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Abstract: The decarbonisation of heating in the United Kingdom is likely to entail both the mass
adoption of heat pumps and widespread development of district heating infrastructure. Estimation
of the spatially disaggregated heat demand is needed for both electrical distribution network with
electrified heating and for the development of district heating. The temporal variation of heat demand
is important when considering the operation of district heating, thermal energy storage and electrical
grid storage. The difference between the national and urban heat demands profiles will vary due
to the type and occupancy of buildings leading to temporal variations which have not been widely
surveyed. This paper develops a high-resolution spatiotemporal heat load model for Great Britain
(GB: England, Scotland a Wales) by identifying the appropriate datasets, archetype segmentation and
characterisation for the domestic and nondomestic building stock. This is applied to a thermal model
and calibrated on the local scale using gas consumption statistics. The annual GB heat demand was in
close agreement with other estimates and the peak demand was 219 GWth. The urban heat demand
was found to have a lower peak to trough ratio than the average national demand profile. This will
have important implications for the uptake of heating technologies and design of district heating.

Keywords: urban building energy model; spatiotemporal; building archetype development

1. Introduction

The Climate Change Act [1] sets a target for the United Kingdom (UK) to reduce
greenhouse gas emissions by 80% from 1990 baseline levels. The government has since
committed to a net-zero target for the electricity system [2]. The provision of heat and
hot water for building accounts for around 40% of all energy consumption and 20% of
greenhouse gas emissions in the UK. To meets these targets, emissions from the building
sector are required to be near zero [3]. This is expected to drive the expansion of district
heating (DH) to deliver low carbon space and water heating. The decarbonisation of
electricity generation in the UK is facilitating a shift away from fossil-based heat generation
to electrified heating with heat pumps [4]. Heat pumps are likely to play a key role in the
decarbonisation of the heating sector and their integration into DH systems is a promising
application [5,6]. Indeed, Part L of the building regulation now encourages developers
to consider the use of heat pumps and connection to DH in order to not exceed target
emission rates [7].

Hourly space heat and hot water demand estimates are required to determine the
hourly electrified heat load of modelled electricity scenarios and for use in modelling of
urban district heating networks. The temporal variation of energy demand is an important
factor when considering the sizing and operation of energy storage, grid storage (in the
case of the power system) and thermal storage in DH networks. It is likely that there will
be differences in the daily load profile between the urban and non-urban areas due to the
type of buildings and the occupancy of buildings and the use patterns leading to temporal
variations, which are important factor but not widely surveyed. In addition, estimation of
the locally disaggregated heat load is needed for both electrical distribution network with

Energies 2021, 14, 4078. https://doi.org/10.3390/en14144078 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-3655-2424
https://doi.org/10.3390/en14144078
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14144078
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14144078?type=check_update&version=1


Energies 2021, 14, 4078 2 of 28

electrified heating and for the identification of potential areas for the development of DH.
This paper develops a spatiotemporal heat load model—HeLoM, with requirements that
can be summarised as:

a. Capture the entire hourly space heat and hot water load based on historic meteoro-
logical data for Great Britain (GB)

b. Disaggregate the urban load as a proxy for DH demand

Urban loads are split from the remainder because these are typically the areas with
the highest heat demand density and therefore are the most appropriate areas to consider
for district heating because network costs are generally lower per unit of heat load. The
disaggregation of urban heat load can be achieved by having a spatially disaggregated
hourly heat load with the highest heat demand per unit area being assumed as urban.

1.1. Literature Review of Heat Load Modelling

Most recent national heat demand studies have focused on domestic heating. Space
and hot water heating accounts for 40% of energy demand in the UK with the domestic
sector making up just over two-thirds of this [8,9].

Building stock energy simulations range from highly detailed simulations of individ-
ual buildings, up to the scale of the entire stock containing many built form types and uses.
In building energy modelling, top-down models normally explore the inter-relationship of
demand with key factors such as construction age or demography; this can be described
as a deductive method [10]. Bottom-up models tend to disaggregate the components of
energy demand into its various components, often employing a building physics-based
approach [11]. At higher spatial resolutions, the impact of an individual building is greater
and thus the need for accuracy increases. The bottom up approach is hence preferred by
designers and planners. However, it can be difficult to calibrate and validate such models
without large scale data collection, which can often be impractical on such a scale. For this
reason, many building stock energy models use building archetypes as a representation of
a statistically average form of a typology that can be multiplied to the national stock scale.
Most building energy models aggregate energy demand from a large number of buildings
and can provide estimates of energy use if the ratio of built form types is altered.

To highlight the growing importance of this field, there have been several reviews of
building stock energy models conducted in recent years [10–13]. A notable example used
for the UK is the BRE’s Domestic Energy Model (BREDEM) [14,15].

Reinhart and Davila [13] review the design of existing bottom-up building stock
energy models. They describe the steps required to construct such models as:

1. Data input and organization
2. Thermal modelling
3. Result validation

They identify the information that is required to generate building energy models.
This includes regional weather data, building form, construction and operation data, and
finally building occupancy or usage. To estimate future demand, inferences have to be
made regarding the building stock and climate conditions. The authors state that the
biggest challenge for such models is in the definition of the archetypes to recreate the
simulated building stock.

In the review of Kavgic et al. [11], the authors compared eight different bottom-up
energy stock models, including five UK based models. All the UK models derived their
calculation from a version of the BREDEM. All the models reviewed output data at either
an annual resolution or in two cases, a monthly resolution. They vary in the number of
archetypes or dwelling types, ranging from just two age categories to over 8000 unique
combinations of dwelling type including age, form, construction, and heating method. Of
these, only the Community Domestic Energy Model [16] contained a spatial resolution
higher than the national scale, but only for the existing stock, while most others were used
for some scenario analysis.
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Sousa et al. [10] comprehensively analysed 29 housing stock energy models. A com-
mon concern raised by both reviews is that the current approaches are limited in scope
due to a lack of transparency, often being irreplicable and having no access to the core
calculation modules. Much of this is due to the scale of the challenge, with some 25 million
homes in the UK and a limited amount of cross-sectional surveys from which to base
modelling assumption and data validation. There exists a large variation in their designs,
both spatially and temporally [12]. None of the UK-based models have disaggregated
urban loads from national at an hourly resolution. The reviews also note that improved
data collection standards are needed as well as computational resources to capture detail
at high spatial and temporal resolutions (as shown in Box 1).

Box 1. Output areas and geographic subdivisions

Output areas (OA) have been used for data collection since the 2001 Census. They are the smallest
geographical unit for which data is collected and designed to be largely homogenous. Small are
statistics are reported at the Lower Super Output Area (LSOA), consisting of multiple adjacent OAs
and Middle Super Output Area (MSOA), constructed from adjacent LSOAs. LSOAs are designed to
have a population of 1000–3000 and MSOAs 5000–15,000.
The Scottish equivalents of LSOA and MSOA are Data Zones (DZ) and Intermediate Zones (IZ). For
convenience only the former terminology will be used. Scottish DZ are also smaller than LSOAs,
each DZ contains approximately 500–1200 residents and IZs between 2500–6000.
Another common subdivision used is the local authority (LA) which are governmental subdivisions.
There are 397 LAs in GB of varied area and population.

