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Abstract: The problem of electric network expansion has different implications concerning the
definition of criteria for the comparison of different candidate projects. Transmission expansion
planning usually involves a set of economic and technical influences on market framework and on
network operation over defined scenario evolutions, or even combining generation and transmission
planning, although the application to real-sized networks usually implies cost-benefit analysis. In this
paper, a methodology for performance analysis of a set of network development projects is proposed,
including zonal market framework and load flow analysis, in order to individuate possible candidate
projects and their influence on active power losses, admissible load increase and admissible renewable
generation increase. Those merit indicators are compared among candidate projects by means of
Analytic Hierarchy Process (AHP) method, aiming at determining the most promising solution under
different weights of criteria. Moreover, the influence of network development investment cost on
project selection is assessed by means of an extension of AHP. The procedure is applied to yearly
operation of NREL-118 test system.

Keywords: transmission network; network development project; load increase; renewable increase;
analytic hierarchy process

1. Introduction

Studies of network development planning aim to analyze the interaction of grid
configuration, generation and demand. Providing demand envisions, the scheduling
goal is to deal with generation evolution (e.g., replacing out-to-date technologies with
renewables and innovative ones), combined with demand load trend evolution taking into
account economical, reliability, continuity and environmental factors. Further, network
developing analysis represents a crucial issue due to the analytics intricacy and the big
data management. These reasons have brought the definition of Transmission Evolution
Planning (TEP) and Generation Evolution Planning (GEP) or combined G&TEP. With
regard to TEP, the Transmission System Operators (TSOs) must consider the uncertainty of
future framework of load demand required or renewable generation penetration satisfying
technical constrains and ensuring reliability and security, by assessing branch doubling or
new grid assets.

G&TEP is overwhelming modelled, as mono- or bi-level programming-based optimiza-
tion methods to minimize costs, and it is formulated as Mixed Integer Linear Programming
(MILP) [1–4], Mixed Integer Nonlinear Programming (MINP) [5] or Robust Optimiza-
tion [6]. Generation and transmission investment costs are the essential terms present
in the objective function for all the approaches [1–6] whereas additional aspects involve
operating costs, expected energy not served (EENS), losses cost, load shedding costs.

TEP mathematical optimization methods can be grouped in two main categories: programming-
based and heuristic optimizations. Linear programming (LP) [7–11], MILP [12–17], robust opti-
mization (RO) [18–21] or games theory [22] are the spread methods of the first group.
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Instead heuristics can include K-medoids [23], Gbest-Guided Artificial Bee Colony [24],
Particle Swarm Optimization [25,26], multi-criteria decision making and differential evo-
lution [27] social spider algorithm [28], evolutionary algorithms [29], semi-definitive pro-
gramming and branch and bound [30], symbiotic organism algorithm [31], or combined
search space reducer and bat-inspired algorithm [32]

As regards objective functions, in TEP new transmission line investment costs are usu-
ally considered, but additional operating costs or penalties could be included, such as gener-
ation operating costs [10,19,24,25], matched with unserved energy costs as in [9,20,21,23,32],
or with load shedding as in [11,14,15]. Other works consider loss-of-load probability and
load curtailment costs [13], renewable curtailment costs [8], load shedding and renew-
able curtailment costs [16], losses penalty factor [30], or operational costs, generation
curtailment and load shedding costs [17]. Few works neglect generation operating costs
in objective function but embed new factors as in [26] where weighted vulnerability fac-
tors are introduced to optimize the system security, or in [27] whose purpose is to avoid
congestions by means of a penalty factor. A novel case of investment costs omission is
evaluated in [7], rather the focus is on the generation costs including fuel, O&M and CO2
costs. In multi-level TEP optimization the investment costs are considered in the last level.
Detailed market aspects are modeled in [22] where the first-level optimization pursues
generation costs minimization and consumer surplus maximization, the second-level aims
at maximizing zonal generation and consumer surpluses and congestion rent earned by
the TSO, while the third-level goal is to minimize investment costs and maximize global
generation and consumer surpluses. The authors of [18] minimize the generation and load
shedding costs in the level-I, and investment costs in level-II.

A crucial perspective in the TEP optimization constraints is the network model. The
most employed formulation is the DC load flow (LF) [1–3,6,9–19,21–23,27,28,31], in few
papers the losses have been embedded by means of quadratic expression in the DC formu-
lation [5,29,32]. Nevertheless, other approaches exploit power transfer distribution factors
(PTDFs) [4,7,8], shifting factors [11,26], economic dispatch [20] or power balance [29] but all
the approaches omit the behavior of losses. AC LF formulation is adopted in [25] and [30]:
the first one compares the AC optimal power flow (OPF) model with DC-TEP formulation
considering piecewise linear losses, while the second represents the losses as difference
between generation and load. As reported above, the TEP optimization methods focus
on economic terms, with simplified network models to reduce formulation complexity
and reduce computational cost. However, as demonstrated in [25] the AC OPF solution
requires higher capacity installation and lower operating costs compared to the DC-TEP
ones. Besides, [33] investigates the influence of losses model in the TEP solution, underlin-
ing the variation in investment costs proving that in large-scale systems the losses have a
relevant impact.

A separate set of approaches, guided by TSO applications, involve solution techniques
of TEP problem different from optimization. The combination of DC-OPF and cost-benefit
analysis (CBA) is the common framework employed to evaluate the candidate project
selection. The CBA is conducted by means of: wind spillage and production costs in-
dices [34]; the comparison with and without weighted environmental aspects indices [35];
present-value, welfare, investment costs indices [36]; investment costs, congestion costs
and risk costs minima [37]; reliability indices and investment, operational and risk costs
minima. In [38] ENTSO-E CBA is evaluated through a software called SCANNER. In [39]
electrical market with Multi-Area Power-Market Simulator software is considered, with
detailed model of intermittent and hydro generation, comparing results by CBA based
on investment costs, transmission and generation capacity. A flow-based optimization
market capacity is proposed in [40] exploiting PTDFs and remaining available margins
(RAMs) through the corridors. Moreover, phase shifter transformers (PSTs) are connected
over cross-zonal branch to adjust RAMs by means of an optimization. The authors of [41]
developed a flow-based methodology, solving Day-Ahead Market (DAM) and AC LF to
state the network operating conditions and evaluating the economic benefits introduced
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by candidate projects according to losses, generation redispatching, renewable and load
curtailment reductions.

Nowadays a worldwide green energy generation and consumption transition is
developing and TSOs are organizing a long-term TEP forecasting renewable genera-
tion and demand growth. In the field of scientific research this issue is tackled by
multi-scenario [2,7,12,14,20,23,25,35,38,39], scenario clustering [13,16,17] or multi-year ap-
proach [5,6,9,18,19,21,36,37]. In the first, framework generation and load are uncorrelated,
in the second the gathering of scenarios is related to cost minima, while in the last the
increases are correlated and predefined. The considered network uncertainties are mainly
represented by intermittent renewable generation and load demand.

