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Abstract: Insulators play a significant role in high-voltage transmission lines, and detecting insulator
faults timely and accurately is important for the safe and stable operation of power grids. Since
insulator faults are extremely small and the backgrounds of aerial images are complex, insulator
fault detection is a challenging task for automatically inspecting transmission lines. In this paper,
a method based on deep learning is proposed for insulator fault detection in diverse aerial images.
Firstly, to provide sufficient insulator fault images for training, a novel insulator fault dataset named
“InSF-detection” is constructed. Secondly, an improved YOLOv3 model is proposed to reuse features
and prevent feature loss. To improve the accuracy of insulator fault detection, SPP-networks and a
multi-scale prediction network are employed for the improved YOLOv3 model. Finally, the improved
YOLOv3 model and the compared models are trained and tested on the “InSF-detection”. The average
precision (AP) of the improved YOLOv3 model is superior to YOLOv3 and YOLOv3-dense models,
and just a little (1.2%) lower than that of CSPD-YOLO model; more importantly, the memory usage
of the improved YOLOv3 model is 225 MB, which is the smallest between the four compared models.
The experimental results and analysis validate that the improved YOLOv3 model achieves good
performance for insulator fault detection in aerial images with diverse backgrounds.

Keywords: insulator fault detection; aerial image; deep learning; YOLO; DenseNet; complex back-
grounds

1. Introduction

With the enlargement of high-voltage transmission lines, more and more insulators are
being applied to power grids. As one of the indispensable components, the insulator plays
the role of conductor conjunction and electrical insulation for high-voltage transmission
lines [1,2]. Most insulators are exposed to the outdoors for a long time, making them
prone to damage. Thus, safe and stable operation of the power grid can be threatened, in
severe cases, resulting in widespread power outages and huge economic losses. According
to statistics, accidents caused by insulator faults account for the largest percent of the
total power grid accidents [3]. Therefore, automatic and timely detection of insulator
faults in high-voltage transmission lines has important practical significance [4,5]. In the
last decade, with the development of computer vision and image processing technology,
the traditional manual patrol has gradually been replaced by unmanned aerial vehicle
(UAV) inspection [6–8], and aerial images captured by UAV have been widely used for
high-voltage transmission lines off-line inspection. Insulators and their fault images used
for detection are shown in Figure 1. Extensive research activity has been conducted
on insulators and their fault detection in aerial images by traditional object detection
methods [9–13].