1.1.1. National Demand

Prediction of peak demand with electrification is a key aim in many assessments
of the national heat load. One of the few spatiotemporal studies has been conducted
by Eggiman et al. [17]. They developed a high spatial and temporal resolution heat and
electricity demand model to study the diffusion of heat pumps in the UK. The authors noted
that the need to balance resolution with computing requirements and data availability
is one of the main contributing factors towards the lack of spatiotemporal projections
of UK heat demand. They use the LA subdivision and disaggregate between domestic,
service, and industrial sectors. The temporal variation for electricity was calibrated via
electricity transmission system data but similar data is not available for gas transmission,
and therefore it was not validated. They use a heating degree day method to estimate
heat demand and like most studies of this kind, they used a combination of yearly and
daily load profiles to decompose annual energy use data into hourly temporal demand. A
strength of this study is the use of technology specific load profile; they have differentiated
between gas boiler demand profiles and heat pump profiles, notably using measured heat
pump load profiles.

Another recent contribution towards national spatiotemporal heat demand modelling
was conducted by Clegg and Mancarella [18]. They also use the LA level and heat demand
was simulated for a single year in EnergyPlus using four domestic archetypes and four
nondomestic archetypes to derive load profiles. These were mapped to the building
stock with statistical variations in occupancy and in thermal performance characteristics
to recreate demand diversity. It was found that regional half hourly peaks were 200%
larger than the average daily demand. The authors use this to analyse the impact of the
evolution of heating technologies on the gas and electricity network. A similar method
using EnergyPlus generated profiles was applied at the postcode level and aggregated to
city level demand [19].

Taylor et al. [20] created a high resolution (1 km square) spatial mapping of heat and
electricity demand to study the diffusion of heat pumps. They used socio-economic census
data combined with historic energy demand data. Assumptions were made to increase
the spatial resolution of demand, but with a static analysis capturing only annual demand.
Future demands were extrapolated factors from the base year.
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Quiggin and Buswell [21] used historic weather data to analyse the impact of heat elec-
trification. They combined a heating degree day with measured district heating demand to
generate domestic load profiles and flat nondomestic load profiles. The authors concluded
that peak electricity demand will be significant, and that demand side management can
provide an important balancing function.

Other notable contributions in estimating national heat demand includes the work
of Sansom [22] who used a regression analysis using historic weather and gas demand
data to estimate national heat load. Daily heat demand was combined with measured load
profiles to create half hourly demand profile for 2010.

It is estimated that there are over two million nondomestic buildings in the UK
compared to over 24 million dwellings but comprises around a fifth of the space and
water heat demand [4]. The studies that primarily focus on the domestic sector in the
UK outnumber the studies in nondomestic modelling. Reasons for this include the well-
established complexity of the nondomestic building stock [23–26].

1.1.2. Domestic Modelling

There are a several commonly used bottom up domestic energy models for the na-
tional housing stock [27]. Most are based on the English Housing Survey EHS (and prior
to that the EHCS) which is an ongoing stratified random national survey covering the
housing stock [28]. The segmentations used in the survey are commonly used in modelling
assumptions. It provides the main input to the Cambridge Housing Model (CHM), a policy
advice tool to estimate energy demand from the housing stock, and also provides the basis
for other studies [29].

Cheng and Steemers [27] note that a common weakness of the current bottom up stock
models is the use of generic occupant behaviour. Considering this, a large differentiating
factor in their model—the Domestic Energy and Carbon Model (DECM), has been the use
of multiple occupancy profiles based on employment status from socio-economic census
data. DECM disaggregates output down to the LA level. The heat demand is estimated
based on the SAP method from the BRE [30]; due to this, only yearly results are output
from the model. They find that dwelling type and socio-economic factors account for 85%
of the variation in consumption between LAs.

BREDEM is described as a methodology to calculate domestic building energy con-
sumption for different end uses and is widely employed as the core of other domestic
energy models due to its adaptability [11]. It uses heat balances and simple empirical
relationships that can be expanded upon to estimate annual domestic energy consump-
tion [31]. Examples that use BREDEM include the Community Domestic Energy Model
(CDEM) [16]. CDEM combines archetypes with the BREDEM method to investigate effi-
ciency interventions. Other models utilise GIS tools to infer built form and orientation to
model the energy consumption using BREDEM at the neighbourhood scale [32]. The use
of GIS based methods to analyse and gather data is becoming prevalent in building stock
modelling. Oikonomou et al. [33] looked at the urban heart island effect for London and
the risk of overheating in dwellings. They use GIS data of building form and orientation to
conduct simulations in EnergyPlus. Occupancy profiles were based on the work of Yao
and Steemers [34]. Another GIS based approach applied polygon information, LIDAR, and
thermal imaging to the Cambridge Housing Model to produce energy demand profiles at
the neighbourhood level [35]. There is potential to use this methodology on a wider scale
by city planning but the large computing requirements when scaled to larger areas remains
a key challenge [36].

In contrast to the bottom-up models presented, Watson et al. [37] use a top-down
approach to determine a regression model using historical gas demand and weather
data. This is combined with load profiles obtained from measured heat pump profiles
and differentiated by mean outdoor temperature. The study modelled a high temporal
resolution and the results can provide a useful comparison for national heat demand.
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1.1.3. Nondomestic Modelling

The difficulties involved in modelling the nondomestic stock include the high degree
of heterogeneity, both within and across use categories. Perhaps the biggest challenge
involves the availability of quality data [20]. The energy end use is more varied, meaning
measurements of gas consumption cannot be reliably used as a proxy for heating, the most
comprehensive resource available being property taxation data collected by the Valuation
Office Agency (VOA). However, this does not identify all floor area in nondomestic sites
such as hospitals or libraries and omits certain use categories such as agricultural buildings
or places of worship. A second important data source is Display Energy Certificates (DECs)
for public access properties in England and Wales, but these can also be inaccurate for
many of the same reasons [38]. In 2014 DECC commissioned the Building Energy Efficiency
Survey (BEES) [39] to assess and understand how energy is used in the nondomestic
stock across the different use categories. A comprehensive review of nondomestic stock
modelling in the UK has been covered in Steadman et al. [40]. These have typically been
in the form of a building database containing activity class and floor areas. The energy
demand has then typically been estimated by simple steady state equations, such as energy
intensities per floor area for a given activity class.

