained by the limited ability of patients to
adapt to warming temperatures, which is not considered in Fanger’s PMV model.
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3.3. Predicted Mean Vote and Indoor Operative and Neutral Temperatures

As a significant factor influencing thermal comfort, operative temperature combines
the impact of both air and radiant temperatures without air movement in addition to
relative humidity [34]. For most indoor comfort studies, the relationship between PMV and
operative temperature is considered [35,36]. This relationship was successfully established
with the determination coefficient R2 = 0.70 (p < 0.05) in Equation (1), which indicates the
significant influence of operative temperature on PMV (Figure 10).

PMV = 0.18 To − 4.26 (1)
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Based on Equation (1), at indoor operative temperatures exceeding 24.8 ◦C, the PMV is
outside the neutral thermal comfort zone (−0.2, +0.2) recommended for spaces occupied by
vulnerable people with special requirements such as the patients included in our study [37].
Therefore, the neutral temperature needs to be calculated.

The thermal neutrality temperature, Tn, is defined as the optimal temperature to
guarantee comfortable conditions [38]. The neutral temperature corresponding to the
thermal comfort in APEI residential buildings was calculated using Equation (1) (when
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PMV = 0, To = Tn, the neutral temperature is 23.65 ◦C). Table 6 shows the thermal comfort
ranges according to the ASHRAE Standards. However, the obtained neutral temperature
is acceptable.

Table 6. Thermal comfort ranges according to the ASHRAE Standards.

Standard Design Temperature (◦C) Location

ASHRAE 2008 [39] 21–24 Inpatient nursing: patient room

ASHRAE 2007 [40] 21–24 Hospital and outpatient facilities:
patient room

3.4. Predicted Mean Vote and Mean Radiant Temperature

The mean radiant temperature (Tr) is defined as “The uniform surface temperature
of an imaginary black enclosure in which an occupant would exchange the same amount
of radiant heat as in the actual non-uniform space” [41]. Tr has the strongest influence on
significant thermo-physiological indices such as PMV [42]. The correlation between PMV
and Tr can be seen in Figure 11 and is represented in Equation (2):

PMV = 0.18 Tr− 4.21 (2)
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The determination coefficient (R2 = 0.71) indicates the influence of Tr on PMV. There-
fore, high intensity of solar radiation leads to an increase in PMV, ultimately increasing
occupants’ thermal discomfort on sunny days (since solar radiation increases the interior
surface temperature, leading to an increase in the mean radiant temperature).

Tr was correlated with the measured indoor temperature by means of linear regression
(Figure 12). We observed a strong relationship between these parameters (R2 = 0.97), which
is in agreement with previous studies [43,44]. This indicates that the radiant heat gain was
not significant in the surveyed building spaces. Therefore, we considered the indoor air
temperature as the operative temperature when calculating the thermal comfort.



Energies 2021, 14, 4530 12 of 21

Energies 2021, 14, x FOR PEER REVIEW 12 of 22 
 

 

 
Figure 11. Relationship between predicted mean vote (PMV) and mean radiant temperature (Tr). 

The determination coefficient (R² = 0.71) indicates the influence of Tr on PMV. There-
fore, high intensity of solar radiation leads to an increase in PMV, ultimately increasing 
occupants’ thermal discomfort on sunny days (since solar radiation increases the interior 
surface temperature, leading to an increase in the mean radiant temperature). 

Tr was correlated with the measured indoor temperature by means of linear regres-
sion (Figure 12). We observed a strong relationship between these parameters (R² = 0.97), 
which is in agreement with previous studies [43,44]. This indicates that the radiant heat 
gain was not significant in the surveyed building spaces. Therefore, we considered the 
indoor air temperature as the operative temperature when calculating the thermal com-
fort. 

 
Figure 12. Relationship between mean radiant temperature (Tr) and indoor air temperature. 