The power grid size is a relevant factor in terms of TEP computational cost and
method extension to real power systems. Some works exploit test networks, such as
4-bus [22,40], Garver 6-bus [24], 9-bus [1], IEEE 24-bus [4,9,25,27], IEEE 30-bus [6], IEEE
118-bus [13,17,18,41] and 120-bus [16]. TEP methods are applied to real network models as
well, such as Australian 24-bus [7], German zonal market [8], Romanian [15], European
Zonal Market [23,35], small-scale China [26], Northern Europe [38,39], U.S. 240-bus [2] and
3000-bus Northern China [34]. Other works perform comparisons of different networks,
involving test networks of different sizes [10,19,20,28], or matching simple test system
with real network models such as 93-bus Colombian [12], 46-bis and 87-bus Southern
Brazilian [28–32], Iranian Power grid [5,37].

Simulation time reduction also depends on the number of candidate projects to evalu-
ate, and an established technical analysis is helpful to reduce the set dimension embedding
the ones with higher benefits. For this purpose, in [7] the set is determined according to RES
penetration, in [9] a relaxed version of the TEP problem is solved to quantify the investment
pool with most benefits. Moreover, in [10] following the load flow results the reinforcement
for congested corridors is considered and locational marginal price advantages for new
line addition, in [20] a method based on long- and short-terms network uncertainties is
developed to pinpoint the candidate investments, and in [23] different typology of candi-
date projects are determined according to the potential benefits introduced. For candidate
selection, in [29] a load and an angle performance index is defined, in [31] a search space
reducer algorithm is solved, in [34] cost-benefit incremental relationship and sensitivity
factor of branch capacity and admittance are evaluated, in [35] the probability of branch
overload is considered, while in [41] an equivalent positive and negative critical overload
duration is introduced. Further methods, applications, and evaluations are reported in the
review papers [42,43].

There are few papers that include N-k security criteria in TEP assessment. In particular,
optimization problems are faced including N-1 security constraint in the formulation [5,6,29,40],
or involving both N-1 and N-2 security criteria generating a set of contingency scenarios [4].
The authors of [10,44,45] evaluate an N-k security in the second stage of the procedure in
order to define the set of candidate projects and/or to obtain optimal solution, whereas
in [37] a risk index is defined including the line outage probability.

From literature analysis, it stems that the formulation of a TEP problem has several
facets that are hardly caught in the presence of a real-size network, where cost-benefit
analysis of single development projects is usually carried out [46,47]. Moreover, differ-
ent implications of the development projects should be assessed in the form of scenario
analysis. In order to perform useful comparison among different projects by accounting
non-commensurable quantities, multi-criteria analysis can be adopted, with particular ref-
erence to Analytic Hierarchy Process (AHP) due to high flexibility and applicability [48,49].
This technique has found application in power system problems such as Generation expan-
sion planning, in a multi-objective model with detailed network representation in [50] and
encompassing financial, technical, environmental and social aspects in [51], or distribution
system planning [52]. However, TEP problems represent a field of application of AHP for
multi-criteria analysis. In particular, application of test network involve IEEE 24-bus test
system in [53], where a multi-objective optimization involving congestion cost, investment
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cost, probabilistic reliability, anti-competition and anti-flexibility indices allows to obtain
the Pareto front and it is supported by AHP and TOPSIS to determine the best solution,
in [54], exploiting a two-stage TEP algorithm where cost minimization results are analyzed
with AHP considering congestion cost, consumer cost, power losses and voltage deviations,
and in [27], where dynamic evolution technique is underpinned by AHP for ranking the
best compromise solution. Moreover, in [55] indices of economy, safety, flexibility and
vulnerability are taken as criteria of fuzzified AHP method with different comprehensive
weights for IEEE 6-bus network with different planning schemes, whereas in [56] location
marginal prices from AC load flow in IEEE 9-bus system are used for individuating can-
didates combined with AHP. As regards real network applications, in [57] a combination
of AHP and entropy weight is adopted to evaluate three candidate projects by means
of indices of safety (including N-1 and N-2 security ones) and reliability, economy and
efficiency, coordination and flexibility, social aspects and risk control. Whereas in [58]
a Brazilian network is analyzed considering AHP for probabilistic, strategic, financial,
externalities and enterprise risk, and in [59] Paraguay transmission system expansions are
analyzed with AHP considering operation and inversion cost, power losses, line length and
project financing. It can be noted that the analysis of AHP in TEP has seldom accounted
for evolution scenarios of load and renewables, and methods are focused on network with
limited extension.

In this paper, a methodology for performance analysis of a portfolio of network
development projects is proposed, in order to evaluate the subset of projects towards
which the TSO should focus its realization efforts according to positive implications on
different technical aspects and limited economic effort. In particular, the methodology
aims at assessing zonal market framework, with linear bids and inelastic demand, and
AC LF analysis, in the base case network to individuate possible candidate projects. The
same tools are exploited in the presence of network development candidate project, in
order to calculate merit indicators on active power losses, admissible load increase and
admissible renewable generation increase. These merit indicators are compared among
candidate projects by means of Analytic Hierarchy Process method, in order to determine
the most promising solution under different weights of criteria, representing an evaluation
of various evolution scenarios. A further analysis implies the influence of investment cost
as economic merit indicator, and its inclusion in AHP is carried out in order to point out
the impact of economic efforts on the multi-criteria decision framework. The procedure is
applied to NREL-118 test system.

The contributions of this paper can be synthesized as follows:

- The full network representation by means of AC LF evaluating active e reactive power
flow and effective power losses.

- The evaluation of candidate projects set according to base case network operating
condition within one year of observation.

- The adoption of AHP approach evaluating the candidate projects according to dif-
ferent weighted indices of losses reduction, admissible load increase, admissible
renewable penetration, and investment effort.

- Differently for cost-benefit analysis dealt with in [41], the procedure does not involve
an economic quantification of technical benefits, whereas it is aimed at comparing
heterogeneous implications of network development projects in a normalized way.

The remainder of the paper is organized as follows. Section 2 is devoted to the de-
scription of the multi-stage methodology for network operation analysis, candidate project
selection, performance indicator definition and comparison technique. The test system
and the base case analysis are presented in Section 3, whereas the network development
projects are assessed in Section 4 along with their comparison. Conclusions are drawn in
Section 5.
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2. Methodology

The determination of the network development initiative follows a multi-step method-
ology, synthesized in the following points:

• Study of base case operation according to techno-economic programming over a
defined time horizon.