The CaRB2 model operates on this basic principle [41], using data from the above-
mentioned sources, combined with a consumption data per activity type that was obtained
from prior surveys. However, as it draws upon the VOA data, it only covers England
and Wales. The Cambridge Nondomestic Energy Model (CNDM) has been developed
with similar methods to the CHM [42]. This is achieved by segmenting disaggregating the
nondomestic stock into different building archetypes and applying a steady state energy
model. The disaggregation included built form, HVAC type, building age, location, and use
which resulted in some 35,000 combinations. The CNDM also uses the taxation database
disaggregated at a regional level with an annual breakdown of end use.

GIS approaches are also being used in nondomestic stock modelling, such as by
Taylor et al. [43], who use ordnance survey data to create polygons of buildings for Leices-
ter city centre. The 3DStock model is intended as a whole stock model but its treatment of
the nondomestic stock merits attention [38]. It uses a GIS approach to combine a detailed
representation of the urban building stock in select sub-city areas with taxation data, DECs,
and energy consumption data. A key feature of 3DStock is that the model differentiates
between buildings and premises for nondomestic sites. A single premise can be part of a
building or multiple buildings, and the same building can have multiple premises. The
energy consumption data (a database few other models have access to) for all modelled
premises is then matched to the 3D representations of the buildings. It has so far only
been applied to several sub-city areas and provides a high spatial resolution snapshot of
energy consumption.

1.1.4. District Scale Modelling

There have been attempts at mapping the heat demand in the UK at a high spatial
resolution such as the now defunct National Heat Map developed by the Centre for Sustain-
able Energy [44] for DECC which was designed with an emphasis on the location of heat
networks and waste heat potential. Internationally, other such tools exist at the city scale,
however these are only snapshots of heat demand intensity or annual consumption [45,46].
Tools such as CitySim [47] or Huber and Nytsch-Geusen [48] have been developed to aid
urban planning and have been demonstrated with application to case studies, however
these localised tools require extensive modelling data input. Numerous examples exist in
the literature of localised studies to forecast heat load in district heating systems that use a
variety of methods from detailed network simulation to statistical and machine learning
methods [49–53]. As these are localised for specific districts and existing networks, these
models can’t be applied directly to modelling districts in the UK without extensive data
input and large assumptions. Methods of creating spatiotemporal energy demand for
districts have been achieved by applying known spatial consumption to temporal profiles
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based on the distribution of building archetypes but the temporal profile can be difficult to
validate particularly without comparative data at the same spatial resolution [54].

As already shown, GIS based methods to generate three-dimensional polygons are
prevalent in the literature. Nouvel et al. [55] compared two methods: a thermal model
applied to 3D reorientations and a statistical method using 2D GIS. They combined these
methods to develop a framework to study heat loads at higher spatial resolutions using
statistical method at the lower spatial resolution then applying a thermal model to 3D
representations for higher spatial resolutions. Dogan and Reinhart [56] applied GIS to
a mixed-use neighbourhood in Boston, USA. They generated 3D models that are then
simulated in EnergyPlus to create hourly load profiles. Nageler et al. [57] applied a GIS to
open source mapping data of an Austrian district to generate polygonal representations
of buildings. Demand profiles were assigned to buildings using a thermal model and a
database of archetypes. The authors of this study noted that computational resources were
the main limiting factors on enlarging the modelled area.

1.1.5. Conclusion of Review

Building stock energy models in the UK are well established, particularly in the
domestic sector. The segmentation of the building stock into archetypes is widely used,
except in cases where a regression has been applied to historical data. The main data
sources that are drawn upon are census data, historical consumption, and the EHS. Many
studies and tools that map energy demand do so with a static state energy method or
mapping historical annual consumption. Two recent studies have created a spatiotemporal
analysis of energy demand [17,18]. The heat load modelling was achieved via either
application of load profiles to heating degree day calculations or the generation of load
profiles through building physics models with a reduced set of archetypes.

Achieving high accuracy is difficult due to the lack of data. Data on occupancy and
when heating systems are operated is essential. This is one of the primary reasons that
nondomestic modelling is harder than the well understood domestic sector. With (non-
hourly metered) gas being the main heating vector in the UK, it has not been possible to
use historical consumption alone to determine hourly loads, as is the case with electricity.
With the increasing uptake in heat pumps however, this may be less of an issue in future.
District heating load profiles are available and have been drawn upon in the literature to
provide urban heat load profiles. However, the composition of the local building stock
varies between locations. Existing high-resolution spatiotemporal models are not suitable
for use or adaptation. Others that can be adapted are only national in scale, as is the case
with the regression models.

2. Method

Each building is unique, not just in terms of the physical construction and location,
but also in its occupancy and use. This model follows the approach of segmenting the
stock into building archetypes. Once building archetypes are defined, a transient thermal
simulation is developed to calculate the hourly heat demand using historical weather data.
The advantages of using a custom a thermal model for simulating buildings is that it allows
the efficacy of interventions such as altering insulation to be evaluated and enables the
use of custom weather data to simulate heat demand. While individual building will be
simulated, results will be stored at an aggregated level (LSOA or MSOA) and diversity is
achieved by statistically varying occupancy.

A fundamental challenge in modelling the building stock is in the level of detail and
attention afforded towards grouping similar constructions into segments or archetypes.
The archetype approach is widely utilised in the framework bottom-up building stock
modelling. A building stock can be represented by a sample of building archetypes that
represent a statistical average for the archetype within the stock [58].

To develop archetypes, appropriate segmentations need to be identified prior to
characterisation of thermal properties and occupancy. The most fundamental segmentation
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is differentiating between domestic and nondomestic. The archetype developed here will
draw upon the work of a combination of previous studies. The open source datasets drawn
upon for this work are shown in Table 1.

Table 1. Summary of data sources.

Data Level Source

Dwelling build period LSOA/DZ CTSOP4.1 [59,60]
Dwelling type LSOA/DZ QS402EW [61] QS402SC [60]

Domestic Heating type LSOA/DZ QS415EW [61] QS415SC [60]
UK Domestic and Nondomestic Gas

Consumption
LSOA/DZ
MSOA/IZ Subnational Gas consumption [62]

Nondomestic floor areas Building CaRB2 from [59,63]

Standard Area measurements MSOA/IZ ONS Census [61]
Scottish Census [60]

Weather data Regional Met Office MIDAS [64]

2.1. Domestic Archetype Segmentation

Most domestic archetypes used in modelling studies in the UK have extensively
drawn on the English Housing Survey [65]. The EHS splits domestic buildings into seven
archetypes: end and mid terrace, semi-detached, detached, bungalow, converted flat, and
purpose built flat. The ONS data per LSOA reports on dwelling types as detached, semi-
detached, terraced, purpose built flat, converted flat, and others such as bungalow or
caravan. The ONS categories do not directly correspond to the EHS ones.

This model combines end terrace and mid terrace to correspond to the ONS reporting.
While the ONS reports on purpose built and converted flats, converted flats have wide
variety in form and the construction information in the available literature is largely for
purpose-built flats. Therefore, all flat varieties will be treated as purpose-built flats. The
same archetype segmentation has also been used in other studies [33,66]. The observed
distribution of the used dwelling types is shown in Figure 1.
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Figure 1. Dwelling types in the UK housing stock.