The traditional object detection methods used for insulator recognition generally can
be divided into three steps: first, the sliding window method is used to extract regions
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of interest (RoI) in aerial images; and then, feature extraction is performed on the RoI
area, including texture feature, shape feature, and color feature, etc.; finally, classifiers are
manually designed to recognize insulators and their faults [9]. Specifically, in [10], a robust
algorithm was proposed to extract insulators from aerial images with complex backgrounds.
To improve the precision and robustness of the proposed algorithm, multiple-feature
and multiple-scale descriptors were employed to extract the local features of insulators.
However, the coarse-to-fine matching strategy is complex, resulting in a time-consuming
algorithm. In order to reduce the background interference caused by texture feature
and lighting conditions, in [11], a method combining shape feature, color feature, and
texture feature was presented to demonstrate fault detection in insulators. Experimental
results demonstrate that the accuracy of insulator detection is improved effectively, but
multiple-feature extraction and complicated computation are needed in the proposed
method, therefore, the method is not applicable to recognize insulators in aerial images
with multiple backgrounds. Occlusion may occur between insulator strings in aerial images
due to the uncertainty of filming perspective. To solve the problem that insulators are
difficult to detect under different occluding conditions, in the work of Cheng [12], a method
based on spatial features was proposed to recognize glass insulators. Experimental results
revealed that the method had a good detection precision (92.54%), but the performance of
running time (0.58 s/per image) did not meet the requirements of real-time applications.
In the work of [13], a spatial morphological algorithm was proposed for the bunch-drop
fault detection of both glass and ceramic insulators in aerial images with background
interference. Firstly, a color model was established to segment RoI area of insulators
from the complex background. Secondly, the localization of insulators were detected by
the spatial morphological features. Finally, a series of rules were created to distinguish
insulators and their faults. Compared with some of other existing methods, this method
can recognize and locate insulator faults efficiently from aerial images with complex
backgrounds, however, it will not work well when the insulator’s color is similar to the
background. In addition, it can merely achieve single-fault detection in each aerial image.
Therefore, the traditional object detection methods based on manual designed features
merely detect insulators and their faults under specific detection conditions. Furthermore,
aerial images are collected by UAVs with different filming distances and angles in real
application, and it is difficult for such methods to detect different sizes of insulators and
their faults in aerial images with diverse backgrounds.
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In recent years, with the rapid development of artificial intelligence technology, deep
learning theory has been widely used in the fields of image classification, target detec-
tion [14–18], scene recognition, automatic driving of vehicles, and so on. The architectures
of deep learning are composed of convolutional neural networks (CNNs), many state-of-the-
art algorithms based on CNNs have been put forward and successfully applied for object
detection, including two-stage algorithms—Regions with Convolutional Neural Network
(R-CNN) [19], Fast R-CNN [20], and Faster R-CNN [21–23]; and one-stage algorithms—
Single Shot multi-box Detector (SSD) [24], You Only Look Once (YOLO) [25–28]. Naturally,
the existing deep learning-based object detection algorithms can be employed for insulators
and detection of their faults by transfer learning strategy. In [29], a novel method based
on deep learning was presented to recognize insulators and their faults. Firstly, Faster
R-CNN was adopted to locate the RoI area in aerial images with complex backgrounds
from high-voltage transmission lines. Secondly, the fully convolutional network (FCN)
was used to perform the segmentation on the RoI area. Finally, the GoogLeNet network
model was adopted to recognize insulator faults in the segmented images. Experimental
results reveal that the accuracy of insulator fault detection by the Faster R-CNN is more
than 90%, which is obviously superior to that of the traditional object detection algorithms.
To realize insulator fault detection under the low signal-noise-ratio (SNR) conditions, in the
work of [30], two deep learning network models (Faster R-CNN and U-net) were cascaded
for detecting insulators and their faults in aerial images with background interference.
Faster R-CNN was used to accurately recognize and locate insulators in aerial images with
complicated backgrounds, and the precise classification of insulators and their faults with
different sizes was realized by U-net. As one of the two-stage algorithms, Faster R-CNN
can achieve a slightly higher detection accuracy than one-stage algorithms in some public
datasets. However, the average running time in two-stage algorithms is much longer than
that of one-stage algorithms [31–33], so the two-stage algorithms are not suitable for high
real-time applications, while one-stage algorithms are faster, and better results are achieved
by using one-stage algorithms. To automatically extract multiple-level features from aerial
images, in [34], a deep learning method based on SSD was adopted to detect insulators. A
two-stage fine-tuning strategy was proposed to improve the accuracy of insulator detection
in aerial images with different scenes. Experimental results show that the proposed method
can achieve real-time detection in aerial images with complex backgrounds. Compared
with Faster R-CNN and SSD models [35], the running time of YOLO model is much faster,
so the YOLO models can be applied to inspect the real-time status of insulators from high-
voltage transmission lines. In [36], YOLOv3 was adopted to perform insulator localization
and fault detection, and the average running time of insulator detection reached 45 images
per second. To reduce the impact of background interference on insulator fault detection,
in [37] an improved YOLOv3 model was proposed to detect insulators from a complex
background. Experimental results reveal the proposed model has a good performance in
accuracy and real-time (89.96% of average precision and 0.02 s/per image in the testing set).
In our previous work [38], to improve the accuracy of insulator detection with multiple
sizes, YOLOv3-dense network model was proposed to perform insulator detection in
aerial images with diverse background interference. Experimental results show that the
average precision of the proposed model can reach 94.47%, however, since the fault area of
insulator is relatively small, the fault area will be lost after the feature extraction network of
YOLOv3-dense, resulting in a decrease in the accuracy of insulator fault detection. In [39],
a Cross Stage Partial Network was introduced to YOLOv3, and the Cross Stage Partial
Dense YOLO (CSPD-YOLO) model was proposed to detect insulator faults. The proposed
model achieves a good effect on insulator fault detection (with the average precision of
98.18%), however, the memory usage of the proposed model (265 MB) is larger than that of
YOLOv3 (240 MB).
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In general, deep learning algorithms make full use of CNNs to learn deep features
automatically, and optimize the network parameters to improve the accuracy of object
detection. Compared with the traditional object detection methods, deep learning-based
methods have a strong advantage in feature extraction. However, there are several chal-
lenges in performing insulator fault detection based on deep learning methods, including
a limited amount of insulator fault images, the extreme smallness of the insulator fault
area, the complexity of the background of aerial images, and so on. To solve these issues,
based on our previous work [38,39] and DenseNet, an improved YOLOv3 model is pro-
posed for insulator fault detection in diverse aerial images from high-voltage transmission
lines. To solve the problem of insufficient fault images, a novel insulator fault dataset
named “InSF-detection” is created; to enhance feature reuse and feature propagation of
high-resolution feature layer, DenseNets are adopted to the feature extraction network
of improved YOLOv3 network model; to improve the accuracy and robustness of insu-
lator fault detection, Spatial Pyramid Pooling networks (SPP-networks) and improved
multi-scale prediction network are employed to the improved YOLOv3 network model.