3.5. Effect of Thermal Insulation of Clothing on Patients’ Thermal Comfort 
The amount of thermal insulation worn by people has a substantial impact on their 

thermal comfort [45]. The estimation of clothing insulation took into account all the gar-
ments worn by people such as underwear, t-shirts, socks, shorts, shoes, summer dresses, 
light skirts, and leggings. The estimation of clothing insulation took into account all the 

Figure 12. Relationship between mean radiant temperature (Tr) and indoor air temperature.

3.5. Effect of Thermal Insulation of Clothing on Patients’ Thermal Comfort

The amount of thermal insulation worn by people has a substantial impact on their
thermal comfort [45]. The estimation of clothing insulation took into account all the
garments worn by people such as underwear, t-shirts, socks, shorts, shoes, summer dresses,
light skirts, and leggings. The estimation of clothing insulation took into account all
the garments worn by people such as underwear, t-shirts, socks, shorts, shoes, summer
dresses, light skirts, and leggings. Each garment indicated in the responses was converted
into thermal insulation values using the ASHRAE Standard 55 [41]. Finally, the thermal
insulation of the patients’ clothing ensemble was estimated by summing the thermal
insulation of each garment [41,46]. As patients sit for long periods of time, 0.15 clo was
added to the overall thermal insulation estimate to account for the insulating value of the
chair [47].

Clothing insulation in summer slightly changes (Figure 13), with the results indicating
that the overall insulation of clothing worn by patients varies from 0.41 to 0.77 clo. The av-
erage thermal insulation of clothing in summer was 0.53 clo, which, according to ASHRAE
Standard 55 [41], corresponds to typical clothing insulation when the environment is
warm. The thermal insulation of clothing shows low sensitivity to indoor air temperature
(R2 = 0.0008, p = 0.6080), which can be attributed to the high indoor air temperature and
fewer opportunities to change clothes.

3.6. Sequential Thermal Index in Residential Buildings of APEI

To study the thermal quality of the APEI residential buildings, linear regression
analysis was carried out. Equation (3) represents the relationship between the sequential
thermal index (statistical function) [48], and indoor temperature in the APEI environment
in summer. The correlation between the sequential thermal index and indoor temperature
can be seen in Figure 14 and is represented by the following equation:

n(t) = −7.79 T(t) + 287.17 (3)
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3.7. Comparison of Subjective Thermal Comfort Sensation in APEI Buildings

Thermal comfort requirements may differ between healthy people and people with
physical disabilities. Further, people with disabilities may require drugs that can affect
thermoregulatory mechanisms, while the disability may entail the use of technical devices
such as wheelchairs that affect their thermal state. For people with limited adaptive
opportunities (e.g., physical disabilities), an acceptable environment may be rated as
unacceptable. Nevertheless, people’s expectations may influence their thermal satisfaction,
which may be less reliable than thermal comfort studies. For example, people may express
satisfaction simply because “they don’t expect any better” or dissatisfaction because “they
expect much better” [49].

The present study directly compares the individual thermal comfort of patients and
staff in the APEI residential buildings. Figure 15 shows the results obtained in July and
August 2018 (staff: 17 subjects with 109 responses; patients: 26 subjects, with 118 responses),
revealing that the thermal discomfort of patients is higher. On average, their AMV varies
from 1.13 to 1.69, whereas the staff always declare a state of thermal neutrality (AMV
varying from 0.26 to 0.9). The satisfaction of staff can be explained by their ability to adapt
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to indoor environments by adaptive actions (i.e., opening and closing windows, changing
clothing, drinking, eating, or changing their activity level). By contrast, depending on the
disability and health status of patients, their adaptive opportunity may be restricted. For
this reason, an adaptive indoor environment needs to be created for APEI patients.
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3.8. Adaptive Thermal Comfort and Patients

Overall, adaptive thermal comfort can be defined as follows: “If a change occurs such
as to produce discomfort, people react in ways which tend to restore their comfort” [50].
People’s adaptative actions are generally effective in securing comfort, which happens
in the case of large variations in indoor temperature [51]. Thermal adaptation can be
associated with three different categories: behavioral adjustment, physiological habituation,
and psychological dimensions (Figure 16) [52]. In this study, the use of an adaptive
approach is necessary due to the difference between PMV and AMV; indeed, adaptive
opportunities are not considered in Fanger’s PMV model.