Each dwelling category is further split according to construction period. The VOA
reports dwelling age in 12 build periods, from pre-1900 to post-2010, corresponding roughly
to a decade in length while the EHS splits this into five build periods from pre-1919 to post-
1990. The proportion of dwellings per age range has been applied to each dwelling type
present in the LSOA. While it is likely that different dwelling types are built in different
periods, the age variation per dwelling type is estimated from the overall distribution per
LSOA as the data is provided per LSOA without further breakdown of age per dwelling
type. This may be an issue with LSOA’s that have a diverse range of dwelling types and
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construction periods but in many smaller LSOA’s the construction type and age fall within
a narrow range [67]. The distribution of dwelling build-period is shown in Figure 2.
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Figure 2. Dwelling built period in the UK housing stock, adapted from [68].

The SAP assessment has 11 age bands that are often combined. Oikonomou et al. [33]
use five age bands with multiple variations, reducing these to the 15 most commonly found
in their modelled area. Mata et al. [58] combine six dwelling types with eight narrow and
recent age bands, Cheng and Steemers [27] use ten age bands that become progressively
narrower while Buttita et al. [69] use the EHS age bands but combine two of the periods.
Table 2 summarises the archetypes used in other studies.

Table 2. Archetypes used in comparative studies.

Source Dwelling Types Age Categories Geographic Zones

Mata et al. [58] 6 Domestic
3 Nondomestic 8 pre-1985 to post-2010 4—major cities

Cheng and Steemers [27] 5 10 pre-1900 to post-2000 1—using 30 year mean
data

Buttita et al. [69] 5 with multiple
variations 5 pre-1918 to post-1991 4—major cities

Oikonomou et al. [33] 5 with multiple
variations 6 1—52 sites in London

Stamp [66] 4 4 construction styles 3 weather files
HeLoM 4 5 11—GB regions

2.2. Domestic Archetype Characterisation

The form and fabric data for each archetype is used to estimate a specific heat loss
(SHL) and thermal mass (ThM) from construction and fabric assumption per archetype.
Dwelling archetype geometry will be taken directly from the English Housing Survey [70].
The specific heat loss will largely be derived from construction data from BREDEM 2012 [15]
and glazing ratio and performance data are taken from the BRE’s SAP 2016 [71]. The ther-
mal mass represents the heat capacity of a building or its ability to store heat. Construction
and fabric play a large role in the thermal mass as do the internals of a dwelling. SAP gives
thermal mass with a thermal mass parameter per unit floor area. It has three categories of
light, medium, and heavy construction ranging from 100 to 450 kJ/m2K. The TMP used
are adapted from Stamp [66] who provides estimates for the building archetypes used here
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and shows that older constructions tend to be heavier while newer constructions utilise
modern lightweight construction methods and so have a lower TMP.

The power rating and efficiency of the heating system varies greatly between dwellings,
and the power capacity determines to a large extent how it is operated. For the purposes of
calibrating the heat load with gas consumption data, it is assumed that all buildings have
a gas boiler with an average efficiency of 85% for heating and 75% for hot water [71,72].
The power ratings of the heating system per archetype are assumed from a conservative
calculation of gas boiler power ratings using the domestic heating sizing method CE54 [73].
Table 3 summarises the data sources drawn upon for domestic archetype parameters and
Table A1 in Appendix A contains all the estimates and parameters used for domestic
archetype characterisation.

Table 3. Domestic archetype data sources.

Parameter Source

Dwelling Geometry English Housing Survey [70]
Construction U-values, Air tightness BREDEM 2012 [15]

Thermal Mass Parameter Stamp [66]
Boiler/Heating system size CE54 [73]

Glazing transmittance SAP 2016 [71]

Domestic Occupancy

Mean occupancy has been adapted from the SAP methodology based on floor area [71].
Measured hourly gas consumption profiles have been used as a proxy for active occupancy
profile and heating system operation for all dwelling archetypes. Average domestic heat
load profiles in UK households exhibit a double peak pattern, with morning and evening
peaks. From surveys on how dwellings are heated with various heating systems including
gas boilers and heat pumps, it appears that dwellings are predominantly heating this way
regardless of heating system and mixed work patterns [37,74,75]. Yao and Steemers [34]
showed that the load profile is same across dwelling types, with the magnitude of peaks
corresponding to the size of dwelling archetype. A normalised domestic load profile has
been adapted from Wang et al. [76] to represent the probability of active occupancy and
operation of heating as shown in Figure 3.
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The nondomestic archetypes are based on the CaRB2 activity classifications which
expand on the four VOA bulk classes: retail, office, industry, warehouse [38,59]. The
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primary source of data for nondomestic counts and floorspace as previously discussed is
the VOA taxation database. The available data from CaRB2 contains activity classification
and aggregated floor area per postcode which were combined to LSOA level by matching
postcodes to output area without detail on activity type (due to data protection). While
floor area has made available, this data is deemed inaccurate due to the method of taxation
data collection where some classes (such as schools, hotels, and hospitals) do not have
floor area records [77]. The CaRB2 activity classifications, count and floor areas are shown
in Figure 4. For the purpose of urban load modelling, the five most important categories
are office and shops (retail), followed by factories, warehouse, and hospitality. It was not
possible to obtain localised Scottish nondomestic figures as the VOA database covers only
England and Wales. Instead the overall count of each archetype in Scotland was scaled to
each IZ using annual gas consumption data [63].
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2.4. Nondomestic Archetype Characterisation

The occupancy and use of nondomestic buildings shows a large variation even within
the same classification and there can be many different sizes and floor plans [78]. While
classifications such as “offices” or “education” are generally occupied during normal
working hours, the occupancy and usage can often vary with occupancy in the evenings
and weekends.

The archetypes were adapted from analysis of the CaRB2 data by Barrett [79]. The
mean floor areas for each category were calculated from the total gross internal area and
archetype form was inferred from prior surveys of the nondomestic building stock [80–82].
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A medium-weight construction TMP of 250 kJ/m2K was applied to all archetypes to derive
a thermal mass. Benchmark guidelines were followed for the sizing of the heating system
and determining internal heat gains in the various archetype activity classifications [83,84].
Where data and benchmarks for the archetype were not found, the figures were estimated
from other archetypes.

Nondomestic internal gains are estimated from benchmark figures from CIBSE [84]
Guide A. Offices and schools are well represented in other literature [85,86], but where
the archetype data is unavailable, such as the case for industrial buildings, this has been
estimated based on CIBSE Guide A. A summary of the nondomestic archetype parameters
is shown in Table A2.