The rest of this paper is organized, as follows. (1) Section 1 reports the existing works
of insulators and their fault detection. (2) Section 2 introduces the network of YOLOv3
model. (3) Section 3 details the proposed network model for insulator fault detection.
(4) Section 4 gives experimental results and analysis. (5) Finally, Section 5 presents the
conclusion of this paper.

2. YOLOv3 Network

YOLOv3 network model is one of state-of-the-art algorithms proposed by Redmon
et al. in 2018. Different from the two-stage algorithms, YOLOv3 network extracts features
based on regression methods without generating a large number of candidate windows,
and directly uses a single neural network to predict and classify the input image, which is
helpful to reduce the running time of object detection. This is the reason why the running
time of one-stage algorithms is faster than that of two-stage algorithms.

In order to achieve deeper feature extraction, residual structure is adopted to the
feature extraction network of YOLOv3, which is composed of Convolutional layer (Conv)
1 × 1, Conv 3 × 3, and shortcut connection. Darknet-53, composed of different sizes
of residual blocks, is used in the feature extraction network of YOLOv3, as shown in
Figure 2. Five residual blocks (1×, 2×, 8×, 8×, 4×) are used for the feature extraction
network, including 23 residual modules in total, and the residual operation is carried
out through Convolutional layer (Conv), Batch Normalization (BN), and Rectified Linear
(ReLU) activated function.

The prediction process of YOLOv3 network model is as follows: The feature extraction
network of YOLOv3 divides the input image into S× S grid cells according to the size of the
feature map, if the center of an object falls into a cell, the cell is responsible for predicting
the object, and each cell outputs multiple prediction boxes and confidence. Three effective
feature maps (13 × 13, 26 × 26, and 52 × 52), extracted by feature extraction network, are
used for multi-scale object prediction. To improve the detection accuracy of multiple sizes
of objects, Feature Pyramid Network (FPN) is adopted to YOLOv3, such as the feature map
(26 × 26) followed by up-sampling fused with the feature map (52 × 52). Similarly, the
feature map (13 × 13) followed by up-sampling is fused with the feature map (26 × 26).
The outputs of YOLOv3 network model are predicted by three different scales of detection
heads, (e.g., the Scale1 is responsible for the prediction of large-size objects, the Scale2 is
responsible for the prediction of medium-size objects, and the Scale3 is responsible for the
prediction of small-size objects, respectively).
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3. Materials and Methods

As it is well known, the depth of a neural network is very important to the perfor-
mance of the object detection model. High-efficiency features can be extracted for object
recognition with the deepening of network layers, however, as the network depth increases,
the accuracy of the network model will quickly reach saturation, or even begin to decline
rapidly, causing the gradient disappearance or explosion. To avoid this problem, Residual
network (ResNet) [40,41] and densely connected network (DenseNet) [42–44] are proposed
to train the network model with hundreds of layers.

In the insulator images, the insulator is composed of a series of insulator strings,
but the fault of insulator string is extremely small compared with the size of insulator.
Furthermore, the backgrounds of aerial images captured by UAV are complex, and the
appearance of different insulators are diverse under different shooting angles. Therefore, it
is necessary to select a stable and efficient detection algorithm to recognize insulators and
their faults. The accuracy of detection based on deep learning methods can be improved
when the depth of neural network is increased, however, the deeper the network layers,
the more complicated the detection network. In addition, during the training of the
YOLOv3 network model, the feature extraction network loses much shallow-level feature
information, which leads to the lack of position information in the feature map of detection
head. To recognize insulator faults accurately from complex backgrounds, in this study, on
the basis of DenseNet and YOLOv3, an improved YOLOv3 network model is proposed for
insulator fault detection. The structure of improved YOLOv3 model is shown in Figure 3.
In order to improve high-resolution feature reuse and feature propagation, DenseNets are
adopted to the feature extraction network of improved YOLOv3 network model; to enlarge
multi-scale receptive fields of insulator fault detection, SPP-networks are employed to the
improved YOLOv3 model; to obtain richer semantic features for insulator fault detection, a
novel multi-scale feature fusion strategy is adopted to the improved YOLOv3 model.
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3.1. Feature Extraction Network of the Improved YOLOv3