• Individuation of candidate network development projects, able to produce effects on
system behavior.

• Carrying out of scenario analysis for each candidate project and determination of the
merit indicators.

• Selection of the most promising projects.

2.1. Power System Techno-Economic Operation

In order to evaluate the operating conditions of the considered power system, technical
and economic considerations should be accounted. The combination of these aspects can
be assessed in optimal power flow analysis [60], however in the outline of an unbundled
energy sector, the presence of energy markets should be considered. Therefore, the adopted
method to determine power system operation is structured as follows.

For each operating condition to be analyzed, represented by the t-th time step in the
considered time window, the procedure involves the solution of a zonal energy market
with quadratic generation bids and inelastic load demand, whose formulation can be
synthesized as follows:

min
NZ

∑
z=1

NG

∑
g=1

βg,b βb,z

(
αg Pg(t) +

1
2

γg P2
g (t)

)
∀ t = 1, . . . , NT (1)

s.t.
NB

∑
b=1

NG

∑
g=1

βg,b βb,z Pg(t)−
NB

∑
b=1

βb,z PDb(t)−
NE

∑
k=1

βk,z ek(t) = 0 ∀ t = 1, . . . , NT ∨ ∀ z = 1, . . . , NZ (2)

0 ≤ Pg(t) ≤ avg(t)Pmax
g ∀ t = 1, . . . , NT ∨ ∀ g = 1, . . . , NG (3)

− emax
k ≤ ek(t) ≤ emax

k ∀ t = 1, . . . , NT ∨ ∀ k = 1, . . . , NE (4)

where:

• NZ is the number of market zones and z is the zone index;
• NB is the number of buses and b is the bus index;
• NG is the number of generators and g is the generator index;
• NE is the number of interzonal connection and k is the zonal interface index;
• NT is the total amount of time step and t is time step index;
• βg,b is a binary parameter and it indicates if the g-th generator is connected (1) or not

(0) to the b-th bus;
• βb,z is a binary parameter and it indicates if the b-th bus is connected (1) or not (0) to

the z-th zone;
• βk,z indicates if the k-th power exchange is entering (1), exiting (−1) or not connected

(0) to the z-th zone;
• βk,z is a binary parameter and it indicates if the k-th interzonal exchange is connected

to the z-th zone (assuming 1 or −1 if the positive exchange is exiting or entering
the z-th zone), whereas it is 0 if the k-th interzonal exchange does not involve the
z-th zone;

• PDb(t) is the inelastic active power demand at the b-th bus at t-th time;
• αg and γg are the linear and quadratic bid coefficient of the g-th generator;
• avg(t) is the availability of the g-th generator at t-th hour;
• Pmax

g is the rated active power of the i-th generator;
• emax

k is the rated active power exchange of the k-th interzonal border;
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• Pg(t) is the generated power of the g-th generator at t-th time;
• ek(t) is the power exchange at the k-th zonal interface.

In particular, Equation (2) represents the power balance constraint, Equation (3)
explicates the generator technical limits, and Equation (4) introduces the zonal interface
limit constraints.

The absence of generators technical minimum avoids the presence of block order bids
that involve entirely accepted or rejected bids conditions according to the market clearing
price, for each hour. These bids entail a Mixed Integer Linear Programming with binary
variables that state all-or-nothing constraints, which in turn leads to a counterintuitive
market solution called Paradoxically Accepted/Rejected Blocks, described in [61,62].

It should be remarked that the maximum interzonal power exchange across the k-th
border emax

k is strictly related to the active power flow rating RPl of all the l-th branches
constituting the k-th border. For instance, it could represent the Available Transfer Capacity
(ATC) value in N or N-1 conditions, or come from other security considerations.

The output of the energy market is represented by the power generation plan of the
dispatchable generation present in the power system able to minimize the objective (e.g.,
reduce the generation cost) in the presence of zonal constraints. However, the impact on
the behavior of network elements should be assessed as well. Therefore, a steady-state
network analysis is performed, considering the distributed load flow framework with full
AC formulation, developed as follows:

NG

∑
g=1

βg,b Pg(t)− PDb(t)−
NB

∑
c=1

ybc Vb(t) Vc(t) cos(θb(t)− θc(t) + φbc) = 0 ∀ t = 1, . . . , NT ∨ ∀ b = 1, . . . , NB (5)

NG

∑
g=1

βg,b Qg(t)−QDb(t)−
NB

∑
c=1

ybc Vb(t) Vc(t) sin(θb(t)− θc(t) + φbc) = 0 ∀ t = 1, . . . , NT ∨ ∀ b = 1, . . . , NB (6)

s.t.
Pg(t) = Pg(t) + ωg Lo(t) ∀ t = 1, . . . , NT ∨ ∀ g = 1, . . . , NG (7)

Lo(t) =
NL

∑
l=1

Lol(t) =
NL

∑
l=1

Re

{∣∣βl,b vb(t)− βl,c vc(t)
∣∣2

rl − j xl

}
(8)

vb(t) = Vb(t)ejθb(t), vc(t) = Vc(t)ej θc(t) ∀ {b, c} = 1, . . . , NB, b 6= c (9)

0 ≤ ωg ≤ 1 ∀ g = 1, . . . , NG (10)

NG

∑
g=1

ωg = 1 (11)

where:

• NL is the total number of branches and l is the branch index;
• Pg(t) is the total generated active power by the g-th generator;
• ybc and φbc are amplitude and phase of the nodal admittance between b and c buses

(coming from the construction of the NB·NB nodal admittance matrix Y;
• Vb(t) and θb(t) (Vc(t) and θc(t)) are amplitude and phase of nodal voltage at b-th (c-th)

bus at t-th time step;
• ωg is the loss participation factor of g-th generator;
• Lo(t) is the system total active power loss at time step t;
• Lol(t) is the amount of active power losses across l-th branch at t-th time step;
• βl,b and βl,c are binary parameters and they indicate if the b-th (c-th) bus is connected

(1) or not (0) to the l-th branch;
• rl and xl are the resistance and reactance values of the l-th branch;
• j is the imaginary unit.
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The distributed load flow is considered in order to share the burden of active power
losses balance—not considered in zonal energy market solution—with a limited though
diffused stress on the selected generators.

In outcome of the analysis, further than the determination of nodal voltage, the
amount of active, reactive and apparent power flowing across the l-th branch, named
FPl(t), FQl(t), FSl(t), are determined from the following complex equation:

FSl(t) = FPl(t) + jFQl(t) = βl,bvb(t)·
[

βl,bvb(t)− βl,cvc(t)
rl − j xl

+ yl βl,bvb(t)
]∗

(12)

where the superscript * stands for complex conjugate value
This double-layer analysis is performed for each time step of the considered time horizon.