Nondomestic Occupancy

Building occupancy and use was determined mainly from analysis of hourly gas
consumption data for 37 buildings provided by Sustainable Energy Limited [87]. Nor-
malised profiles were extracted for each activity class available in the dataset as shown
in Figures A2 and A3. This was further supplemented through secondary studies on
occupancy in offices, shops, health and educational buildings but for non-UK based build-
ings [88,89]. There are three categories where there is a lack of available data on occupancy:
factory, warehouse, and transport. Factories and warehouses constitute 19% of the mod-
elled stock and both are very diverse in their activity types. The factory classification can
range from a food processing factory to newspaper print works while it is unclear to what
extent warehouses are heated due the large floor area they occupy. Transport buildings are
similarly diverse, from a train station to a petrol station. A 24-hour occupancy with higher
daytime usage has been estimated for these categories as in shown in Figure A1.

2.5. Spatial Disaggregation

The highest level of spatial disaggregation is to the LSOA level. All GB domestic stock
has been mapped to this spatial resolution. While the nondomestic activity classifications
in the CaRB2 database were available per postcode in England and Wales, these were also
mapped to the LSOA level. In Scotland, nondomestic stock counts were only available
at the national aggregated scale, these were distributed per MSOA, weighted by MSOA
nondomestic gas consumption.

Due to computing capacity and storage limitations, only selected MSOAs have been
modelled. The gas demand per square kilometer has been estimated per MSOA using
Standard Area Measurements, then ranked by gas consumption density. The top 20%
cumulatively were chosen as representative of urban heat demand. A further 10% of largest
absolute gas consumption were included to include a more representative consumption
profile to scale to national level. The results for each LSOA and MSOA are stored in a table
within an SQL database. Each hour or row of data contains roughly 1600 bytes of data.
Six years of results for 10,226 individual LSOAs and MSOAs results in just over 40 GB of
stored results.

Weather Data

Weather data is divided into GB regions (the highest tier of sub-national division).
Weather stations were selected per region based on proximity to population centers and
completeness of data, covering at least the period 2010–2016. The regional stations from
which data is drawn upon is shown in Table 4.

Met office data was compiled ensuring that each station has been active since at least
the beginning of 2010. Missing temperature (wet bulb) values were linearly interpolated
unless large gaps of more than 12 h were found. Missing wind speeds were forward filled
for a maximum of 2 h, otherwise they were interpolated to the next available wind value
unless large gaps of more than 12 h were found. Missing solar observation data was first
linearly interpolated if less than three consecutive hours were missing, otherwise values
were shifted from the previous 24 h unless large gaps of more than 24 h were found. In
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cases where large sections of data were missing these were filled using data from the closes
available weather station.

Table 4. UK hourly weather observation—Regional stations.

Region Station ID Station Name

London 708 Heathrow
South East 795 Shorham Airport

862 Hampshire (Solar observation)
South West 676 Filton

East of England 461 Bedford
East Midlands 554 Sutton Bonington
West Midlands 19,187 Coleshill

North West 1119 Stonyhurst
1083 Shap (Solar observation)

Yorkshire and the Humber 534 Bramham
370 Leconfield (Solar observation)

North East 326 Durham
Wales 19,206 St Athan

Scotland 24,125 Glasgow Bishopton

2.6. Thermal Model Development

Thermal simulations of the building stock are conducted on a per LSOA bases, ap-
plying the compiled data on the numbers of each domestic and nondomestic archetype
to the LSOA. Each building is assigned a set-point temperature, Tset, which is normally
distributed about a mean of 20 ◦C with limits of 15–25 ◦C based on reported domestic
set-point temperatures [90]. There is also evidence that nondomestic archetypes such as
offices and schools fall within this range albeit skewed to the higher limit [85,86].

The simulation procedure calculates the temperature change of the building thermal
mass per hourly time step. The thermal model simplifies the representation of the buildings
as cuboids with heat transfer through four walls and assumes the temperature of the
building thermal mass and internal wall surface to be same as the internal air temperature,
Tint. The net heat flows from the buildings are the sum of gains and losses and calculated
dynamically to update the temperature of the thermal mass.

The ambient temperature, Tamb, is given by the hourly weather data. To calculate
conduction through the wall, we first need to estimate the external wall temperature from
convective heat transfer to the air. Calculating wind induced convection is complicated
due to geometry, orientation, and other factors such as roughness and protection from
surroundings such as trees or larger buildings. Heat transfer theory suggests a power law
model for heat loss from an object but a linear form has been found to fit the data well in
the ranges often experienced by dwellings (although this may not hold for very tall tower
blocks) [91]. A linear form equation to estimate the wind convection coefficient for each
surface, hc,s, with wind speed, vw, has been suggested [92]. With the assumption that wind
forced convection acts on one side only, the convection transfer is given by Equation (2),
setting vw = 0 in Equation (1) for the remaining surfaces:

hc,s = 5.8 + 4.1 vw (1)

Qconv,s = hc,s As (Text,s − Tamb) (2)

Conduction heat transfer through each surface, Qcond,s, can be calculated from:

Qcond,s = UAs (Text,s − Tint) (3)

Under the assumption of steady-state, conduction through each wall is equal to the
convection from the wall, Qconv,s = Qcond,s. Using Equations (2) and (3) we can estimate
Text for each wall and from this, Qcond,s through each wall.
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Infiltration is based on the air changes per hour, ach, and building volume, Vb:

Qinf = 1/3 ach × Vb(Tamb − Tint) (4)

Domestic internal gains, Qgain, are estimated from the mean hourly occupancy, Ph,
and floor area, Af assuming 54 W per person, 0.1 W/m2 for lighting and small appliances,
105 W per dwelling for large appliances (e.g., fridges) [93].

Qgain = (54 × Ph) + 0.1Af + 105 (5)

Nondomestic internal gains are calculated from the intensity factors in Table A2
multiplied by normalised occupancy in Figures A1 and A2. The sum of the heat transfers,
Qtot, can now be calculated from:

Qtot = ∑Qcond,s + Qinf − Qgain (6)

The internal temperature change, ∆Tint, is then updated by:

∆Tint = Qtot ⁄ Mth (7)

For a large set of buildings, the CIBSE [94] code of practice for heat networks suggests
the use of an 80% diversity factor for peak space heat load. This diversity factor is multiplied
by the normalised occupancy profile value to give the hourly probability of heating system
operation and determined randomly for each building.

If internal temperature is lower than setpoint temperature and the building is actively
occupied, then the heat demand is the heat required to raise the temperature of the thermal
mass to the setpoint temperature up to the power capacity of the heating system. If heat is
supplied to the building, then internal temperature is updated using Equation (8).

Qdemand = Mth(Tset − Tint) (8)

Hot Water Demand

There have been a range of models produced to calculate hot water demand, mostly
for domestic buildings [95]. These have generally been compiled from high resolution
sampling of water consumption and are suitable to apply in an individual building analysis
such as the BREDEM estimation of hot water. The building model presented here does not
have sufficient detail to calculate high resolution hot water demand per building. As we
are not concerned with the heat performance of an individual building but a demand at an
aggregated level, it is thus appropriate here to simplify the approach to hot water demand.