In order to effectively reduce the network model parameters, while keeping the
shallow-level feature in the high-level layers as much as possible, and further realize the
multiple layer feature reuse and fusion, DenseNet is adopted to the YOLOv3 network
model. In DenseNet, the previous layer is connected to the following layers in a manner of
feed-forward, in other words, the input feature of each layer comes from the output of all
the previous layers, and the structure of DenseNet is shown in Figure 4. Hn is defined as
a transform function, which is composed of Batch Normalization (BN), Rectified Linear
(ReLU), and Convolutional layer (Conv), providing a non-linear transform to Convolutional
layers X0, X1, ..., and X(n – 1). In general, BN-ReLU-Conv (1 × 1) and BN-ReLU-Conv
(3 × 3) are the commonly used transform functions. The feature map of X1 is generated
after the operation of H1, and the feature map of X0 and X1 are spliced into [X0, X1] as the
input features of function H2. The feature map of X2 is obtained after the operation of H2,
and the feature map of X0, X1, and X2 are spliced into [X0, X1, X2] as the input feature of
function H3. Similarly, the spliced feature maps [X0, X1, X2, X3] are the input feature of
function H4, and the feature map X4 is generated after the operation of H4. Finally, the
feature map of Xn is defined in Formula (1).

Xn = Hn([X0, X1, . . . , X(n− 1)]) (1)
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To further reduce background interference and detect insulator faults accurately, as
shown in Figure 3, three DenseNets were adopted to the extraction network of the im-
proved YOLOv3 network model for the feature reuse, to achieve the feature fusion of
shallow-level feature and high-level feature. Specifically, in the network architecture of
DenseNet1, two transform functions were used. The input feature map of DenseNet
1 was 64 × 104 × 104, and after the operation of the first transform function by BN-
ReLU-Conv (32 × 1 × 1) and BN-ReLU-Conv (32 × 3 × 3), the output feature map of the
first layer was 32 × 104 × 104. The feature maps 64 × 104 × 104 and 32 × 104 × 104
were spliced into 96 × 104 × 104 as the input feature of the second layer. After the
operation of the second transform function by BN-ReLU-Conv (32 × 1 × 1) and BN-
ReLU-Conv (32 × 3 × 3), the output feature map of the second layer was 32 × 104 × 104.
Finally, the feature maps of 64 × 104 × 104, 32 × 104 × 104, and 32 × 104 × 104 were
spliced into 128 × 104 × 104 as the output feature map of DenseNet 1. Similarly, in
the network architecture of DenseNet 2, four transfer functions were used. The input
feature map of DenseNet 2 was 128 × 52 × 52, and after the operation of transform
function by BN-ReLU-Conv (32 × 1 × 1) and BN-ReLU-Conv (32 × 3 × 3), the output
feature map of each layer was 32 × 52 × 52. The input feature maps of each transfer
function were 128 × 52 × 52, 160 × 52 × 52, 192 × 52 × 52, and 224 × 52 × 52, respec-
tively. The final output feature map of DenseNet2 was 256 × 52 × 52. The network ar-
chitecture of DenseNet 3 is similar to that of DenseNet 2. The input feature map of
DenseNet 3 was 256 × 26 × 26, and after the operation of transfer function by BN-ReLU-
Conv (64 × 1 × 1) and BN-ReLU-Conv (64 × 3 × 3), the output feature map of each layer
was 64 × 26 × 26. The input feature maps of each transfer function were 256 × 26 × 26,
320 × 26 × 26, 384 × 26 × 26, and 448 × 26 × 26, respectively. Finally, the output feature
map of DenseNet 3 was 512 × 26 × 26.

Compared with the feature extraction network of YOLOv3, DenseNet 1 is adopted to
the shallow-level layers (high-resolution feature layers) of the improved YOLOv3 network
model. The feature of shallow-level layers can be better and faster transmitted to the high-
level layers, the network model parameters can be reduced effectively, while ensuring that
the shallow-level feature is not lost, which is helpful to perform insulator fault detection;
DenseNet2, and DenseNet3 are employed to the feature extraction network to extract
features (52 × 52, and 26 × 26), multi-level features can be reused and fused, and the
transmission efficiency of information can be further improved.