2.2. Selection of the Candidate Projects

From the power system techno-economic operation analysis, and particularly from
the determination of power flowing through branches, the loading analysis of network
connection can be carried out.

In particular, for each l-th branch, the loading factor in each time step BLl(t) is
determined as the ratio of absolute value of power flow FSl(t) on active power flow rating
RPl , as follows:

BLl(t) = |FSl(t)|/ RPl ∀ t = 1, . . . , NT (13)

For the base case, the average value of the loading factor ABLl throughout the con-
sidered time horizon and a duration curve of loading factor (sorting the values from the
highest to the lowest, irrespective of the time step position in the horizon) can provide
synthetic evaluation of the operation stress of the l-th branch, thus individuating the paths
that would benefit more from a reinforcement project. The formulation of ABLl can be
generalized as follows:

ABLl =
1

NT
·

NT

∑
t=1

∆T(t)·BLl(t) (14)

According to the adopted operation planning standard, the overloaded branches can
be individuated if the power flow exceeds the rating value by a suitable margin ε; therefore,
no overload is observed if the following condition is satisfied

BLl(t) > 1 + ε ∀ t = 1, . . . , NT ∀ l = 1, . . . , NL (15)

From the theoretical framework of the zonal market, it could be expected that more
stressed connections are placed across the zones and not within each zone. Therefore, a
first selection is made considering the doubling of existing connections across each couple
of zones.

However, further connection lines could be individuated as well, in order to improve
the network meshing, providing different paths for power routing that could increase
the efficiency, although they could represent a more costly solution. A second selection
of candidate projects involves new connections between couple of nodes pertaining to
different zones, not interested by existing line or existing market zone connections.

2.3. Scenario Analysis of Development Projects

The impact of the candidate project is assessed by means of a PINT approach, therefore
each project is analyzed separately, as described in the following.

Differently from the determination of techno-economic benefits at target years accord-
ing to defined evolution of system generation and demand, the proposed approach aims at
determining the effect of the presence of development projects in the considered system
through technical merit indicators.

A first indicator is represented by the variation of total active power losses induced by
the presence of the x-th candidate project. In order to perform this estimation, the energy
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market in Equations (1)–(4) is solved accounting for the presence of the x-th development
project, affecting the inputs of the rated active power exchange emax

k,x , and the load flow
analysis in Equations (5)–(11) is carried out considering the influence of the x-th candidate
project on the nodal admittance matrix Yx. Therefore, the global power system operation
is varied in each t-th time step. The indicator ILx quantifies the energy losses reduction
benefits, for the x-th development project over NT observation period, with respect to the
base case network, and it can be expressed as follows:

ILx =
NT

∑
t=1

NL

∑
l=1

∆T(t)·Lol(t)−
NT

∑
t=1

NL

∑
l=1

∆T(t)·Lol,x(t) ∀ x = 1, . . . , NX (16)

where:

• NX is the total number of candidate development projects and x is the candidate
project index;

• Lol,x(t) represents the l-th branch active losses in the presence of x-th candidate project
at time step t.

Furthermore, in order to investigate the effect of the project on possible evolution of the
generation and demand, and particularly on the attainment of targets for increased energy
service for users and reduced environmental impact of power system, the considered
power system is subject to increase of load demand and of renewable generation scenarios.

In the load increasing scenario, the load demand is increased by 1% for each iteration
for each load bus in each time step. In order to ensure proper balance and avoid power
shortage, the generation capacity is incremented uniformly, of the same amount. Therefore,
for each load iteration λ the energy market in Equations (1)–(4) and the load flow problem
in Equations (5)–(11) are solved with new input parameter of load demand PDλ

b (t) and
maximum generation level Pmax,λ

g , defined as follows:

PDλ
b (t) = (1 + 0.01·λ)·PD

b (t) ∀ b = 1, . . . , NB ∨ ∀ t = 1, . . . , NT (17)

Pmax,λ
g = (1 + 0.01·λ)·Pmax

g ∀ g = 1, . . . , NG (18)

At each λ-th load iteration, the branch loading BLλ
l (t) of each l-th branch in each t-th

time step is determined. If no overload is detected according to the adopted planning stan-
dard, i.e., Equation (15) is satisfied, the procedure goes on to the next iteration, otherwise
the procedure stops at a given iteration number λx, and the admissible demand increase in
the network under study is given by:

ADIx =
NT

∑
t=1

NB

∑
b=1

[
PDλx

b (t)− PDb(t)
]
= 0.01·λx·

NT

∑
t=1

NB

∑
b=1

PDb(t) (19)

The load increase indicator of the x-th candidate project is therefore determined by
difference between the result of the developed network (considering the input variation
on emax

k,x and Yx further than the scenario influence) and of the base case (subscript BC),
as follows:

IDx = ADIx − ADIBC (20)

In the renewable increasing scenario, the power generation amount by renewable-
based generation technologies is increased by 1% for each ρ-th iteration in each time
step. In this case, no intervention on power balance is operated, i.e., load demand and
conventional power generation are not varied, since the aim is to investigate the effect of
a growing renewable share in the power generation mix. Therefore, for each renewable
iteration ρ the energy market in Equations (1)–(4) is solved with new input parameter of
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maximum generation level Pmax,ρ
g applied to the g-th renewable generator (in the subset

ΩR of renewable generators, in number NR < NG) defined as follows:

Pmax,ρ
g = (1 + 0.01·ρ)·Pmax

g ∀ g ∈ ΩR (21)

According to energy market results, giving different production levels for all genera-
tors Pρ

g (t) due to a new equilibrium point, the load flow analysis (5)–(11) is carried out.
At each ρ-th renewable iteration, the branch loading BLρ

l (t) of each l-th branch in
each t-th time step is determined. If no overload is detected according to the adopted
planning standard, i.e., condition (15) is satisfied, the procedure goes on to the next iteration,
otherwise the procedure stops at a given iteration number ρx, and the admissible renewable
generation increase in the network under study is given by

ARIx =
NT

∑
t=1

∑
g∈ΩR

[
Pρx

g (t)− Pg(t)
]

(22)

The renewable generation increase indicator of the x-th candidate project is therefore
determined by difference between the result of the developed network (considering the
input variation on emax

k,x and Yx further than the scenario influence) and of the base case
(subscript BC), as follows:

IRx = ARIx − ARIBC (23)

A representation of the technical merit indicator determination process is depicted in
the flowchart reported in Figure 1. It can be noted that the method involves the storage
of network operation analysis under different conditions and in the presence/absence of
development project, therefore a specific calculation framework is necessary in order to
collect the necessary information.
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Finally, in order to account for economic implications, an estimation of the investment
cost ICx of the x-th candidate project is carried out, according to standard building and
installation cost for the single components.