The average hot water consumption in UK dwelling is reported between 3–5 kWh per
day [96,97]. The heat network code of practice [94] states that the Danish standard DS439
for peak domestic hot water demand is widely used in the design of district heating in the
UK. The peak hot water value, Qhw,max (kW), for Nb number of domestic buildings has
been estimated from the Danish standard DS439.

Qhw,max = 17.6 + 1.19Nb + 18.8N0.5
b (9)

The peak heat load is then applied to a daily load profile. The daily domestic water
load profiles have been adapted from a study for DEFRA [96] and a design guide for
hot water in district heating networks [98]. From the literature a weekday, Saturday and
Sunday load profile are given as well as a weekday/weekend variation factor, f h, shown
in Figure 7. There were minor differences between the Saturday and Sunday load profile
but an average of the two is used as a weekend load profile and the adjustment factor was
applied to the weekend profile. A further adjustment, f m, given in Table 5. for the monthly
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or seasonal variation is applied as per Burzynski et al. [99] which is based on BREDEM.
Aggregated hourly domestic hot water demand can then be estimated from Equation (10).

Qhw = f m f h Qhw,max (10)
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Table 5. Monthly factor for domestic hot water variation [99].

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

f m 1.10 1.06 1.02 0.98 0.94 0.90 0.90 0.94 0.98 1.02 1.06 1.10

Nondomestic hot water (and other low temperature heat) demand is more challeng-
ing, especially given the lack of absolute consumption and measured demand profiles.
Fuentes et al. [95] reviewed hot water load profiles in various building uses which showed
a pattern that largely corresponded to occupancy.

BEIS [100] has published estimates of nondomestic hot water energy consumption
based on their Building Energy Efficiency Survey [39]. The nondomestic hot water energy
consumption in the UK was estimated to be around 14,900 GWh in 2015 and comprises
8% of the national nondomestic gas consumption. Compared to heating, hot water con-
sumption has less variation between years, so the 2015 numbers were assumed to be
representative of all years. Given that hot water account for 10% of nondomestic heat
demand and around 3% of overall space and hot water heat demand in the UK. Further, it
is unclear how the activity classifications produce hot water. In the case of larger hospitality
buildings for example, it is possible that hot water is constantly produced and used in
short term storage tanks. Given this, a simplified approach of assuming 8% of nondomestic
gas consumption is for hot water, produced by gas boilers (at 75% efficiency) distributed
evenly over all hours and it is assumed that large hot water production has been from gas.

2.7. Model Calibration

The annual domestic heat demand is then compared and calibrated to domestic LSOA
gas consumption for LSOAs that had at least 50% of dwellings connected to the gas grid
using an average boiler efficiency of 85% [72]. An assumption is made that the dwellings
connected to the gas grid are evenly distributed per dwelling type. This may not necessarily
hold true in all areas; for example, all flats in a particular LSOA could be disconnected from
the gas grid while all other dwelling have a connection, but this level of detail is currently
unobtainable. For areas that had a lower percentage of gas connection, the average regional
adjustment was applied across all years.
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Nondomestic modelled heat loads have been adjusted using the mean regional do-
mestic adjustment factor shown in Table 6. The number of nondomestic gas connections
do not correspond to nondomestic premise count from CaRB2 and neither is there data
on the number of nondomestic premises without a gas connection similar to the domestic
‘non-gas’ data. In the nondomestic sector, multiple premises can share a single gas meter
in one building, or across multiple buildings or may have an unconnected supply point.
Analysis of the nondomestic gas consumption data shows that around 6% of this fall into
the unallocated category. Also, the designation of a nondomestic gas meter is arbitrary and
based on a 73,200 kWh cut-off applied by BEIS [62], therefore some smaller nondomestic
premises fall incorrectly into domestic consumption and vice versa.

Table 6. Average calibration factors per region.

Region LSOAs Modelled Modelled LSOAs with above
50% Domestic Gas Connection

Mean Calibration Factor
(Modelled/Measured)

London 3443 2047 0.92
South East 906 654 1.01
South West 353 215 0.99

East of England 405 337 1.10
East Midlands 449 389 1.09
West Midlands 919 829 1.15

North West 1002 856 1.13
Yorkshire and the Humber 723 646 1.09

North East 357 324 1.11
Wales 181 146 1.07

Scotland 1051 764 0.94
Total 9789 7207 1.03

Parameter Sensitivity

The sensitivity of the input parameters to the thermal model was tested. Each pa-
rameter in Figure 8 was tested one at a time by scaling the parameter and observing the
percentage change in total heat load for the entire six-year period. The sensitivity was
conducted on 1000 domestic buildings, comprising of each domestic archetype in the ratios
given in Figure 1 using London meteorology data.
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The most sensitive parameters observed in advanced building simulation models
are the wall U-values, ventilation rate, and setpoint temperature [101]. Linear responses
to the inputs are observed with the window transmissibility and SHL. Increasing the
transmissibility value results in larger thermal gains and thus reduced heat load. The
SHL values encompasses both fabric U-values and air change losses. The most sensitive
input parameter to the model is the internal setpoint temperature. Reducing the setpoint
causes a rapid reduction in heat load, but the same is not observed with increasing setpoint.
A limitation of this model is with the method in which the model infers occupancy and
the power capacity of the heating system which both limit the maximum heat demand
of a simulated building. Heating systems are normally sized according to the heat load
requirements of a building. For the purposes of this sensitivity analysis, the power of the
modelled heating system was not adjusted when changing SHL. If it were, then we would
see a larger response to changing SHL as in this analysis the maximum heat load was
limited by the capacity of the heating system.

3. Results

The total domestic and nondomestic modelled areas represent 22% and 42% of the
total national (GB) value. These were extrapolated to represent 100% of national demand.
These values can be adjusted and extrapolated to future demand estimates specified as a
percentage change from current heat demand, for example if the domestic stock were to
grow by 10% then the domestic demand figure is scaled accordingly. The results for 2010
weather data are presented as a comparison with previous estimates of GB heat demand.
The modelled loads correspond well to the annual demand presented in other studies
while the peak load has close agreement with Watson et al. [37] estimate. Quiggin and
Buswell [21] used a restricted and unrestricted profile giving two peak values and the
domestic annual figure was imputed from heating efficiency assumptions. Nondomestic
annual consumption has been estimated at 124 TWh while the other studies estimated 144
and 105, respectively. The nondomestic peak (which does not coincide with the domestic)
is substantially lower than Sansom’s. However, Watson et al. [37] suggests that Sansom
overestimated their peaks and their estimate is more robust due to their use of multiple load
profiles. The comparison of national heat load is shown in Table 7 with the government
estimates shown in Table 8. Figure 9 shows the national hourly modelled heat load for
using 2010 weather data.