3.2. Structure of SPP-Networks

Pooling operation is indispensable for neural networks because it makes the network
model more focused on the main features, increases the receptive fields of the convolution
kernel, and enhances the fitting ability of the neural network. SPP-network is a kind of
pooling method, which reduces the dimensions of feature representation through multi-
scale pooling layers, to capture features under different scales. To generate multiple
effective receptive fields of the specific scale of insulator faults, inspired by the works
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of [45–47], three SPP-networks were employed to the improved YOLOv3 network model,
using filters and pooling operations to process the input feature maps at different rates.
The structure of SPP-network is shown in Figure 5, which is composed of max pooling
layers with different kernel sizes (5 × 5, 9 × 9, 13 × 13).
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Specifically, the SPP-networks were connected to the output feature layers
(13 × 13, 26 × 26, and 52 × 52) of the feature extraction network, respectively. Firstly, the
input feature maps of SPP-networks were adjusted to (512 × 13 × 13), (256 × 26 × 26),
and (128 × 52 × 52). Secondly, pooling operations with the filters of (5 × 5, 9 × 9, and
13 × 13) were performed on the input feature maps (512 × 13 × 13), (256 × 26 × 26), and
(128 × 52 × 52) to generate multi-scale local feature maps. Finally, the generated multi-
scale local feature maps were concatenated with the input feature maps to obtain the
output feature maps (2048 × 13 × 13), (1024 × 26 × 26), and (512 × 52 × 52), respectively.
Compared with the original local region feature maps, the final feature maps obtain larger
receptive fields and more abundant local feature information. SPP-network eliminates the
effect of inconsistent effective feature information, which is helpful to improve the accuracy
of insulator fault detection.

3.3. Feature Pyramid Network of the Improved YOLOv3

Compared with high-level feature layers, the detail and position information of the
shallow-level feature layers is generally richer, however, due to the gradual deepening
of feature layers, some detail and position information decreases, while the semantic
information increases, so the deeper the high-level feature layers, the more abundant the
semantic information. Therefore, after adding the structure of SPP-networks, to enhance
the feature representation and further realize the feature reuse, the top-down and bottom-
up fusion strategy was presented to improve the multi-scale prediction network [48]. The
structure of improved multi-scale prediction network is shown in Figure 6.
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Figure 6. The structure of improved multi-scale prediction network.

As can be seen from Figure 6, the specific improvement process of the multi-scale pre-
diction structure in this work was as follows: Three effective feature layers P3 (256 × 52 × 52),
P4 (512 × 26 × 26), and P5 (1024 × 13 × 13) were extracted through the feature extraction
network of the improved YOLOv3 network model. Firstly, convolution operations and SPP
were performed on the effective feature layers P3, P4, and P5 to obtain large feature layer
(LFL0), medium feature layer (MFL0), and small feature layer (SFL0). Secondly, the small
feature layer (SFL1) was obtained by performing convolution operations of SFL0; and the
result of up-sampling (×2) of SFL1 was fused with the result of convolution operations of
MFL0 to obtain medium feature layer (MFL1); and then the results of up-sampling (×4) of
SFL1, up-sampling (×2) of MFL1, and convolution operations of LFL0 were concatenated
to obtain large feature layer (LFL1), thereby the bottom-up feature fusion is completed.
Finally, the large feature layer (LFL2) was obtained by performing convolution operations
of LFL1; and the result of down-sampling of LFL2 was fused with the result of convolu-
tion operations of MFL1 to obtain medium feature layer (MFL2); and then the results of
down-sampling of MFL2, and convolution operations of SFL1 were concatenated to obtain
small feature layer (SFL2), thereby the top-down feature fusion is completed. The final
obtained large feature layer (LFL2), medium feature layer (MFL2), and small feature layer
(SFL2) were used for multi-scale (52 × 52, 26 × 26, and 13 × 13) prediction, respectively. In
this paper, the top-down and bottom-up feature fusion strategy were used to improve the
multi-scale prediction network. Although the computational complexity has increased to
some extent, the prediction accuracy can be improved.