2.4. Project Comparison and Selection

As highlighted in the methodology, the three merit indicators, although referring to
comparable units, measured as energy amounts over a given time horizon, are determined
according to different operating conditions and evolution frameworks of the system under
study. Therefore, in order to carry out a proper comparison among the outcomes of the
analysis of candidate projects, Analytic Hierarchy Process (AHP) is adopted [63,64].

The AHP is based on the determination, for each h-th criterion evaluated for n options,
of the n× n pairwise comparison matrix Ch, whose element ch

ij represents the prevalence
of the i-th option compared to the j-th one. If the i-th option is preferred to the j-th one,
then ch

ij > 1, in a scale of values up to 9 according to importance comparison; for equal

importance it is ch
ij = 1; moreover, the following reciprocal constraint applies:

ch
ij·ch

ji = 1 (24)

Once the matrix Ch is built, its normalized version ChN by column is obtained, and its
elements are determined as follows:

chN
ij =

ch
ij

∑n
ι=1 ch

ιj
(25)

By averaging the entries of each row of ChN , the n × 1 score vector sh for the h-th
criterion is determined:

sh
i =

∑n
ι=1 chN

iι
n

(26)

By padding the vectors sh by columns, the n×m score matrix S is obtained:

S =
[

s1 . . . sh . . . sm ]
(27)

Proceeding in the same way, the m×m pairwise comparison matrix A of the m criteria
is determined whose element ah f represents the prevalence of the h-th criterion compared
to the f -th one. Applying the same normalization and averaging process described in
Equations (25) and (26), the m× 1 criteria weight vector w is determined.

The n× 1 vector of global scores gs is therefore determined by the following matrix
operation, where the element gsi represents the global score assigned by the AHP to the
i-th option.

gs = S·w (28)

For the application to the proposed framework, the x-th candidate project repre-
sents the generic i-th option, whereas the three indicators ILx, IDx and IRx represent the
m criteria.

In addition, the consistency check is performed on pairwise comparison matrices.
Taking A as a reference, the consistency index is determined as follows:

CI =
aa−m
m− 1

(29)

where the first term aa is a scalar determined as the average of the elements of the vector
obtained by multiplying the rows of A by w and dividing by the corresponding element
of w:

aa =
1
m
·

m

∑
h=1

ah·w
wh

(30)
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The consistency ratio CR is therefore determined as CI/RI where the random index
RI is determined as the average CI when elements of A are random. It is considered that
the consistency is acceptable if CR < 0.1.

3. Test System and Base Case
3.1. Input Data and Solution Environment

The proposed methodology is applied to a modified version of NREL-118 test Sys-
tem, according to the single-line diagram shown in Figure 2, whose system data are
described in [65] and thoroughly reported in [66]. A description of input data is provided
in Appendix A. In particular, load and renewable generation data are provided by hours,
therefore t = 1 h and NT = 8, 760.
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For the scope of zonal market analysis, transfer capacities are assumed equal to the
capacity of the set of connection lines; therefore, emax

k is equal to 6400 MW between Zones 1
and 2 and to 2500 MW between Zones 2 and 3.

In order to carry out load flow analysis, the distributed slack is fixed at buses 25, 70, 72
and 107, hosting only conventional power plants with remarkable installed size, according
to availability of the plant and to generation level margin. Moreover, it is assumed that
all other 55 buses with at least one generator behave as voltage-controlled (PV) buses,
considering that even photovoltaic and wind generators are more and more called to
take part to voltage/reactive regulation by system operator connection standards [67,68],
and in these buses, voltage levels are fixed at 1.00 p.u. Moreover, according to planning
standard of Italian Transmission System Operator, the margin ε to evaluate a line overload
considering planning viewpoint is fixed at 0.2, i.e., no overload would be detected until the
power flow level is below 120% of line rating [69,70].

The MatLAB environment is exploited to perform numeric simulations. In particular,
zonal market relations are solved by building a proper optimization procedure exploiting
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quadprog function in the optimization toolbox, whereas the load flow analysis is performed
by means of the MATPOWER package [71]. The determination of merit indicators exploits
an iterative framework developed in MatLAB including the previously mentioned tools. It
should be noted that the zonal market and load flow analysis over the yearly time horizon
for a single network configuration takes roughly 3 min hours to be solve on an ASUS
VivoBook Pro: Processor Intel i7-8750 H, CPU 2.20 GHz 6 Core(s), RAM 16 GB.

3.2. Base Case Network Operation

The application of energy market model (1)–(4) to the test system in the base conditions
leads to the results synthesized in Figure 3 in terms of duration curve of zonal active power
balance in Equation (2), where the represented values represent the power exchange of each
zone. It can be seen that Zone 3 is always exporting power, having an higher generation
excess in winter, and reaching in 6 h the power exchange limit with Zone 2. Whereas,
Zone 1 results an energy importer for most of the analyzed period, with minimum exchange
of −2361.4 MW, well within Z1–Z2 boundaries, albeit it behaves as exporter for 270 h,
especially during summer, reaching maximum exchange of 1381.0 MW. Finally, Zone 2
net exchange ranges between 547.3 MW and −2075.1 MW, and net import is observed for
780 conditions.
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As regards steady-state network behaviors through relations in Equations (5)–(12) and
subsequent line loading evaluation by Equations (13)–(15), the analysis of lines at zone
boundaries is synthesized in Figures 4 and 5 in terms of average loading and duration
curve, respectively. It can be observed that boundary lines are, on average, interested
by more stressful flow levels as compared to internal lines within each zone, and lines
across Z2–Z3 boundary are highly exploited, with line 99–100 reaching the maximum
BLl(t) of 107%, well within the overload limit of 120%. This branch is the one on which the
flow-based cost-benefit analysis methodology carried out in [41] was focused.
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Finally, the total losses are determined, corresponding to 3,431.8 GWh, i.e., roughly
3.57% of total load demand, and in Table 1 minimum and maximum observed values of
voltage magnitude (VM) are reported, in terms of average value over the whole time horizon
for each bus and of extreme values attained in a single occurrence. It can be observed that
feasible operation values are obtained, keeping in a range of ±11% of nominal voltage.
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Table 1. Extreme values of average and absolute observed voltage magnitudes.

Value Extreme VM [p.u.] Bus

average minimum 0.967 81
maximum 1.071 72

absolute
minimum 0.944 95
maximum 1.109 107

4. Scenario Analysis and Evaluation of Indicators
4.1. Definition of Candidate Projects

As explicated in the previous section, the first choice of candidate projects is devoted
to the reinforcement of the existing lines across zone borders. In particular, a doubling of
existing 11 border lines is considered, numbered from R1 to R11, and relevant characteristics
are reported in Table 2. It can be observed that the projects have different impact on electric
parameters as well as on energy market exchange level between interested zones.