Table 7. Comparison of 2010 heat load with previous estimates.

Model Domestic Annual
TWh

Domestic Peak
GWth

ND Annual TWh Total Peak GWth

HeLoM 362 172 124 219
Watson et al. [37] 391 170 - -

Sansom [22] 398 277 144 358
Quiggin and
Buswell [21] 358 262/117 105 -

Table 8. ECUK 2010 heating consumption estimates (DECC 2015).

2010 Domestic
TWh

Industrial
TWh Service TWh Total Nondom

TWh Total TWh

Space Heating 401 35 114 149 550
Hot Water 82 - 22 22 104

Total 483 35 136 171 654

A comparison of the GB load profile for the December average and the peak demand
day are shown in Figure 10. The average shows that morning peak is typically larger than
the evening peak. However, the peak day has a larger evening peak occurring between
1700 and 1800. The peak to trough ratio is larger than that found by Watson et al. who have
a flat demand curve on the peak day, but it is less than Sansom’s. The load profile used



Energies 2021, 14, 4078 18 of 28

in Watson et al. reflects the heating pattern of a heat pump while Sansom’s load is based
on the equivalent gas consumption. If this is the case, the implications of a high peak for
the operation of domestic heat pumps may have profound consequences for the electricity
network. To prevent surges in demand, the consumption pattern would need to be altered
to flatten the demand profile or some form of demand side flexibility may be required such
as thermal energy storage.
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Urban Heat Load

The distinction between overall GB heat load and the urban heat load is made as
district heating load would likely be constructed in urban areas owing to the favourable
economics. The ratio of domestic to nondomestic heat loads will make a difference to
the daily load profile as will the proportion of each archetype, with urban areas having a
higher share of flats for example. The heat demand from the top 5% of heat load density
MSOAs has been used as a proxy for urban heat load. Figure 11 shows normalized average
winter demand profile comparison. The average urban winter load profile has lower peaks
and lower peak to trough ratio compared to the average GB load profile which also has
a much more pronounced morning peak and a quicker drop-off while the daytime loads
from nondomestic building prolong the drop-off to the mid-day trough.

The spatiotemporal load at the LSOA level is shown in Figure at four times (9 am
to 6 pm) in Figure 12. The annual values of domestic LSOA load have been calibrated to
consumption data, but the inter day profile and nondomestic load at this level are estimated
model outputs.
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4. Discussion

A high-resolution spatiotemporal Heat Load Model (HeLoM) has been developed
to generate estimates of space and water heating demand in urban sub-city areas. Previ-
ous studies using similar methods have provided an exploration of domestic loads, but
any future large-scale district heating development is unlikely to exclude nondomestic
buildings. This model builds on previous work in the segmentation and characterisation of
archetypes as well as the construction of a thermal model to derive heat loads. A thermal
model using regional weather data has been developed to provide hourly heat loads and
can be used to test the efficacy of efficiency interventions in future work.

Knowledge of localised peak loads is necessary when planning electricity infrastruc-
ture in the event of large-scale domestic heat pump uptake, but it also has an impact on the
design of district heating energy centres. The results of the highest heat demand density
areas have been aggregated here as a substitute for total district heating load nationally.
The results show that there is a discernible difference in the average heat load profile
between the national load profile and the urban subset, which demonstrates the need to
disaggregate the urban load. On the national scale, the impact of peak winter heating loads
on the electrical system has been the subject of several other studies. This model suggests
that the peak may be more likely to occur around the evening peak with the cumulative
contribution of domestic and nondomestic demand. The translation of the derived heat
loads to heat pump electricity load profiles is open to debate. Heat pumps may be operated
with a flatter load profile; therefore, caution should be applied when using these heat
loads as a proxy for electrical load and similarly with the use of low temperature district
heating demand.

The thermal model contains many simplifications and is not suitable for a more
detailed single building analysis where greater construction, orientation, and occupancy
detail would be available. The nondomestic archetypes used here were limited to 12 activity
classes but could have benefited from data on activity types as well accurate floor area
estimates and more monitored occupancy data. This work draws on established building
stock modelling methods and building thermal modelling such as BREDEM. The novelty
of this study emerges from the combination of the methods and data sources, applied at a
high spatial and temporal resolution using historic meteorological data as the main driver
of heat demand.

The smallest spatial resolution captured in this model is at the LSOA level and each
LSOA can be individually interrogated to obtain heat loads for any given hour. Such a
tool has potential for use by urban planners who may want to identify areas of temporal
synergy such as whether a residential area with morning and evening peaks is beside a
commercial area with day-time load. The results cannot be used for local district heating
design, which requires a more localised analysis of heat loads, identifying large heat loads,
heat sinks and the loads that differ from the standard occupancy modelled here.

Modelling demand at high resolution necessitates high computing requirements and
data storage requirements, particularly as the spatio-temporal resolution increases, more
detail needs to be captured. The study has relied on historical consumptions data and a
central challenge remains in the validation or calibration of results in the absence of reliable
benchmarking data [102].

While the spatial distribution of heat load is unlikely to differ much, there are large
uncertainties in future demands from factors such as population growth, efficiency improve-
ments, and climate change effects. While population growth and efficiency improvements
can be accounted for in the modelling presented here, climate change may have the biggest
impact. The Met Office (REF) UK climate projections envisage a range of 0.7–4.2 ◦C warmer
winters by 2070 and more erratic weather patterns whose impact cannot be easily mea-
sured. Building efficiency improvements may counteract increases in population growth
but more recently we have experienced an upheaval in working patterns and building
occupancy in a short period of time. How this might affect absolute demand, day to day
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temporal variation from weather patterns, and seasonal variation from climate change is
still indetermined.

Author Contributions: Conceptualisation, methodology, validation, analysis, data curation, writing—
original draft preparation, S.S.; supervision, methodology, analysis, review and editing, M.B.; su-
pervision, review and editing, J.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was made possible by support from the EPSRC Centre for Doctoral Training
in Energy Demand (LoLo), grant numbers EP/L01517X/1 and EP/H009612/1.

Acknowledgments: The Carb2 dataset and building consumption data was kindly provided by
Rob Liddiard from the UCL Energy Institute and Penny Challans from Sustainable Energy Ltd.
respectively. This research used Valuation Office Agency (VOA) and Office for National Statistics
(ONS) data containing public-sector information licensed under the Open Government Licence v1.0.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Nomenclature

Qtot Total heat transfer (W)
Qcond Conduction heat transfer per surface (W)
Qconv Convection heat transfer per surface (W)
Qinf Infiltration heat transfer (W)
Qgain Thermal gains (W)
ach Air Changes per hour
Vb Building volume (m3)
Nb Number of buildings
vw Wind speed (ms−1)
U Thermal transmittance (Wm-2K−1)
Tset Setpoint temperature (K)
Text External wall temperature (K)
Tint Internal wall temperature (K)
Tamb Ambient temperature (K)
hc Wall convection coefficient (Wm−2K−1)
As Wall surface area (m2)
Af Floor area (m2)
Ph Hourly occupancy
Mth Thermal mass (WhK−1)
f h Hourly adjustment factor
f m Monthly adjustment factor
Subscripts Denotes value per surface/wall



Energies 2021, 14, 4078 22 of 28

Appendix A

Table A1. Domestic characterisation: Assumptions and parameters.