3.4. Loss Function of the Improved YOLOv3

In the improved YOLOv3 model, the input image (416 × 416) is divided into S × S
grids, and each grid predicts B bounding boxes at three scales (52 × 52, 26 × 26, and
13 × 13). The loss function loss in the improved YOLOv3 model is defined in Formula (2),
which can be divided into four parts: the position loss function lxy, the scale loss function
lwh, the confidence loss function lcon, and the classification loss function lcls. The position
loss function, scale loss function, confidence loss function, and classification loss function
are defined in Formulas (3)–(6), respectively.

loss = lxy + lwh + lcon + lcls (2)

lxy = λcoord ×
S2

∑
i=0

B

∑
j=0

1obj
ij

[(
xij − xij

)2
+
(

yij − yij

)2
]

(3)

lwh = λcoord ×
S2

∑
i=0

B

∑
j=0

1obj
ij

(wij − wij

wij

)2

+

(
hij − hij

hij

)2
 (4)
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lcon =
S2

∑
i=0

B

∑
j=0

1obj
ij

[(
Cij − Cij

)2
]
+λnoobj

S2

∑
i=0

B

∑
j=0

1noobj
ij

[(
Cij − Cij

)2
]

(5)

lcls =
S2

∑
i=0

1obj
ij ∑

c∈class

[
(pi(c)− pi(c))

2
]

(6)

Concretely, in Formulas (3)–(6), λcoord denotes the weight of coordinate error, and
λnoobj is the weight of Intersection over Union (IoU) error. 1obj

ij refers to whether an object
falls in the jth bounding box of grid i. (x, y) is the center coordinate of bounding box,(

w, h
)

are the width and height of bounding box, and (x, y) is the center coordinate of

true value, (w, h) are the width and height of true value. C and C denote the predicted
confidence and true confidence, pi(c) and pi(c) are the true probability and predicted
probability of object classification, respectively.

4. Experiments Results and Discussion

In this work, the experimental conditions are as follows: in terms of hardware, the
CPU is Intel(R) Core(TM) i9-9900K with 3.60GHz, the GPU is NVIDIA GeForce GTX 3080
with 10G memory, and the total memory is 32GB; in terms of software, CUDA 11.1 and
cuDNN 8.0.5 are equipped with Open CV 3.4.0, Visual Studio 2017, Windows 10, and
training framework of Dark-net [49], as shown in Table 1.

Table 1. Experimental conditions.

Parameters Configuration

CPU Intel(R) Core(TM) i9-9900K, CPU/3.60 GHz
GPU Nvidia GeForce GTX 3080/10 GB

Accelerated Environment CUDA 11.1, cuDNN 8.0.5
Visual Studio Framework Open CV 3.4.0, Visual Studio 2017

Operating System Windows 10
Training Framework Dark-net

4.1. Dataset Preparation

Since aerial images of insulator faults are rare, it is hard to obtain enough fault images
for training and testing. To solve this problem, the simulated insulator fault samples were
created using the Photoshop tool based on the dataset “CPLID” (Chinese Power Line
Insulator Dataset) [50], the samples of insulator faults are shown in Figure 7. Then, the
Label-Image tool [51] was used to label the fault position of insulators in aerial images,
finally, the insulator fault dataset named ‘InSF-detection’ (Insulator Fault, InSF) was created,
including 864 aerial images with single-fault or multi-fault. Among them, 576 aerial images
were randomly selected as a training set, and the other 288 aerial images were assigned
to be a testing set. All the images were resized as 416 × 416 pixels. The details of dataset
‘InSF-detection’ are shown in Table 2.

Table 2. The dataset of “InSF-detection”.

Images Number Training Set Testing Set Image Size Faults Number

864 576 288 416 × 416 1172
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4.2. Anchor Boxes Clustering

Anchor boxes are a series of candidate boxes with a certain width and height, which
directly affect the accuracy and detection speed of deep learning models. Generally, k-
means clustering algorithm is adopted to YOLOv3 network. In this work, k-mean++
clustering algorithm [52] was employed to the improved YOLOv3 model. The algorithm
was performed on dataset “InSF-detection” and the result is shown in Figure 8. In this
experiment, a total of 12 cluster centers were selected to analysis dataset ‘InSF-detection’,
when the number k = 9, the corresponding average IoU = 80.25%. And when the number
k is greater than 9, the average IoU varies slowly. Finally, the clustering center of dataset
“InSF-detection” was chosen to be 9, and the corresponding anchor boxes for insulator fault
detection were obtained as follows: (18 × 14), (22 × 17), (22 × 20), (21 × 23), (26 × 19),
(24 × 23), (28 × 23), (26 × 29), and (32 × 29), respectively.
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4.3. Quantitative and Qualitative Analysis

To verify the practicability of the improved YOLOv3 model proposed in this paper for
insulator fault detection, experiments were conducted on four network models: YOLOv3,
YOLOv3-dense [38], CSPD-YOLO [39], and our proposed model (improved YOLOv3
model). The four models were trained and then tested on the same dataset “InSF-detection”
for a fair comparison. The values of Average Precision (AP), Precision (P), Recall (R), and
the curve of Precision-Recall (P-R) are used to evaluate the effects of the improved YOLOv3
and the compared models. The true positive (TP), false positive (FP), true negative (TN),
and false negative (FN) used in binary classification problem are defined as shown in
Table 3.
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Table 3. The definition of TP, FP, FN, and TN.