Table 2. Characteristics of candidate projects of existing line reinforcements.

Candidate
Project id. Nodes r [p.u.] x [p.u.] b [p.u.] RPl,x [MW] Zones emax

k,x [MW]

R1 15–33 0.00543 0.01777 0.22358 +600 Z1–Z2 5600
R2 19–34 0.01074 0.03529 0.4424 +600 Z1–Z2 5300
R3 30–38 0.00066 0.00771 2.954 +600 Z1–Z2 5300
R4 69–70 0.00032 0.05879 0.71386 +1700 Z1–Z2 6400
R5 69–75 0.00611 0.02014 0.252 +1700 Z1–Z2 6400
R6 75–77 0.00441 0.01443 0.7266 +600 Z1–Z2 5300
R7 75–118 0.00426 0.01219 0.57218 +600 Z1–Z2 5300
R8 77–82 0.00509 0.026 0.3458 +700 Z2–Z3 2700
R9 80–96 0.00567 0.02557 0.3332 +600 Z2–Z3 2600

R10 98–100 0.00257 0.01161 0.1512 +600 Z2–Z3 2600
R11 99–100 0.00207 0.00687 0.08386 +800 Z2–Z3 2800

In addition, the presence of further 4 lines creating new connection between nodes of
different zones are individuated. In order to define their electric parameters, a reference
path of existing lines is followed, and the relevant total impedance is reduced by a defined
value in order to account for possible path savings. The features of these new connections,
numbered from N12 to N15, are synthesized in Table 3. It can be noted that the projects N12
and N13 involve a transformer doubling and a new line—where path saving assumptions
are applied—in order to increase the meshing of the higher voltage section across zones
Z1 and Z2, that in the base case involves lines 8–30, 26–30, 30–38, 38–65, 65–68, 68–81.
Moreover, the project N15 creates a new zonal connection between Z1 and Z3, not present in
all other configurations, therefore a remarkable variation of market equilibrium is expected.
Moreover, due to the bottleneck created by a single connection across zones, its contribution
to market exchange level is considered equal to its rated power flow.

Table 3. Characteristics of candidate project for new line connections.

Candidate
Project id. Nodes Reference Path Length

Reduction r [p.u.] x [p.u.] b [p.u.] RPl,x [MW] Zones emax
k,x [MW]

N12 19–38 19–34; 34–37; 37–38 30% 0.01918 0.06258 0.09450 +600 Z1–Z2 5300

N13 30–34 30–17; 17–18; 18–19;
19–34 30% 0.00811 0.03182 0.09450 +600 Z1–Z2 5300

N14 78–95 78–77; 77–82; 82–96;
96–95 30% 0.01361 0.04882 0.07560 +600 Z2–Z3 2600

N15 70–84 70–75; 75–77; 77–82;
82–83; 83–84 30% 0.01749 0.04769 0.32469 +1200 Z1–Z3 1200
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The candidate projects are represented by colored lines in the scheme reported in
Figure 2.

4.2. Evaluation of Merit Indicators for Development Projects

As prospected in Section 2.3, the performance analysis of candidate project starts from
the determination of total active power losses over the considered year of operation. The
evaluation of the indicator ILx is reported in the second column of Table 4, and it can be
noted that the most favorable effect is attained in the presence of R11 project, giving a 2.0%
reduction of total losses, whereas R9 project implies negligible advantage with respect to
the base case.

Table 4. Results of merit indicators evaluation for the candidate projects.

Candidate
Project id. ILx [MWh] IDx [MWh] λx

Limiting
Overload in

Load Increase
IRx [MWh] ρx

Limiting
Overload in

Renew. Increase
ICx [M€]

R1 16,305 1921 6 30–38 13,868 415 77–82 232.8
R2 30,936 3840 8 30–38 13,868 415 77–82 462.3
R3 39,077 52,814 59 99–100 13,868 415 77–82 170.6
R4 39,539 4801 9 30–38 13,868 415 77–82 650.4
R5 43,054 3840 8 30–38 13,868 415 77–82 222.8
R6 52,637 3840 8 30–38 13,014 395 77–82 189.0
R7 31,207 3840 8 30–38 13,014 395 77–82 159.7
R8 9673 0 4 30–38 15,788 460 75–77 340.6
R9 98 0 4 30–38 0 90 75–77 335.0

R10 25,449 0 4 30–38 3414 170 75–77 152.1
R11 69,378 960 5 30–38 14,079 420 75–77 90.0
N12 33,644 1921 6 30–38 13,868 415 77–82 607.7
N13 8008 44,171 50 99–100 13,868 415 77–82 348.8
N14 25,024 0 4 30–38 4694 200 75–77 639.6
N15 44,773 0 4 30–38 8961 300 75–77 624.8

The determination of admissible load increase in the base case results in the procedure
stop at iteration λBC = 4, therefore only 4% of load increase (3841 GWh roughly) results
admissible in the base case network configuration, being the line between nodes 30–38 the
first to experience an overload. The evaluation of the indicator IDx is reported in the third
column of Table 4, and in the fourth one the corresponding λx is reported, whereas in the
fifth the limiting overloaded line is pointed out. It can be noted that a set of projects (R8,
R9, R10, N14 and N15) do not provide remarkable advancement with respect to the Base
Case, and many other cases imply a further admissible increase by less than 6% of load
demand, being the line 30–38 the limiting overload. In R3 and N13, intervening on line
30–38 or in its surroundings, the load increase is higher than 45% and the limiting overload
moves to line 99–100.

The determination of admissible renewable generation increase in the base case results
in the procedure stop at iteration ρBC = 90, therefore 90% of renewable generation increase
(3840 GWh roughly, closely related to load increase) results admissible in the base case
network configuration. In the base case, the limiting overload is observed on the line
between nodes 77–82 due to the different distribution of renewable generators with respect
to load. The evaluation of the indicator IRx, of the corresponding ρx and of the limiting
overloaded line is illustrated in seventh, eighth and ninth columns of Table 4. It can be
seen that all the projects affecting the Z1–Z2 border overcomes 300% of further increase,
with the maximum of R8 project equal to global 460% of increase, with limiting overload
between nodes 77–82 (zone Z2–Z3). Whereas, for project on Z2–Z3 border or on new Z1–Z3
connection, the limiting overload is for the line between nodes 75–77 (zones Z1–Z2) but
the impact is variable, from no advantage in R9 to levels in R11, N12 and N13 comparable
with those of Z1–Z2 lines.
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The estimation of investment cost ICx is reported in the last column of Table 4. Analo-
gously to [41], the estimation is based on average installation costs for overhead lines [72],
considering the different voltage values and flow ratings and determining line length
according to typical resistance and reactance values per unit length, whereas for high
voltage self-transformers of suitable power ratings the cost estimation is taken from [73]. It
can be noted that project R11 is the one with the lowest economic effort, that is considerably
higher for R4, interesting a high-rating long line, for N12 due to mixed voltage level with
considerable length, and for N14 and N15 due to the presence of long paths.