This paper shows how the application of adaptive thermal comfort can create
a comfortable thermal environment in APEI residential buildings. The theoretical adaptive
model of thermal comfort based on the “Black Box” theory with the aforementioned factors
is known as the adaptive predicted mean vote (PMVa) model [11,53] and is presented in
Equation (4) below:

PMVa =
PMV

1 + αPMV
(4)

The adaptive coefficient α represents the patient’s capacity to adapt to warmer tem-
peratures. It was calculated using the least square method to adjust the field data sets. α
can be described by Equation (5) [54]:

α =
∑

j
1 yi−xi

j
Let : x = 1

AMV and y = 1
PMV

. (5)
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In our study, we have 20 data sets, so α is calculated as follows (Table 7):

α =
∑20

1 yi − xi
20

(6)
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Table 7. Summary of the adaptive coefficient.

Adaptive Coefficient α

Maximum 1.875

Minimum 0.720

Average 1.261

SD 0.333

By replacing the average of this coefficient in Equation (6) [55], the following equation
is obtained:

PMVa =
PMV

1 + 1.261 PMV
(7)

As seen in Equation (7), the advantage of the adaptive model is that the complex
adaptation is represented as a single value. Figure 17 shows that the adaptive thermal
comfort model PMVa (varying from 0.153 to 0.532) reduces patients’ sensation of discomfort
by more than half when compared to the PMV model (varying from 0.19 to 1.62).
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3.9. An Adaptive Method for Indoor Temperature Control

Here, we present a new empirical equation (see Figure 18) to estimate the adaptive
indoor temperature for patients in summer. It is important to estimate the adaptive
temperature in order to obtain reliable results in terms of the thermal comfort of people
with disabilities. The equation was based on the adaptive thermal comfort model. Figure 18
shows the different steps for determining the adaptive temperature. This study found that
the patients in the APEI residential buildings can be relatively comfortable at temperatures
up to 25.0 ◦C in summer (Table 8).

Table 8. Summary of the PMV, PMVa , PMV′, PPD′, n′(t), and adaptive temperature.

PMV PMVa PMV′ PPD′ n′(t) Ta (◦C)

Maximum 1.62 0.53 0.53 10.94 89.06 25.42
Minimum 0.19 0.15 0.15 5.49 94.51 24.72
Average 0.65 0.34 0.34 7.45 92.55 24.97

The indoor temperature variation is about 5.4 ◦C. However, using the proposed
methodology, this variation is reduced to 0.7 ◦C, which is substantial in terms of ther-
mal comfort, especially in healthcare buildings that accommodate patients with specific
needs that vary significantly due to the variation in hygrothermal parameters [1]. High
temperatures and temperature variations harm health [56]. The advantage of adaptive
temperatures is that they take into account the actual thermal feeling of patients as well
as the objective measurements, whereas the calculation of the neutral temperature only
considers the objective parameters. In this study, the average adaptive temperature is
approximately Tn + 1.3 ◦C, while the average indoor temperature is Tn + 2.7 ◦C.
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4. Conclusions

This study constitutes a first step toward understanding adaptive thermal comfort
in French healthcare buildings for patients with disabilities. The research described in
this paper was carried out in the APEI residential buildings in the summer of 2018. This
research aims to broaden our understanding of thermal comfort in healthcare buildings by
considering several factors relating to people with disabilities during the analysis phase.
The results can improve the application of the current standards for vulnerable populations.