Ground Truth Predicted Result Definition

1 1 TP
1 0 FN
0 1 FP
0 0 TN

Precision (P), which denotes the proportion of all correctly detected results to all the
predicted results, is defined as Formula (7). Recall (R), which denotes the proportion of all
correctly detected results to all the results that should be predicted, is defined as Formula
(8). The P-R curve is obtained by using the precision as y-axis and the recall as the x-axis.
The Average Precision (AP), which can be calculated by the area under the P-R curve, is
defined as Formula (9).

Precision(P) =
TP

TP + FP
(7)

Recall(R) =
TP

TP + FN
(8)

AP =
∫ 1

0
P(R)dR (9)

To evaluate the effectiveness of insulator fault detection, the proposed model and
the compared models (YOLOv3, YOLOv3-dense, and CSPD-YOLO) were trained, and
then tested on the testing set of ‘InSF-detection’. The experimental effects (AP, Precision,
Recall, and Memory usage) of the models for insulator fault detection are listed in Table 4.
Specifically, the AP values of the four models were YOLOv3 (92.8%), YOLOv3-dense
(94.1%), CSPD-YOLO (97.7%), and the improved YOLOv3 (96.5%); the Precision (P) values
of the four models were YOLOv3 (94%), YOLOv3-dense (95%), CSPD-YOLO (99%), and
the improved YOLOv3 (98%); the Recall (R) values of the four models were YOLOv3 (91%),
YOLOv3-dense (91%), CSPD-YOLO (97%), and the improved YOLOv3 (95%), respectively,
and the corresponding histogram is shown in Figure 9.
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Table 4. The experimental effects of different network models.

Networks AP Precision Recall Memory Usages

YOLOv3 92.8% 94% 91% 240 MB
YOLOv3-dense 94.1% 95% 91% 248 MB

CSPD-YOLO 97.7% 99% 97% 265 MB
Our improved YOLOv3 96.5% 98% 95% 225 MB

Based on the observation of Figure 9, the AP value of our proposed model was 3.7%
higher than that of YOLOv3 and 2.4% higher than that of YOLOv3-dense, while slightly
(1.2%) lower than that of CSPD-YOLO; the precision of our proposed model was 4% higher
than that of YOLOv3 and 3% higher than that of YOLOv3-dense, while just a little (1%)
lower than that of CSPD-YOLO; the recall of our proposed model was 4% higher than
that of YOLOv3 and YOLOv3-dense, while just a little (2%) lower than that of CSPD-
YOLO. Compared with the models of YOLOv3, YOLOv3-dense, and CSPD-YOLO, the
performance (AP, Precision, and Recall) of our proposed model is superior to the YOLOv3
and YOLOv3-dense, and almost consistent with that of the CSPD-YOLO model. Moreover,
the performances of the four models were also evaluated by memory usage, and the
memory usages of the four models were YOLOv3 (240 MB), YOLOv3-dense (248 MB),
CSPD-YOLO (265 MB), and our proposed model (225 MB); the memory usage of our
proposed model was 6.25%, 9.27%, and 15.1% lower than those of YOLOv3, YOLOv3-
dense, and CSPD-YOLO, respectively. Therefore, to achieve a good trade-off among the
AP, Precision, Recall, and Memory usage, our proposed model is more advantageous
than YOLOv3, YOLOv3-dense, and CSPD-YOLO models, and our proposed model can be
deployed on embedded devices for insulator fault on-line detection in aerial images from
high-voltage transmission lines.