4.3. Selection of Projects

The AHP process explicated in Section 2.4 is therefore applied to the obtained merit indicators.
Since the indicators are all represented by numeric factors (all measured in GWh) in

order to determine the pairwise comparison matrix Ch of options, for each pair of candidate
projects the difference between the indicators is performed, assigning preference levels
from 1 to 9 according to the inclusion in intervals defined in Table 5. This method is applied
only if the index of x-th candidate project is not lower than the index of the compared
χ-th project, since the reciprocal case has to comply with the constraint in Equation (24). It
should be noted that for the investment cost index, the difference is inverted, since in this
case the lower the better, differently from technical merit indicators.

Table 5. Thresholds for preference levels in AHP according to values of difference of index between
x -th and χ -th candidate project.

AHP Level ILx−ILχ IDx−IDχ IRx−IRχ ICχ−ICx

1 [0; 1000) [0; 750) [0; 200) [0; 5)
2 [1000; 3000) [750; 1500) [200; 1000) [5; 40)
3 [3000; 9000) [1500; 3000) [1000; 2500) [40; 80)
4 [9000; 18,000) [3000; 5000) [2500; 5000) [80; 180)
5 [18,000; 30,000) [5000; 10,000) [5000; 8000) [180; 300)
6 [30,000; 40,000) [10,000; 40,000) [8000; 11,000) [300; 400)
7 [40,000; 50,000) [40,000; 49,000) [11,000; 13,500) [400; 450)
8 [50,000; 60,000) [49,000; 51,000) [13,500; 14,000) [450; 530)
9 ≥60,000 ≥51,000 ≥14,000 ≥530

The outcomes of the consistency test on each matrix is therefore reported in Table 6,
where the RI value of 1.58 for a 15× 15 pairwise comparison matrix is exploited, as can be
found in [74,75], It can be seen that consistency level is acceptable for all the three indices,
being CR < 0.1 in all cases.

Table 6. Consistency analysis of the AHP matrices for each index of the candidate projects.

ILx−ILχ IDx−IDχ IRx−IRχ ICχ−ICx

n 15 15 15 15
aa 17.124 16.063 15.892 16.918
CI 0.1517 0.0759 0.0637 0.137
RI 1.58 1.58 1.58 1.58
CR 0.096 0.0481 0.0403 0.0867

The corresponding values of the score matrix S are graphically represented in Figure 6.
It can be observed that, as expectable, candidate projects R11, R6 and N15 show good
performances for losses, projects R3, N13 and R4 for demand increase, projects R8 and
R11 for renewable increase, and projects R11, R10 and R7 for economic effort. Moreover,
by posing a selection threshold of 1/15 = 0.06667, that would be the value of scoring if
all project had the same importance, it can be seen that a number of 6, 3, 9 and 7 projects
would pass the threshold for the four criteria, respectively. It can be further observed that
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R3 passes the threshold in all four indicators, whereas R5 and R11 in three out of four, and
R9 and N14 do not show positive performance in all four analyzed aspects.
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4.3.1. Cases Based on Technical Indicators

In order to determine the criteria weight vector w, a set of different hypotheses has
been applied, thus obtaining different estimations. A first assumption is that of equal
importance for the three technical indices (Case EIT), giving a vector of equal weight
values of 1/3. Therefore, a “slightly more importance” level is assigned to one index per
time, thus considering ah f = 3 for the selected index h, with the aim to investigate the
validity of the prevalence of one criterion to the others (Cases LD—losses dominance, DD—
demand dominance, RD—renewable dominance). Moreover, assuming the viewpoint
of a power system planner aiming at facing the challenges of energetic evolution given
by the integration of increasing greener generation with an additional insight to power
demand, a dominance level 3 is assigned to renewable increase with respect to losses, and
a dominance level 2 is assigned to renewable with respect to demand and to demand with
respect to losses (Case PVP, planning viewpoint). These considerations lead to five cases of
criteria weight vector w, with values reported in Table 7. It is easy to verify that each of the
considered cases has a perfect consistency of pairwise comparison, since CI = 0.

Table 7. Criteria weight vectors in the five considered cases.

Criterion
Case

EIT LD DD RD PVP

Losses 0.33333 0.6 0.2 0.2 0.16378
Demand 0.33333 0.2 0.6 0.2 0.29726

Renewable 0.33333 0.2 0.2 0.6 0.53896

The vectors of global scores obtained in the five prospected cases are depicted in
Figure 7. It can be noted that in each case 7 projects pass the selection threshold, with the
exception of DD with 6 cases, however the results are different. In EI and DD Cases, R3 is
the preferable solution, whereas in LD and DD cases the best compromise is represented by
R11, that is the project examined in [41] in the cost-benefit analysis framework. In PVP Case,
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representing the reference for the power system planning, the rank of suitable candidate
project over the threshold is R3, R11, R8, N13, R4, R5, R6. It can be argued that, under the
considered assumptions, there is more value in reinforcement projects than in paving new
connections, and the different weighting assumptions, representing contrasting evolution
viewpoints, can affect the ranking given the numerical outcomes of the techno-economic
analysis and index determination.
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4.3.2. Influence of Economic Effort

In order to assess the influence of investment cost in project selection, a further analysis
is carried out including the economic effort scores in the AHP. Three further scenarios are
therefore analyzed. In the levelized weighting case (Case LW), the four merit indicators
assume the same importance, therefore all the elements of the vector of weight values is
1/4. The economic effort dominance (EED) is assessed by imposing a dominance level 5 to
economic effort criterion on the three technical indicators, therefore expressing a strong
preference to investment reduction. Finally, the viewpoint of a power system planner is
represented by Techno-Economic Planner Perspective (TEPP), where a dominance level 4
is assigned to renewable and economic effort with respect to losses, a dominance level 3
is assigned to demand w.r.t. to losses and to economic effort w.r.t. to demand, and a
dominance level 2 is assigned to renewable w.r.t. to demand and to economic effort w.r.t.
renewable. These considerations lead to three further formulations of criteria weight vector
w, with values reported in Table 8. It is easy to verify that each of the considered cases has
a perfect consistency of pairwise comparison, since CI = 0, except for the TEPP where
CI = 0.051.