Dwelling
Type Built Period Floor Area m2 Height m Wall U

W/m2K
Ground U

W/m2K
Loft Floor

W/m2K
Glazing U

W/m2K
Glazing
Trans% ACH Hour −1 ∑UA W/K TMP

kJ/m2K Mth kWh/K Boiler
kW

Mean
Occupancy

Terraced Pre 1918 87 4.7 2.1 0.8 0.16 3.1 0.85 0.56 311.79 612 14.8 23.95 3
Terraced 1918–1964 78 4.7 2.1 0.6 0.16 3.1 0.75 0.76 294.93 500 10.8 23.02 2.9
Terraced 1965–1980 78 4.7 1.3 0.6 0.16 3.1 0.75 0.64 248.9 400 8.7 20.49 2.9
Terraced 1981–1990 68 4.7 0.6 0.6 0.3 3.1 0.75 0.64 204.77 300 5.7 18.06 2.9
Terraced Post 1990 77 4.7 0.45 0.3 0.16 3.1 0.75 0.51 174.2 200 4.3 16.38 2.9
Semi-det Pre 1918 126 4.7 2.1 0.8 0.16 3.1 0.85 0.56 576.37 612 21.4 33.5 3.1
Semi-det 1918–1964 91 4.7 1.6 0.6 0.16 3.1 0.75 0.76 414.54 500 12.6 26.6 3
Semi-det 1965–1980 85.5 4.7 1.3 0.6 0.16 3.1 0.75 0.64 348.98 400 9.5 21.99 3
Semi-det 1981–1990 74 4.7 0.6 0.6 0.3 3.1 0.75 0.64 255.66 300 6.2 17.86 2.9
Semi-det Post 1990 79.5 4.7 0.45 0.3 0.16 3.1 0.75 0.51 206.1 300 6.6 18.14 2.9
Detached Pre 1918 197 4.7 2.1 0.8 0.16 3.1 0.85 0.56 965.33 550 30.1 49.89 2.8
Detached 1918–1964 151 4.7 1.6 0.6 0.16 3.1 0.75 0.76 720.8 450 18.9 36.44 2.3
Detached 1965–1980 135 4.7 1.3 0.6 0.16 3.1 0.75 0.64 582.68 350 13.1 31.85 2.5
Detached 1981–1990 134 4.7 0.6 0.6 0.3 3.1 0.75 0.64 469.28 250 9.3 32.61 2.3
Detached Post 1990 166 4.7 0.45 0.3 0.16 3.1 0.75 0.51 427.97 200 9.2 37.34 2.2

Flat Pre 1918 67 2.35 2.1 0 0 4.8 0.85 0.56 375.38 300 5.6 27.45 2.2
Flat 1918–1964 56 2.35 2.1 0 0 3.1 0.75 0.76 257.42 250 3.9 20.96 1.9
Flat 1965–1980 52.5 2.35 1.3 0 0 3.1 0.75 0.64 255.75 250 3.6 20.87 1.8
Flat 1981–1990 57 2.35 0.6 0 0 3.1 0.75 0.64 191.39 200 3.2 17.33 1.9
Flat Post 1990 60 2.35 0.45 0 0 3.1 0.75 0.51 141.93 200 3.3 14.61 2

Table A2. Nondomestic Archetype parameters used, adapted from [79].

CaRB2
Class

Floor
Area m2

Storey
Height m Depth m Width

Ext% Glaze % Glaze
Trans%

Glaze
Trans%

Wall U
W/m2K

Glaze U
W/m2K

Roof U
W/m2K

Floor U
W/m2K AirCh h−1 SHL

kW/K
Mth

kWh/K Boiler kW Int Gain
W/m2

Office 276 3 8 0.9 0.4 0.5 0.5 1.0. 3.8 0.7 0.4 3.5 1.1 19.2 19.3 32
Shop 201.7 3 15 0.9 0.5 0.5 0.5 1 3.8 0.7 0.4 5 1.2 14 20.2 46

Factory 737.3 5 20 0.9 0.1 0.7 0.7 1 3.8 0.7 0.4 3 4.9 51.2 59 90
Warehouse 922.9 8 25 0.9 0.1 0.7 0.7 1 3.8 0.7 0.4 1.5 5.5 64.1 46.2 27
Hospitality 365.9 3 8 0.9 0.2 0.7 0.7 1 3.8 0.7 0.4 5 1.9 25.4 22 47
ArtsLeisure 437.1 3 8 0.9 0.2 0.7 0.7 1 3.8 0.7 0.4 5 2.5 30.4 43.7 30

Sports 668.6 6 15 0.9 0.1 0.7 0.7 1 3.8 0.7 0.4 5 6.2 46.4 24.9 60
Education 1291 3.5 10 0.9 0.1 0.7 0.7 1 3.8 0.7 0.4 3.5 6 89.7 112.3 75

Health 1477.7 4 15 0.9 0.2 0.7 0.7 1 3.8 0.7 0.4 5 7.9 102.6 73.9 69
Transport 408.2 5 20 0.9 0.1 0.7 0.7 1 3.8 0.7 0.4 5 3.8 28.3 20.4 26
Community 295.7 3 7 0.9 0.1 0.7 0.7 1 3.8 0.7 0.4 5 1.7 20.5 20.7 40
Emergency 2496.1 4 7 0.9 0.1 0.7 0.7 1 3.8 0.7 0.4 5 18.6 173.3 124.8 40
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Table A3. Details of hourly gas consumption data.

CaRB2 Class Building Sources Data Length Further Information Estimated Active Occupancy

Offices 5 2011–2015 5 office 7–5 weekday, 8–15 weekend
Hospitality 2 2015–2017 2 hotels 6–23
Arts Leisure 3 2013–2014 3 theatres 8–21

Sports 5 2010–2015 5 leisure centres 7–20
Education 16 2011–2015 10 primary, 5 sec., 1 college 6–17 weekday, 6–15 weekend

Health 2 2011–2015 1 hospital, 2 care homes 24 h
Community 2 2013–2015 1 Library, 1 day centre 7–18
Emergency 1 2013–2014 Fire station 24 hr weekday, 12 hr weekend

Table A4. Estimated activity classifications.

CaRB2 Class Estimated Active Occupancy Further Information

Shop (retail) 9–20 [88]
Factory 24 h Reduced overnight

Warehouse 24 h Reduced overnight
Transport 24 h Reduced weekend
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