Furthermore, due to aerial images captured by UAV including different backgrounds,
to further evaluate the detection performance of the proposed model, the experimental
results conducted on the improved YOLOv3 model are provided in Figure 10a–h, under the
conditions of simple backgrounds or complex backgrounds. Specifically, Figure 10a,c,e,g
are experimental results with single-fault in each image, and Figure 10b,d,f,h are experi-
mental results with multiple-fault in each image. Figure 10a,b reveals the experimental
scene of sky with single-fault and multiple-fault, respectively. Figure 10c,d exhibits the
background interference of river with single-fault and multiple-fault, respectively. Since
the backgrounds of sky and river are relatively simple, all the insulator faults in the aerial
images were detected easily by the proposed model. Figure 10e,f demonstrates the exper-
imental scene of tower with single-fault and multiple-fault, and the image background
interference of vegetation with single-fault and multiple-fault are shown in Figure 10g,h.
Although the backgrounds of tower and vegetation are complex, all the insulator faults
in aerial images were detected accurately by the proposed model. Meanwhile, some insu-
lator strings in the image are occluded, but the insulator faults were effectively detected.
Therefore, experimental results indicate that the proposed model can obtain good detection
results in aerial images with different backgrounds.
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Compared with the models of YOLOv3, YOLOv3-dense, and CSPD-YOLO, to verify
the robustness and effectiveness of the improved YOLOv3 model, some typical aerial
images were selected to present the visualized experimental results of the four network
models, as shown in Figures 11–13. Specifically, the backgrounds of river, building, and
vegetation are shown in Figures 11–13, respectively. Based on the observation of figures, the
backgrounds of aerial images are complicated, and there are multiple-fault of insulators in
each image. As it can be seen in Figure 11, there are four faults in each image, although the
faults of insulator are extremely small and the color of insulator is similar to that of back-
ground, all the insulator faults were correctly detected by CSPD-YOLO (Figure 11d). While
two insulator faults were correctly detected by YOLOv3 (Figure 11a) and YOLOv3-dense
(Figure 11b), and three insulator faults were correctly detected by our proposed model
(Figure 11c), moreover, there is a misdetection in Figure 11a. The experimental results
with background of building are shown in Figure 12, three insulator faults were correctly
detected by YOLOv3 (Figure 12a). All the faults of insulators were accurately detected by
YOLOv3-dense (Figure 12b), our proposed model (Figure 12c), and CSPD-YOLO (Figure
12d). Figure 13 shows the detection results with the background of vegetation. Due to the
background complexity, three insulator faults were detected by YOLOv3 (Figure 13a) and
YOLOv3-dense (Figure 13b), and the position of predicted boxes of YOLOv3 are inaccurate.
All the insulator faults in the images were effectively detected by our proposed model
(Figure 13c) and CSPD-YOLO (Figure 13d). Consequently, compared with the networks of
YOLOv3, and YOLOv3-dense, our proposed network model achieves better performance
for insulator fault detection with complex backgrounds.
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When insulator faults occur, they should be located and repaired as soon as possible,
otherwise, the electrical insulation performance of insulators will be reduced and the stabil-
ity of the high-voltage transmission lines will be affected. It is necessary to detect insulator
faults timely and accurately. Our proposed model has good prospects for applications
on UAV for real-time inspection of high-voltage transmission lines. For a future study,
the proposed model could be utilized on UAV for real-time insulator fault detection. In
addition, it would be necessary work to perform fault detection on insulator string with
flashover, and contamination.

5. Conclusions

This study presented an improved YOLOv3 model for insulator fault detection in aerial
images from high-voltage transmission lines. First, a novel insulator fault dataset named
‘InSF-detection’ was created, solving the problem of insufficient insulator fault images.
After that, DenseNets were adopted to the feature extraction network of our proposed
model for reusing and preventing the loss of features. SPP-networks and improved multi-
scale prediction network were employed in our proposed model to improve the accuracy
of insulator fault detection. Finally, our proposed model and the compared models were
trained and tested on the same testing set. Experimental results with the compared models
showed that: the AP values of YOLOv3, YOLOv3-dense, CSPD-YOLO, and the improved
YOLOv3 were 92.8%, 94.1%, 97.7%, and 96.5%, respectively, proving that the improved
YOLOv3 was superior to YOLOv3 and YOLOv3-dense models, and was close to CSPD-
YOLO model. More importantly, the memory usage of the improved YOLOv3 (225 MB)
was 6.25%, 9.27%, and 15.1% lower than those of YOLOv3 (240 MB), YOLOv3-dense (248
MB), and CSPD-YOLO (265 MB), respectively. To achieve a good trade-off among the AP,
Precision, Recall, and Memory usage, the improved YOLOv3 model is more advantageous
than the compared models. Consequently, it can be concluded that the improved YOLOv3
model achieves good performance for insulator fault detection in aerial images with diverse
backgrounds, the improved YOLOv3 model has the potential of actual applications for
high-voltage transmission lines on-line inspection.
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