Table 8. Criteria weight vectors in the three techno-economic cases.

Criterion
Case

LW EED TEPP

Losses 0.25 0.125 0.08066
Demand 0.25 0.125 0.17531

Renewable 0.25 0.125 0.28895
Economic effort 0.25 0.625 0.45509
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The vectors of global scores obtained in the three techno-economic prospected cases
are represented in Figure 8. It can be seen that in LW and EED cases, as compared to the
EIT Case in Section 4.3.1, the presence of investment cost makes the interest to R7 and
R10 increase, due to their cheaper economic effort, to the detriment of R4 and N13. In the
TEPP case, 8 projects pass the threshold, i.e., R11, R3, R7, R6, R8, N13, R5 and R10, and the
comparison with PVP shows that the economic effort does not remarkably affect the leading
projects of the obtained ranking, although further limiting the appeal of more challenging
projects (e.g., new long connections or high-rating projects or multi-voltage levels).
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5. Conclusions

In this paper, a methodology for the determination of network development candidate
projects and for the evaluation of relevant performance indicators has been carried out. In
the framework of energy sector unbundling, the methodology has involved zonal market
solution by means of a quadratic optimization and steady-state network analysis, applied
over a defined time horizon, leading to the determination of candidate project from the
base case. These development projects have been evaluated by means of the same tools,
in order to calculate technical merit indicators on active power losses, admissible load
increase and admissible renewable generation increase. In order to perform a comparison
of heterogeneous aspects, the outcomes of candidate project study have been analyzed
through an Analytic Hierarchy Process method, considering different weighting methods
for technical criteria. In addition, the influence of economic effort for project is assessed by
including investment cost estimation as a further criterion in AHP method and comparing
the classification list of projects under different assumptions. Procedure application to
NREL-118 test system over a yearly operation window has shown the validity of the
approach, given that the assessed critical expansion projects are analogous to other methods
based on TEP optimization or flow-based approaches. Moreover, the indicator comparison
through AHP revealed a synthetic though powerful tool to put heterogeneous aspects in a
common framework, where evolution scenarios can be efficiently represented by weighting
criteria of indicators, prioritizing the attention of the system operator to a subset of projects
where a specific cost-benefit analysis could be applied. The procedure has proved flexible
enough to envisage its application to real-scale transmission network analysis, where
the analytic TEP methods could reveal hard to apply and the operation experience can
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lead to further selection of projects, and the increased numerical complexity could be
efficiently dealt with by AHP. In a future work, additional CBA and N-1 security criteria
could be assessed for the most profitable projects to reduce computational costs concerning
network extension.
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Appendix A. Test System Features

The modified version of NREL 118-Bus system presents a total installed production
capacity of 40.5 GW, subdivided among the three zones as reported in Table A1. The
installed generation capacity in the Zones 1, 2 and 3 are equal to 26.0%, 48.6% and 25.5%
respectively. Roughly 42.5% of installed generation capacity is based on thermoelectric gen-
eration (combined cycles –CC, combustion turbines—CT, steam turbine—ST and internal
combustion engines—ICE), and more than half of it is present in Zone 1. Moreover, 21.3%
is covered by programmable renewables—mainly hydroelectric in Zone 2—and 36.2% is
represented by photovoltaic, wind and non-dispatchable hydroelectric, with higher share
of Zone 3.

Minimum and maximum bid prices for fuel-based plants (thermoelectric and biomass)
are reported in Table A2, gathered by technology. It can be seen that most of gas-based
production has a production cost lower than 30 $/MWh, comparable with biomass, whereas
oil-based technology is the less competitive.

Table A1. Zonal installed capacity by technology [MW].

Technology Zone 1 Zone 2 Zone 3 Total

CC gas 5812.1 1743.9 3436.1 10,992.1
CT gas 1356.3 374.5 1549.3 3280.1
CT oil 223.5 142.4 0 365.9

ICE gas 0 50.4 3.3 53.7
ST coal 20.0 0 0 20.0
ST gas 1482.2 0 978.4 2460.6

ST other 35.0 0 0 35.0
Biomass 58.2 16.5 40.2 114.9

Geothermal 0 22.0 0 22.0
Hydro prog. 0 8383.6 110 8493.6

Hydro non-disp. 0.8 8506.4 1649.5 10,156.7
Wind 329.0 0 749.0 1078.0

Photovoltaic 1206.0 444.4 1795.4 3445.8
Total 10,523.0 19,684.0 10,311.1 40,518.1

Total yearly demand sums up to 95.95 TWh, whereas the load value ranges from
minimum 7.23 GW to maximum 17.29 GW. Load distribution among zones shows that
Zone 1 has the highest share, between 43.3% and 63.5%, with higher values in winter and
lower in summer, whereas Zone 2 and Zone 3 have 13.4÷30.6% and 19.4÷33.9% of load
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respectively. In Figure A1 a representation of load trend for the days with lowest and
highest total load level is reported.

Table A2. Generation bid price range [$/MWh].

Technology Minimum Maximum

CC gas 12.94 ÷ 28.11 27.80 ÷ 66.34
CT gas 15.02 ÷ 28.31 30.22 ÷ 71.49
CT oil 104.72 ÷ 109.32 257.97 ÷ 264.32

ICE gas 21.26 ÷ 21.39 42.52 ÷ 42.78
ST coal 9.15 20.72
ST gas 11.56 ÷ 26.48 23.12 ÷ 64.98

ST other 15.11 ÷ 124.10 30.22 ÷ 290.11
Biomass 12.47 ÷ 16.62 28.45 ÷ 33.24
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Figure A1. Trends of zonal demand in lowest load day 113 and highest load day 249.

The subdivision of load demand among buses is determined according to fixed ratio
provided in [66] not reported for purpose of brevity. For the same reason, the network data
for load flow analysis can be found in the database [66].

As regards non-dispatchable renewable generation, the contribution reported in [66]
amounts to 2700 TWh, 7698 TWh and 2564 TWh for wind, solar and non-dispatchable
hydro, respectively. Correspondently, equivalent yearly duration of 2505 h, 2234 h and 253 h
for wind, solar and non-dispatchable hydro, respectively is considered. The yearly duration
curves are reported in Figure A2, where it can be seen that wind and hydro show a smooth
variation over time, and they do not reach null contribution in any condition, whereas solar
power is working for half of total hours, as expectable. A distinction of seasonal behavior
for each technology is reported in Table A3 in terms of statistical distribution quantities,
where it can be noted that in summer all the three sources give the most remarkable energy
contribution, although peaks are reached in spring (wind and photovoltaic) and in autumn
(hydro non dispatchable).
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