The most important conclusions of our study may be summarized as follows. First,
simplifying the process of interviewing disabled persons by using pictures and simple
language contributes greatly to obtaining reliable results. Second, the patients were gen-
erally dissatisfied with the thermal environment of their dwellings. Third, in the studied
buildings, the neutral temperature is 23.65 ◦C, which is obtained by substituting PMV = 0
in Equation (1). Fourth, PMV always underestimated the thermal sensation of patients in
the APEI residential buildings in summer. Fifth, the comparison between patients and staff
is important to better understand the variation in comfort requirements, so that buildings
can be designed to accommodate the diverse needs of all occupant groups. Sixth, this paper
presents the adaptive predicted mean vote (PMVa) based on the relationship between
measurements and field studies. Lastly, in the APEI residential buildings, the adaptive
temperature is 25.0 ◦C with respectively upper and lower limits of 24.7 ◦C and 25.4 ◦C,
respectively. This paper proposes recommendations for indoor temperatures in healthcare
buildings for disabled patients based on the relationship between patients’ sensations and
the thermal environment.
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Further studies should examine the conditions of thermal comfort in health care
facilities and investigate how to personalize the comfort indices to consider the disabilities,
health status, and medical treatments of this population.
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Abbreviations

AMV Actual Mean Vote [-]
Icl Clothing thermal insulation [KW−1 m−2]
M Metabolism [W m−2]
Tr Mean radiant temperature [◦C]
n(t) Sequential thermal index [-]
PMV Predicted Mean Vote [-]
PMVa Adaptive Predicted Mean Vote [-]
PPD Percentage People Dissatisfied [-]
RH Relative humidity [%]
Tadaptive Adaptive temperature [◦C]
Tn Neutral Temperature [◦C]
Ta-out Outdoor temperature [◦C]
To Operative Temperature [◦C]
Ta-in Indoor temperature [◦C]
Vair Air Velocity [m s−1]

Appendix A

Comfort Indices: PMV and PPD
PMV =

(
0.303 e(−0.036M) + 0.028

)
{(M−W)− 3.05 10−3[5733− 6.99(M−W)− Pa]

−0.42[(M−W)− 58.15]− 1.710−5M(5867− Pa)− 0.0014M(34− Ta)

−3.9610−8 fd

[
(Tcl + 273)4 − (Tr + 273)4

]
− fclhc(Tcl − Ta)}

(A1)

PPD = 1− 0.95 e(−0.03353 PMV 4 − 02179 PMV 2) (A2)

Tcl = 35.7− 0.028(M−W)− 0.155Icl

[
3.96 10−8 fcl

(
T4

cl − T4
cl

)
+ fclhc(Tcl − Ta)

]
(A3)

hc = max
[
2.38 (Tcl − Ta)

0.25, 12.1Var
0.5
]

(A4)
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fcl = 1 + 0.2 Icl i f Icl ≤ 0.5 (A5)

fcl = 1 + 0.1 Icl i f Icl > 0.5 (A6)

where: M, W and Pa are the metabolic rate [W/m2], the external work [W/m2], and
the partial vapor pressure (Pa) respectively. fcl is the ratio of surface area of the body
with clothes to the surface area of the naked body. hc is the convective heat transfer
coefficient W/(m2.K). Ta represents the air temperature [◦C], Tcl the surface temperature
of clothing [◦C], Tr the mean radiant temperature [◦C], and Var represents the relative
air velocity [m/s]. In this, study, the relative air velocity has been assumed equal to air
velocity [27].

Appendix B

Mean radiant temperature
In the case of forced convection and according to ISO 7726,

Tr =
[(

Tg + 273
)4

+
1.1 × 108 ×V0.6

a
εg × D0.4 ×

(
Tg − Ta

)]1/4

− 273

where: Tr, Tg and Ta represents the mean radiant temperature [◦C], the globe thermometer
temperature [◦C] and the air temperature [◦C] respectively, D the globe thermometer
diameter, εg the globe thermometer predicted emissivity, Va the air velocity [m/s].
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